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Introduction: The traffic air pollution caused by transportation is a growing global 
problem that contributes to millions of deaths each year. Despite its importance, 
information on pollutant concentration is limited in many developing cities, especially 
in Ethiopia. This study aimed to determine the concentration levels and spatial 
and temporal variations of traffic air pollutants in Hawassa and to investigate the 
influence of metrological parameters on the concentration of traffic air pollutants.

Methods: A real-time monitoring system of Aero-Qual Series 300/500 was used 
to monitor pollutants, and 24 monitoring sites were included on both heavy and 
low-traffic volume roads. The study monitored morning and afternoon times 
over 24 days to comprehensively characterize the temporal variations.

Results: The results showed that the mean PM2.5 concentration on heavy- 
and low-traffic volume roads was 161.6 ± 26.1 μg/m3 and 95 ± 14.2 μg/m3, 
respectively, whereas the PM10 concentration was 178.7 ± 20.3 μg/ m3 and 102.3 
± 17.6 μg/m3, respectively. Similarly, the mean NO2 concentrations on roads with 
heavy and low traffic volumes were 86.4 ± 14.4 μg/m3 and 61.7 ± 14.2 μg/m3, 
respectively. Significantly higher, concentrations were recorded on traffic light 
roads, followed by main asphalt roads, for both types of traffic air pollutants. The 
ratio of PM2.5/PM10 was higher (0.924), in which the pollution sources attributed 
to anthropogenic sources. Kendall’s tau-b correlation analysis suggested that 
Meteorological parameters (temperature and relative humidity) were positively 
correlated with traffic air pollutants. Likewise, stepwise multiple linear regression 
analysis confirms that the concentrations of traffic air pollutants had a positive 
relationship with metrological parameters.

Implications: The findings of this study therefore showed the need for regular air 
quality monitoring of the urban areas to copping out the adverse public health 
impacts. And, it highlighted an urgent need for long-term monitoring of traffic air 
pollution and the development of emission control programs that can be readily 
implemented to decrease the emissions from anthropogenic sources. Also, it brings 
a sense of collaboration among stakeholders to tackle the effects of air pollution by 
providing an inclusive and sustainable development agenda for Hawassa.
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Introduction

Ambient air pollution causes 4.2 million premature deaths 
worldwide every year, of which 91% occur in low- and middle-income 
countries (LMICs). Notably, 20% of these deaths are due to air 
pollution from road traffic (1, 2). The number of deaths caused by air 
pollutants, particularly particulate matter (PM2.5), exceeds 4.2 million 
per year and accounts for 7.6% of global deaths (3). Traffic air 
pollution is a pressing global problem, especially in LMICs (1) and 
exposure to ambient PM is a major public health concern (4). Air 
pollution is considered one of the greatest threats to public health 
worldwide, and the health problems commonly associated with air 
pollution are chronic diseases (5, 6).

Ambient air pollution causes a range of minor upper respiratory 
irritations to serious chronic respiratory and cardiac diseases (7), from 
aggravation of pre-existing heart and lung problems to premature 
mortality and, reduced life expectancy. These adverse health effects are 
associated with exposure to PM, NO2 and long-term high-
concentration exposure to PM leads to an increased risk of lung 
cancer, respiratory disease, and arteriosclerosis, whereas short-term 
exposure to PM can cause exacerbation of several forms of respiratory 
diseases and changes in heart rate variability (8). As a consequence, 
ambient air pollution, especially PM exposure, is more severe than 
ever (9, 10). Sub-Saharan African (SSA) countries are undergoing an 
epidemiological transition, manifested by a substantial burden of both 
communicable and non-communicable diseases (NCDs). The increase 
in NCDs is associated with the risk factors that accompany lifestyle 
changes and the expansion of urbanization (7, 10, 11).

Six criteria pollutants, namely particulate matter (PM), carbon 
monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), lead, 
and ozone (O3), have been identified as major public health concerns 
(6). Road traffic contributes significantly to air pollution and is 
responsible for 7.7%, 10%, and 28% of PM10, PM2.5, and NOx emissions, 
respectively (12). In particular, emissions from motor vehicles are the 
main source of NO2, an indicator of traffic air pollution in urban areas 
(13). Road traffic is also the major source and contributor of black 
carbon and PM2.5 (88%) in four West African cities (14). In particular, 
road traffic is a major source of urban PM and atmospheric metals, 
and air quality experts have recently focused on this sector for specific 
emission control measures (8). The PM released from road traffic in 
Sub-Saharan African (SSA) countries is higher compared to developed 
countries (7). For example, the PM2.5 concentration in the 
United States was 9 μg/m3 in 2019, and the concentration level in 
seven African countries ranged from 40 to 260 μg/m3 (11). Most 
African countries predominantly use second-hand vehicles and poorly 
maintained old cars, and the frequent stop-and-go of the vehicles 
contributes to the emissions of traffic air pollutants like NO2 and PM 
(15). There is also a significant usage of two-wheel vehicles for public 
transportation, and a lack of urban planning causes severe traffic 
congestion, which ultimately causes an increase in traffic air pollution 
in urban settings (9–11).

Data on traffic air pollutants are limited, especially in low-and 
middle-income countries. Although most African studies have found 
exceedances of the World Health Organization (WHO) limits on 
particulate matter (PM) and nitrogen dioxide (NO2) (5), the available 
data are limited and scattered. However, recent research has provided 
some insight into the scale of PM2.5 contamination. PM2.5 
concentrations in low-income countries (LICs), low-and 

middle-income countries (LMICs), and high-income countries 
(HICs) were 78 μg/m3, 55 μg/m3, and 14 μg/m3, respectively (1, 16). 
In addition, data from 2019 showed that around 80% of the urban 
population lived in areas where the WHO limits for ambient air 
pollutants were exceeded, while data from 2018 showed that 93% of 
urban children lived in areas where the WHO limits were exceeded 
(1, 17). Previous studies have shown that PM and NO2 concentrations 
varied across heavy- and low-traffic exposure roads. For example, 
studies conducted in the USA (18), Norway (19), Uganda (5), and a 
local study in Addis Ababa, Ethiopia (20) showed that the 
concentrations of those pollutants greatly varied across road types. 
Studies conducted in Malaysia (21), Nigeria (22), and Ethiopia (23) 
have shown that concentrations of air pollutants were higher in the 
morning than in the afternoon.

Although industrially developed countries have made a 
continuous effort to reduce exposure to air pollution, mortality and 
morbidity associated with air pollution have not decreased on a global 
level (9). To tackle the effects of traffic air pollution, restricting rules 
on vehicles and fuel usage is vital. Public transportation and 
infrastructure for walking and bicycling should be encouraged. Some 
cities in Africa are initiating stricter rules, demonstrating that local 
governments play a key role in mitigating air pollution. For example; 
South  Africa’s Air Quality Act (Act 39 of 2004), allows local 
governments to create their standards (24, 25). The trans-boundary 
nature of air pollution is a problem for many African countries, and a 
binding rule concerning air pollution on a global level is needed (26). 
Likewise, the Ethiopian government has implemented various 
strategies to address the impact of the transportation sector on air 
quality, as outlined in its policy. Measures include the blending of 5% 
ethanol into gasoline, with plans to increase the proportion to 25% in 
the future (27). The government has also promoted non-motorized 
transport and banned the import of leaded petrol (28). Despite these 
efforts, the concentration of air pollution has not 
decreased significantly.

In Ethiopia, however, data on traffic air pollutants are limited. As 
far as the researcher is aware, only three publications have addressed 
the concentrations of PM and NO2, with average 30-min 
concentrations of PM2.5 and PM10 of 30 μg/m3 and 59 μg/m3, 
respectively (28–30). In addition, a recent study in Ethiopia found that 
PM10 concentrations near roads and roadsides “exceed 50% of WHO 
limits” (28). The aim of the current study is therefore to gain new 
insights into the concentration of traffic air pollutants (NO2, PM2.5, 
and PM10) in different road types and to identify potential hotspots of 
air pollution in the Ethiopian City of Hawassa, thus closing an 
important knowledge gap.

Materials and methods

Study area

Hawassa, the capital of the Sidama region, was the site of an air 
pollution monitoring study. The City is located 273 km south of Addis 
Ababa at latitude of 07°15′N, a longitude of 38°45′E, and an altitude 
of 1,708 m above sea level. The City experiences an extended rainy 
season from March to October with an average annual rainfall of 
950 mm, with 44% of the rainfall occurring between June and 
September. The climate of Hawassa can be  categorized as dry to 
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sub-humid, with temperatures ranging from 9°C to 29°C, and an 
average temperature of 23°C, relative humidity of 60% (63).

According to the Hawassa Transport Authority, the City has a total 
road network of 1983 km, including 152 km of asphalt, 620 km of 
gravel, 511 km of dry weather roads, 240 km of red ash, and 460 km 
of cobblestone. The total area of all roads was 10.26 km2, of which 36% 
was asphalt, 48% was gravel (compressed earth and red ash), and the 
remaining 16% was covered by cobblestone.

Study design and period

In this study, a comparative cross-sectional study design was used to 
determine the concentration levels and spatial and temporal variations 
of selected traffic-related air pollutants (NO2, PM2.5, and PM10) in six 
different road types and Influencing Metrological Parameters in Hawassa 
City roadways, Ethiopia, from March 20, 2023, to April 14, 2023.

Sample size determination and sampling 
techniques

The sample size was determined by purposive sampling technique, 
whereby roads with heavy and low traffic volumes were selected. Two 
main sampling stations were defined: Stations for heavy-traffic volume 
roads, including traffic light roads and main asphalt roads, and 
stations for low-traffic volume roads. Generally, we  included five 
traffic light roads, seven main asphalt roads, and twelve low-traffic 
volume roads (gravel, cobblestone, dry weather, and red ash roads); 
three sites were included from each low-traffic volume road. This 
resulted in 24 monitoring sites being used for each pollutant.

The monitoring sites were purposively selected based on careful 
average traffic flow counts before monitoring and peak traffic hours 
(7:00 to 9:00 am and 4:00 to 5:30 pm) as sampling times in the case of 
the City of Hawassa. To comprehensively characterize the temporal 
variations in pollutant concentrations, sampling was conducted in two 
phases, with one-hour monitoring taken during each of the morning 
and afternoon peak hours (7:00 to 9:00 am and 4:30 to 5:30 pm). 
We monitor the traffic air both in the morning and afternoon for a 
one-hour duration at each sampling site. After measuring the air 
pollutant concentration at each sampling point at 3-min intervals, the 
mean pollutant concentrations during 15 min, 30 min, and 1-h in each 
study area were calculated as descriptive statistics using the general 
formula as follows Equations 1–3 (20).

 ( )

Average concentrations
     15 min

5    15 min
summation of pollutant concentration recorded within

number of record within
=

 
(1)

 ( )

Average concentrations
    30 min

10    30 min
Summation of polutants concentration within

number of record within
=

 

(2)

 ( )

Average concentrations
    60 min

20    60 min
Summation of pollutants concentration within

number of record within
=

 
(3)

Operational definition

Heavy traffic flow areas were defined as areas where the average 
daily traffic volume was more than or equal to 18,000 vehicles (750 
vehicles/h), and Low traffic flow areas refer to: areas where the average 
daily traffic volume was less than or equal to 2,800 vehicles (117 
vehicles/h) (31).

Data collection tools and procedures

Air quality data were monitored using Aero-Qual Series 300/500 
portable monitors equipped with head sensors (30). Aero-Qual Series 
300/500 devices are lightweight, easy-to-use pollutant detectors for 
determining pollutant concentrations in indoor and outdoor air 
quality, construction dust, transportation emissions, smog, 
community exposure studies, and air quality model validation. The 
operating temperature and relative humidity ranges of the Aero-Qual 
Series 300 monitor for PM sensor are 0–40°C and 0–90%, respectively. 
The operating temperature and relative humidity ranges of the Aero-
Qual Series 300 monitor for the NO2 sensor are 0–40°C and 15–90%, 
respectively. The PM and NO2 sensor heads can measure pollutant 
concentrations in a range of 0.001–1,000 mg/m3 and 0.005–1 ppm, 
respectively. The device provides immediate, minimum, maximum, 
and average values depending on the setting, and the PM sensor head 
measures two values simultaneously namely PM2.5 and PM10 (22, 32). 
The Aero-Qual Series 300/500 was set up 2 m above the ground in the 
middle of the roads in the direction of the pollution source (22). A 
field observation checklist adapted from previous literature was used 
to collect data. The monitors were set to record the concentrations at 
3-min intervals for 1 h, and the average values were entered into the 
recording data sheet every 3 min (20, 22). The Aero-Qual Series also 
has temperature and relative humidity sensors attached to the monitor 
and at the same time those metrological data were monitored 
simultaneously with air quality data. The recording data sheet 
contained the name of the sampling site (identified by an ID for ethical 
reasons), the date of sampling, and the time of sampling.

Data quality control

Data quality was ensured by the careful use of the monitoring 
devices, compliance with the manufacturer’s guidelines, and the use of 
trained field technicians. The minimum detection limit of the PM 
sensor is 1 μg/m3 with ranges of 1–1,000 μg/m3. The minimum 
detection limit of the NO2 sensor head was 0.005 mg/m3. The device was 
supplied with factory calibration with an annual warranty, and the 
sensor head had different cross-interferences at different concentrations 
(32). To assure the quality of data, the sampling sites were in an 
industry-free zone and ensured the absence of any cooking and smoking 
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activities that might bias the concentrations of PM and NO2 coming 
from vehicular sources (33). Data collectors were required to have a 
master’s degree in Public Health with expertise in Environmental 
Health and complete a comprehensive two-day training program that 
covered the introduction, manufacturer’s guidelines, protocols, and 
mechanisms of operating the Aero-Qual Series 300/500 portable devices 
attached with PM and NO2 sensors heads.

Data processing and analysis

The data were entered into EpiData (version 3.1) and analyzed 
using the Statistical Package for the Social Sciences (SPSS) version 26. 
Descriptive statistics, including minimum, maximum, and mean 
values, were used to summarize the data. After performing normality 
and log-normality tests, a non-parametric test was performed. Mann–
Whitney U test was used to compare traffic air pollutant between 
roads with heavy and low traffic volumes. Kruskal-Wallis H tests were 
used to determine traffic air pollutant between all road types; Kendall’s 
Tau-b correlation coefficient analysis was performed to assess the 
correlation between traffic air pollutants and key influencing 
Metrological Parameters. Finally, stepwise multiple linear regression 
analysis was employed to examine the relationship between 
Metrological Parameters and traffic air pollutants.

Results

Metrological data

The mean ambient temperature of all road types was 25.5 ± 0.6°C, 
whereas, similarly, the mean relative humidity was 57.1 ± 3.8% 
(Table 1).

Concentration of traffic air pollutants

The mean concentration of PM2.5 on heavy-and low-traffic flow 
roads was 161.6 ± 26.1 μg/m3 and 95.9 ± 14.9  μg/m3, respectively, 
while the concentration of PM10 on heavy-traffic flow roads was 
178.7 ± 20.3 μg/m3. Additionally, the mean concentration of NO2 on 
heavy-traffic flow roads was 86.4 ± 14.4 μg/m3 (Table 2).

Spatially, the mean concentrations of PM2.5, PM10, and NO2 
calculated for the entire study road types were ranging between 
83.1  ± 5–164.9  ± 2  μg/m3, 91.8 ± 8–185.6 ± 2 μg/m3, and 

101.9 ± 33.8–172.2 ± 33.8 μg/m3, respectively. Additionally, the overall 
mean concentrations of PM10 on asphalt, traffic lights, dry weather, red 
ash, gravel, and cobble roads were 167.2 ± 23 μg/m3, 185.6 ± 20 μg/m3, 
91.8 ± 8 μg/m3, 113.0 ± 11 μg/m3, 109.8 ± 23 μg/m3, and 94.8 ± 22 μg/
m3, respectively. In the same manner, the concentrations of NO2 on 
asphalt, traffic light, dry weather, red ash, gravel, and cobble roads 
were 155.9 ± 20.7 μg/m3, 172.2 ± 33.8 μg/m3, 108.7 ± 28.2 μg/m3, 
101.9 ± 33.8 μg/m3, 127.8 ± 35.7 μg/m3 and 125.6 ± 5.6 μg/m3, 
respectively (Tables 3, 4).

Temporally, the mean concentration of PM2.5 during 15-min, 
30-min, and 1-h monitoring ranged between 50–220  μg/m3, 
60–200 μg/m3, and 60–190 μg/m3, respectively. Likewise, the mean 
concentration of PM10 for 15-min, 30-min, and 1-h measurements 
ranged between 70–200  μg/m3, 70–230 μg/m3 and 70–220 μg/m3, 
respectively. Furthermore, the concentrations of NO2 during 15-min, 
30-min, and 1-h ranged from 75.2–300.8 μg/m3, 75.2–225.6 μg/m3, 
and 56.4–225.6 μg/m3, respectively. The bolded number indicated that 
the concentration of traffic air pollutants was high compared to the 
guideline limits of the US EPA, WHO, and Ethiopian (See footnotes 
of Table 4).

Furthermore, the overall mean pollutant concentrations (PM2.5, 
PM10, and NO2) greatly varied during the morning and afternoon 
time. The overall mean concentration of PM2.5 was 147.4 μg/m3 in the 
morning and 110.1 μg/m3 in the afternoon. The mean concentrations 
of PM10 and NO2 were 160.1 μg/m3 and 167.7 μg/m3 in the morning 
and 120.9 μg/m3 and 110.7 μg/m3 in the afternoon, respectively 
(Figure 1, Table 3).

Comparison of air pollutants on high- 
low-traffic flow roads

The Mann–Whitney U test was performed to compare pollutant 
concentrations between heavy and low-traffic volume areas; while the 
Kruskal-Wallis H test was performed to compare pollutants between 
asphalt, traffic lights, red ash, cobble, gravel, and dry weather roads. 
Accordingly, a highly significant difference was observed between 
heavy-low-traffic flow roads in terms of the concentrations of NO2 
(Z = −3.406, p = 0.001), PM2.5 (Z = −4.099, p = 0.000), and PM10 
(Z = −4.157, p = 0.000) at 95% CI, p < 0.05. The Kruskal-Wallis H test 
indicated that there was a significant difference between all road types 
in terms of NO2(χ2 = 17.91, DF = 5, p = 0.003), PM2.5(χ2 = 12.91, 
DF = 5, p = 0.003), and PM10 (χ2 = 24.00, DF = 5, p = 0.000) (Table 5).

Influence of metrological factors

Changes in the meteorological conditions caused variations in air 
pollutant concentrations, notably, relative humidity, mean temperature 
and morning temperature were positively correlated with the 
concentration of air pollutants, whereas afternoon temperature and 
humidity were negatively correlated with PM2.5 and NO2 except for the 
concentration of PM10 (Table 6).

To examine the relationship between traffic air pollutant 
concentrations and meteorological parameters (temperature and 
relative humidity), Stepwise multiple linear regression (MLR) analysis 
was performed, and the results are indicated in Table 7. The regression 
coefficient indicated that there was a direct linkage between traffic air 

TABLE 1 Mean values (standard deviation) of meteorological parameters.

Road types Temperature (°C) Relative 
humidity (%)

Asphalt 25.6 (0.7) 57.9 (4.1)

Traffic light 25.7 (0.7) 59.8 (1.8)

Dry weather 25.1 (0.4) 51.9 (3.1)

Red-ash 25.3 (0.8) 57.6 (2.2)

Gravel 25.6 (0.3) 54.2 (2.5)

Cobblestone 25.7 (0.3) 56.1 (3.5)
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TABLE 2 Mean concentrations of traffic air pollutants between heavy- and low-traffic flow roads in Hawassa City, Ethiopia, 2023.

TRAPs Heavy-traffic flow roads Low-traffic flow roads

Min Max Mean ± SD Min Max Mean ± SD

PM2.5 (μg/m3) 110 190 161.6 ± 26.1 60 110 95.9 ± 14.9

PM10 (μg/m3) 150 220 178.7 ± 20.3 70 130 102.3 ± 17.6

NO2 (μg/m3) 60 120 86.4 ± 14.4 40 90 61.7 ± 14.2

TABLE 3 Spatial variations of traffic air pollutants by road type in Hawassa City, Ethiopia, 2023.

Study 
road types

PM2.5 (μg/m3) PM10 (μg/m3) NO2 (μg/m3)

Min Max Mean ± SD Min Max Mean ± SD Min Max Mean ± SD

Main asphalt 110 190 155.5 ± 8 140 210 167.2 ± 23 112.8 188 155.9 ± 20.7

Traffic light 140 190 164.9 ± 17 170 220 185.6 ± 20 150.4 225.6 172.2 ± 33.8

Dry weather 60 90 83.1 ± 5 80 100 91.8 ± 8 75.2 131.6 108.7 ± 28.2

Red ash 100 110 107.9 ± 4 100 120 113.0 ± 11 75.2 131.6 101.9 ± 33.8

Gravel 100 110 106.3 ± 2 80 130 109.8 ± 23 94 169.2 127.8 ± 35.7

Cobble 60 100 86.2 ± 21 70 110 94.8 ± 22 112.8 131.6 125.6 ± 5.6

Mean ± SD 129.8 ± 38 140.8 ± 42 140.8 ± 35.7

TABLE 4 Mean concentrations of traffic air pollutants at different monitoring times and locations in Hawassa City, Ethiopia, 2023.

Sampling road types PM2.5 (μg/m3) PM10 (μg/m3) NO2 (μg/m3)

15 min 30 min 1-h 15 min 30 min 1-h 15 min 30 min 1-h

Traffic light 150 150 150 240 200 210 169.2 188 169.2

Traffic light 140 150 190 200 190 180 169.2 188 188

Traffic light 150 150 150 160 170 170 206.8 206.8 188

Traffic light 160 160 170 170 160 180 150.4 169.2 150.4

Traffic light 180 170 170 180 190 190 169.2 169.2 150.4

Main asphalt 120 120 110 180 180 160 131.6 131.6 112.8

Main asphalt 200 200 190 210 230 220 300.8 225.6 225.6

Main asphalt 150 150 140 170 160 170 150.4 150.4 150.4

Main asphalt 220 200 190 180 170 170 150.4 150.4 150.4

Main asphalt 160 150 150 170 180 170 112.8 131.6 131.6

Main asphalt 190 190 190 220 200 180 150.4 169.2 169.2

Main asphalt 130 130 130 170 150 150 188 169.2 169.2

Cobblestone 50 60 60 70 70 70 131.6 131.6 112.8

Cobblestone 80 90 100 100 100 100 131.6 131.6 131.6

Cobblestone 100 100 100 110 110 110 169.2 150.4 131.6

Gravel 110 100 110 110 90 80 131.6 112.8 112.8

Gravel 120 110 110 130 120 120 112.8 112.8 112.8

Gravel 110 110 110 110 120 130 112.8 94 94

Red ash 110 110 100 120 120 120 169.2 169.2 56.4

Red ash 120 110 110 120 120 110 150.4 150.4 131.6

Red ash 110 100 100 110 110 100 112.8 75.2 75.2

Dry weather 80 80 80 90 90 80 75.2 75.2 75.2

Dry weather 90 100 90 100 100 90 112.8 169.2 131.6

Dry weather 90 90 90 100 110 100 131.6 131.6 112.8

Mean 132 131 130 147 145 141 154.9 149.8 140.8

Bolded numbers indicate; PM2.5 > US EPA for 30-min guideline, PM10 > US EPA guideline for 30-min, NO2 > WHO & Ethiopia for 1-h guideline.
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pollutants (as dependent variables) and meteorological factors (as 
independent variables).

Discussion

In this study, the mean concentrations of PM2.5 (161.6 μg/m3) and 
PM10 (178.7 μg/m3) on roads with heavy traffic volumes were higher 
than those of PM2.5 (95 μg/m3) and PM10 (102.3 μg/m3) on roads with 
low traffic volumes. The results of this study were consistent with those 
of similar studies conducted in Germany (34) and Hungary (35). The 
PM2.5 concentration on roads with high traffic volumes ranged between 
110 and 190 μg/m3 and that on roads with low traffic volumes was 
between 60 and 110 μg/m3. In addition, the PM10 concentration was 
150–220 μg/m3 on high-traffic roads and 70–130 μg/m3 on low-traffic 
roads. The results of the current study were lower than those of the 
study conducted in Addis Ababa (36). The reason for this difference 
could be that the number of vehicles and traffic flows is higher in Addis 
Ababa than in Hawassa. The mean 30-min concentrations of PM2.5 and 
PM10 were between 60–200 μg/m3 and 70–230 μg/m3, respectively, 
whereas the mean 15-min concentrations of PM2.5 and PM10 were 
between 50–220 μg/m3 and 70–240 μg/m3, respectively. The results of 
this study are lower than those of a previous study conducted in Addis 
Ababa (23). The difference in pollutant concentration could be due to 
the higher traffic volumes in Addis Ababa than in Hawassa.

The proportion of PM2.5/PM10 provides important extra 
information for the air pollution status. Previous studies have found 
that the PM2.5/PM10 ratios can provide a series of information such as 
the cause of air pollution, the air pollution process, and its impact on 

life and health (37, 38). The ratio of PM2.5/PM10 in the current study 
was 0.924. The lower PM2.5/PM10 ratio indicates coarse particles are 
dominant and they are more attributed to natural sources (39–41), on 
the other hand, the higher the ratio of PM2.5/PM10, the pollution more 
comes from anthropogenic activities (42–44). The ratio of PM2.5/PM10 
in the previous studies was 0.62 in Wuhan, 0.54, and 0.44 in Beijing in 
winter and spring, respectively (38, 45). The reason for the higher ratio 
of PM2.5/PM10 in the current study could be because the air pollution 
sources largely come from road traffic air pollution due to high traffic 
flows. Because, Africa, particularly countries like Ethiopia is the home 
to second-hand vehicles and poorly maintained old cars, and 
contributes a large portion of air pollution (15).

In the current study, the mean NO2 concentration was higher on 
roads with heavy traffic volumes (86.4 ± 14.4 μg/m3) than on roads 
with low traffic volumes (61.7 ± 14.2 μg/m3). The results of this study 
were consistent with studies conducted in Italy (46), Morocco (47), 
and Dire Dawa, Ethiopia (48), which stated that the NO2 
concentrations were higher on roads with high traffic volumes than 
on roads with low traffic volumes. The 15-min, 30-min and 1-h mean 
NO2 concentrations in this study were 150.6 μg/m3, 148.1 μg/m3, and 
139.3 μg/m3, respectively. The results of this study were higher than 
those of a similar study conducted in Vietnam (49). The discrepancy 
in traffic air pollutant concentration could be because many used 
vehicles are on the road in Africa, and Africa is the home to second-
hand vehicles and poorly maintained old cars and these vehicles 
release more NO2 than new vehicles (13).

The current study confirms that there was a highly significant 
difference between high and low-traffic roads in terms of 
concentrations of NO2 (z = −3.406, p = 0.001), PM2.5 (z = −4.099, 
p = 0.000), and PM10 (z = −4.157, p = 0.000) with (95% CI, p < 0.05). 
In this study, the mean concentration of NO2, PM2.5, and PM10 was 
higher on high-traffic light roads than on paved roads, followed by 
low-traffic roads. The mean PM2.5 concentration on paved roads was 
155.5 ± 8 μg/m3, on traffic light roads 164.9 ± 17 μg/m3, and on 
low-traffic roads 95 ± 14.2 μg/m3. The mean PM10 concentration was 
167.2 ± 23 μg/m3 on asphalt, 185.6 ± 20 μg/m3 at traffic lights roads, 
and 102.3 ± 17.6 μg/m3 on roads with low traffic volumes. The NO2 
concentration was 155.9 ± 0.1 μg/m3 on asphalt, 173 ± 0.1 μg/m3 at 

FIGURE 1

Temporal variations of pollutant concentrations in the afternoon and morning.

TABLE 5 Traffic air pollutants concentrations between heavy and low 
traffic volume areas, in Hawassa City, Ethiopia, 2023.

Variables Z-value p-value χ2 test Df p-value

PM10 (μg/m3) −4.157 0.000 24.00 5 0.000

PM2.5 (μg/m3) −4.099 0.000 12.91 5 0.003

NO2 (μg/m3) −3.406 0.001 17.91 5 0.003
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traffic lights roads, and 61.7 14.2 μg/m3 on roads with low traffic 
volumes. The results of this study were in agreement with the study 
conducted in the USA (18), a meta-analysis from Thailand (50), 
Norway (19), Uganda (5), and a local study from Addis Ababa, 
Ethiopia (51), stated that the concentration of traffic air pollutants 
varies depending on the type of road, the presence of traffic lights, and 
the characteristics of the roads. The reason for this discrepancy is that 
the vehicles at traffic lights leave at the same time, and thus, traffic flow 
is more obstructed. During this time, a higher concentration of 
pollutants is released than during other times. Another reason could 
be that asphalted main roads are busier than urban side roads because 
drivers prefer to travel on these roads due to the convenience of these 
roads, even if there are other types of roads as an alternative.

According to this study, the mean concentration of traffic air 
pollutants was higher in the morning than in the afternoon. 
Accordingly, the mean concentration of PM2.5 was 147.4 ± 52 μg/m3 
in the morning and 110.1 ± 31 μg/m3 in the afternoon, whereas, the 
mean concentration of PM10 in the morning and afternoon was 
160.1 ± 51 μg/m3 and 120.9 ± 39 μg/m3, respectively. Besides this, the 
mean NO2 concentration in the morning and afternoon was 
167.7 ± 45.1 μg/m3 and 110.7 ± 30.1 μg/m3, respectively. The results of 
this study were consistent with those of a study conducted in the USA 
(18), a literature review in Thailand (50), a study in Malaysia (52), a 

review in Ethiopia (53), and a study conducted in Nigeria (54), stated 
that the concentration was higher in the morning than afternoon. The 
reason for this difference between morning and afternoon could 
be that the air pollutants in road traffic are less effectively dissolved in 
the morning than in the afternoon due to the influences of 
metrological parameters such as temperature, and relative humidity, 
resulting in low turbulence in the atmospheric air.

In general, the changes in the meteorological conditions cause 
variations in traffic air pollutants concentration than changes in 
pollutant emissions over time (55). The Kendall’s tau-b correlation in 
Table 6 indicated that the mean temperature was positively correlated 
with the concentrations of NO2 (r = 0.21), PM2.5 (r = 0.24), and PM10 
(r = 0.25). During this study, the temperature fluctuated between 22.2–
25.8°C and 24–26.7°C in the morning and afternoon, respectively. The 
results of this study were consistent with those of studies in the USA 
(56), Addis Ababa, and Dire Dawa, Ethiopia (48, 51), stating that the 
mean temperature was positively linked with the concentrations of 
traffic air pollutants. The reason for the positive correlation between 
temperature and pollutant concentration could be that the temperature 
in the morning has less influence on the pollutant dispersion rate than 
the temperature in the afternoon. Therefore, pollutants can remain in 
the environment for a long time. However, the afternoon temperature 
in the current study was negatively correlated with NO2 (r = −0.02), 
PM2.5 (r = −0.06), and PM10 (r = −0.16). The negative results found in 
the current study were in agreement with those of the study conducted 
in Vietnam (49), Bangladesh (57), and Thailand (58). The reason for 
the negative correlation between the afternoon temperature, and 
concentration of traffic air pollutants could be that the temperature is 
high in the afternoon, which affects the reaction of traffic air pollutants 
with the acceleration of atmospheric air.

In the current study, relative humidity was positively linked with the 
concentrations of NO2 (r = 0.24), PM2.5 (r = 0.41) and PM10 (r = 0.48). 

TABLE 6 Kendall’s tau-b correlation coefficient values between air pollutants and metrological parameters in Hawassa City, Ethiopia, 2023.

Variables PM2.5 PM10 NO2 Temperature (T°C) Relative Humidity 
(RH %)

PM2.5 1 0.24a 0.41a

PM10 1 0.25a 0.48a

NO2 1 0.21a 0.24a

T (°C) 1 0.07a

RH (%) 1

Morning

PM2.5 1 0.76 0.62 0.37a 0.27a

PM10 1 0.58 0.36a 0.27a

NO2 1 0.33a 0.15a

T (°C) 1 0.40

RH (%) 1

Afternoon

PM2.5 1 0.70 0.44 −0.06a −0.39a

PM10 1 0.38 −0.16a 0.48a

NO2 1 −0.02a −0.17a

T (°C) 1 0.22

RH (%) 1

aCorrelation is significant at the 0.05 level.

TABLE 7 Multiple regression analysis results for traffic air pollutant 
concentrations and meteorological parameters.

Parameters Regression coefficient

PM2.5 PM10 NO2

Temperature 0.304 0.208 0.330

Relative humidity 0.455 0.596 0.293
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During this study, the relative humidity ranged between 57.0–68.0% and 
42–62% in the morning and afternoon, respectively. The results of this 
study were the same as a study conducted in the USA (56), Malaysia (52), 
and Ghana (59). The reason for the positive correlation could be that a 
humidified environment does not aid the dissolution of pollutants, and 
these pollutants can remain in the environment for longer. However, in 
the afternoon, relative humidity was negatively correlated with PM2.5 
(r = −0.39) and NO2 (r = −0.17), which was in agreement with the study 
conducted in Thailand (58), and Bangladesh (57).

Furthermore, traffic air pollutants were dependent on the 
combined effects of metrological parameters (60), and stepwise 
multiple linear regression analysis were employed to determine the 
key metrological parameters. Accordingly, the regression coefficient 
suggested that the concentration of traffic air pollutants was positively 
linked with metrological parameters. The major metrological 
parameters that influence the concentration of traffic air pollutants 
include temperature and relative humidity. The results of multiple 
regression analysis are given in Table 7. Temperature and relative 
humidity had a Positive relationship with traffic air pollutants, which 
was in good agreement with the correlation analysis. Relative 
humidity was positively associated with PM2.5 (R2 = 0.455), PM10 
(R2 = 0.596), and NO2 (R2 = 0.293), which was also observed in China 
(60), Thailand (58), and India (61). Likewise, Temperature was 
positively linked with PM2.5 (R2 = 0.304), PM10 (R2 = 0.208), and NO2 
(R2 = 0.330). The positive relationship between PM2.5 and temperature 
found in the current study was in agreement with the results of the 
studies conducted in China (60), Thailand (58), and Nigeria (62), 
whereas, the positive relationship of PM10 and NO2 with temperature 
found in this study was in line with the study conducted in China 
(60) however, the current study is inconsistent with study conducted 
in India in that temperature was inversely linked with PM2.5 and PM10 
concentrations (61).

Conclusion

The total mean concentrations of traffic air pollutants in this study 
were high compared to the guideline values set by the World Health 
Organization (WHO). Spatially, the concentrations on traffic light roads 
were high as compared to the concentrations of air pollutants on main 
paved roads, followed by the concentration on low-traffic roads. Likewise, 
there was a difference in pollutant concentration across road types. 
Temporally, the average traffic air pollutant was higher in the morning 
than in the afternoon. The PM2.5/PM10 ratio was high and the value of the 
ratio confirms that the sources of the air pollution largely depend on 
anthropogenic sources. Metrological parameters such as temperature and 
relative humidity were positively correlated with traffic air pollutants and 
stepwise multiple linear regression analysis show a positive relationship 
between metrological parameters and traffic air pollutants.

Limitations of the study

The measurement data from real-time instruments are subject to 
errors and are recommended to be  corrected with reference 
instruments due to interference with other gases. For example, real-
time NO2 sensors are affected by Ozone interference. The authors did 
not check interference from other pollutants.
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