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Background: Patient-level simulation (PLS) models overcome some major 
limitations of conventional cohort models and have broad applicability in 
healthcare, yet limited knowledge exists about their potential in cancer care.

Objectives: This systematic review aims to: (1) describe the application areas 
of PLS models in cancer care, (2) identify commonly used model structures, 
(3) evaluate the quality of reporting based on established guidelines, and (4) 
critically discuss the potential and limitations of PLS models in this context.

Methods: A systematic literature search was completed in Web of Science, 
PubMed, EMBASE and EconLit. Reasons underlying the use of PLS models were 
identified with a conventional inductive content analysis and reporting quality 
was assessed with an 18-item checklist based on the ISPOR-SMDM guidelines.

Results: The number of publications increased over time and most studies used 
state-transition microsimulation (49.25%) or discrete event simulation (48.51%). 
Two main application areas could be  discerned, namely disease progression 
modelling (DPM) (78.36%) and health and care systems operation (HCSO) 
(21.64%). In the DPM domain, the use of PLS models was mainly motivated by 
the need to represent patient heterogeneity and history. In the HCSO domain, 
PLS models were used to better understand and improve cancer care delivery. 
Average reporting quality was 65.2% and did not improve over time.

Conclusion: PLS models can be used to simulate the progression of cancer and 
to model cancer care delivery. In the DPM domain more direct comparisons 
with cohort models are required to establish the relative advantages of PLS 
models and in the HCSO domain the impact on clinical practice needs to 
be  systematically assessed. Furthermore, adherence to the ISPOR-SMDM 
guidelines should be improved.
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Introduction

Cancer is a critical global health challenge, with close to 20 million new cases and 9.7 
million cancer-related deaths reported globally in 2022 alone (1). According to updated 
estimates from the International Agency for Research on Cancer, approximately one in five 
individuals will develop cancer in their lifetime, and around one in nine men and one in 12 
women will die from it. With predictions that new cancer cases may rise to 35 million annually 
by 2050, the importance of preventive measures, early detection, and equitable access to care 
is more urgent than ever.

Cancer incidence tends to increase with a country’s Human Development Index (1), and 
in Europe and North America, the disease has become the leading cause of death among 
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middle-aged adults (2). However, in low- and middle-income 
countries (LMICs), the cancer burden is also rapidly increasing, with 
cancer rates rising as these nations undergo demographic and 
epidemiological transitions. Survival rates are lower in LMICs due to 
limited access to screening, early diagnosis, and effective treatment, 
and global efforts to address these disparities are therefore critical for 
improving cancer outcomes across all regions.

To encourage progress against cancer the pace of innovation in 
oncology has accelerated at an unprecedented speed in recent years, 
yet novel treatments come with an increasing price tag (3, 4). In a 
world where resources are finite and healthcare systems are under 
increasing strain, the question of how to improve value in cancer care 
has never been more pertinent. In this context, “value” is defined as 
the ratio of patient outcomes to the cost of care (5–7). The goal is to 
achieve the best possible outcomes for patients while ensuring that the 
cost of treatments, remains sustainable for healthcare systems and 
affordable for patients. The rising costs associated with cutting-edge 
cancer treatments, coupled with the need to ensure access to quality 
care for all patients, have made value-based healthcare models a focal 
point of policy discussions and health economic research.

Achieving high-value cancer care requires an evidence-based 
approach to assess the effectiveness and cost-effectiveness of 
treatments. Decision analytic models address this need and provide a 
framework to integrate the best available evidence on the decision 
problems encountered within healthcare (8, 9). Models must, however, 
adequately represent the complexities of clinical reality to be a valid 
foundation on which to base decisions (10, 11). With respect to cancer 
care, this is a particularly challenging endeavor (12). Treatment for 
cancer generally involves a combination of therapies (13), delivered 
simultaneously or sequentially, and requires coordination between 
multiple disciplines (14). Moreover, in the fast-paced field of oncology, 
more sophisticated therapies emerge continuously, and treatment 
paradigms are rapidly evolving. In this dynamic new era, cancer is 
gradually changing from a death sentence to a chronic disease that 
requires long-term management (15) and treatments are becoming 
increasingly personalized (16, 17) in recognition of the substantial 
heterogeneity that underlies the disease (18).

The growing complexity of cancer care may pose challenges for 
Markov and other cohort models, the dominant modelling approach 
today (19, 20). In a cohort model outcomes are calculated for a cohort 
of supposedly average patients, without considering potential 
differences between patients. This traditional modelling technique is 
subject to a number of restrictive assumptions, which may limit its 
capacity to accurately represent the nature of cancer and the realities 
of cancer care delivery (12). Markov models presume that the 
population of interest is homogenous, and may therefore struggle to 
adequately reflect the heterogeneity in cancer patients (21). 
Furthermore, the Markovian memoryless property and the frequent 
use of discrete time cycles could hamper a proper consideration of the 
dynamics of cancer (22–24).

For these reasons, it has been suggested that researchers should 
turn to alternative methods such as patient-level simulation (PLS) 
models (25, 26). As defined by Drummond et al. (9), these models 
calculate the outcomes of a sufficiently large sample of simulated 
patients and subsequently average across patients. Since PLS models 
provide estimates for the outcomes of interest for each individual 
patient they allow modelers to examine variability in outcomes and to 
track individual patient histories (21). Moreover, PLS models are not 

constrained by the Markov property and may therefore be better able 
to accurately reflect the dynamics of cancer (21, 27). Errors arising 
from the use of discrete time cycles could be averted as well, either by 
opting for continuous time state-transition microsimulation (22) or 
for discrete event simulation (DES) (25).

Importantly, the application of PLS models is not limited to the 
area of health economics and health technology. In the field of health 
policy, the approach is used to simulate health trajectories and to 
predict the impact of alternative policy interventions (28). Notable 
examples include the Future Elderly Model (FEM) (29) and the 
Population Health Model (POHEM) (30), two continuous time state-
transition microsimulation models. Discrete event simulation, on the 
other hand, is increasingly applied in healthcare management to 
analyze how resources can be optimally employed (31). The apparent 
versatility of PLS models thus suggests they may be  of use to 
researchers in a variety of healthcare fields (25).

While PLS models have demonstrated their utility in various 
healthcare domains, their application to cancer care remains 
underexplored. To our knowledge, no systematic review has examined 
the application of PLS models in cancer care (19). This knowledge gap 
may reflect both the technical challenges of implementing PLS models 
and the historical dominance of cohort-based approaches. 
Nevertheless, as cancer care continues to evolve, the time is ripe to 
investigate the potential of PLS models to enhance decision-making 
in oncology.

In this systematic review, we aim to address this gap by laying the 
groundwork for future research and providing a roadmap for 
integrating PLS models into oncology. We document the utilization of 
PLS models across time, examine which specific techniques are 
favored and which questions they are applied to. Moreover, 
we systematically assess the reporting quality of papers and conduct a 
content analysis to uncover the main reasons for choosing a PLS 
model. Finally, we critically discuss the potential contribution of PLS 
models in cancer care.

Methods

Search strategy

A systematic search of the peer-reviewed literature was conducted 
in four major databases, namely, Web of Science, PubMed, EMBASE 
and EconLit. The search strategy was first developed for Web of 
Science, and subsequently adapted for the remaining databases. 
Search terms were identified through consultation of guidelines (32), 
textbooks (9) and earlier reviews (19, 26, 33), as well as through 
exploration of databases. The full search strategy for each database can 
be consulted in Supplementary Appendix 1. Since PLS models were 
relatively rare before 2010 (26, 33), January 2010 was chosen as the 
start of the time frame.

Inclusion and exclusion criteria

To be eligible for inclusion publications needed to include an 
application of the PLS approach to cancer treatment. In addition, 
models needed to be clearly described to permit a classification of 
modelling techniques according to the International Society for 
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Pharmacoeconomics and Outcomes Research–Society for Medical 
Decision Making (ISPOR-SMDM) Modelling Good Research 
Practices Task Force guidelines (11, 32). Models also needed to 
be fully developed and applied to a certain research question to enable 
us to explore the application areas of the PLS approach. Gray literature 
was excluded to maintain a focus on peer-reviewed publications. The 
inclusion and exclusion criteria are summarized in Table 1.

Data extraction

Titles and abstracts of initially retrieved studies were screened 
independently by two reviewers using the web application Rayyan. 
Selection was based on the predefined eligibility criteria and the two 
reviewers (SLB and HVD) were blinded to each other’s decision. In 
cases of disagreement, consensus was reached through discussion, and 
if necessary, a third reviewer (KP) was consulted. Subsequently, the 
full texts of eligible articles were obtained and screened according to 
the same criteria. One reviewer (SLB) assessed all full-text articles, and 
a second reviewer independently checked a random sample of 20%, 
which is judged to be representative (19). Agreement rate was 100% 
and inter-rater reliability was therefore deemed sufficiently high. Key 
data, including study objectives, modelling techniques, application 
areas, and results, were extracted using a standardized data extraction 
form developed based on PRISMA guidelines.

To gain insight into the primary reasons underlying the use of PLS 
models a conventional inductive content analysis was conducted 
according to Elo and Kyngäs (34). This rigorous and thorough method 
for analysing text-based data is well-suited for identifying major themes 
and objectives and is recommended when there is little existing research 
on a topic (35, 36). The approach involved open coding of the text by two 
reviewers (SLB and KP), who iteratively developed and refined categories 
to capture emerging themes. The analysis was performed using Nvivo, 
which is well-suited for qualitative analysis of text-based data.

Reporting quality was assessed with an 18-item checklist for PLS 
models based on the ISPOR-SMDM guidelines (37). The checklist was 
designed to be  applicable to model-based analyses in a variety of 
healthcare fields, including but not limited to health economics and 
healthcare management. Scoring was conducted independently by 

two reviewers (SLB and KP), and discrepancies were resolved through 
consensus. A two-way ANOVA was performed that examined the 
effect of application area and modelling technique on reporting 
quality. Prior to analysis, the assumptions of ANOVA were tested, 
including normality of residuals (using the Shapiro–Wilk test) and 
homogeneity of variances (using Levene’s test). Results were analyzed 
with IBM SPSS Statistics 28.0.

Results

Search results

The results of the review process are illustrated as a PRISMA 
diagram in Figure 1.

Publication trends over time

Figure 2 illustrates a clear increase in the number of published PLS 
models in recent years. Only eight papers were published between 
2010 and 2012, but this number increased eightfold between 2019 and 
2021. These results are consistent with earlier reviews which 
documented an increasing utilization of PLS models (26, 33).

Model structures

The majority of studies used either state-transition 
microsimulation (STMS) (49.25%) or discrete event simulation (DES) 
(48.51%). Other model structures (2.24%) were relatively rare and 
included agent-based modelling (n = 1) and timed automata (n = 1).

Application areas

To investigate the areas in which the PLS approach has been 
applied, the models were categorized according to a classification 
scheme inspired by an earlier review (19). Broadly, the models in the 

TABLE 1 Inclusion and exclusion criteria.

Domain Inclusion criteria Exclusion criteria

Population Cancer patients Patients with other diseases, or people at increased risk of cancer 

(e.g., smokers).

Intervention All types of cancer treatment (i.e., radiotherapy, chemotherapy, hormone 

therapy, surgery, immunotherapy, targeted therapy, active surveillance, 

other).

Cancer prevention, cancer screening.

Model type All types of PLS model (i.e., state-transition microsimulation, discrete 

event simulation, agent-based model, partially observable markov 

decision process, other).

Cohort models, biological or animal models of cancer.

Model description Article must include a clear description of the PLS model. Articles that only refer to a PLS model without further explanation.

Model development The PLS model must be fully developed and provide answers to a clearly 

defined research question.

Models that are still a work-in-progress, that do not provide a 

research question and/or results.

Language English, Dutch, German, French Other languages

Publication type Research articles Conference abstracts, reviews, editorials and expert opinions.
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FIGURE 1

PRISMA diagram.

FIGURE 2

Number of publications per year.
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present review can be grouped into two major categories, namely 
disease progression modelling (DPM) and health and care systems 
operation (HCSO). In what follows, we give an overview of the general 
features of these models. A summary of the results for DPM and 
HCSO models can be found in Tables 2, 3, respectively. More detailed 
information is provided. More detailed information is provided in 
Supplementary Appendices A1, A2.

Disease progression modelling
Disease progression models, which comprise the largest category 

(78.36%), describe the time course of diseases and simulate the 
influence of treatment options on disease status (38–40). Accordingly, 
these models provide guidance in medical decision-making by 
indicating the best course of action based on clinical benefits and 
harms, consumed resources or both. Within this area of application, 
STMS was the most commonly employed technique (61.90%). DPM 
models can be organized into subcategories according to the outcomes 
that are used to compare alternative treatment strategies. The majority 
of DPM models evaluated therapeutic interventions for cancer based 
on their cost-effectiveness (71.15%), expressed as an incremental cost-
effectiveness ratio (ICER). The remainder considered only health 
outcomes (e.g., QALYs), only costs (e.g., healthcare costs) or both 
costs as health outcomes without combining them in a cost-
effectiveness analysis. With regard to the patient populations, the four 
cancer types with the highest incidence worldwide (i.e., breast, 
prostate, lung, and colorectal cancer) were predominantly studied 
(41). Furthermore, patient populations generally came from high-
income countries, which constitute the regions with the highest cancer 
incidence (41).

Notably, certain research questions were frequently addressed. 
To begin, several authors investigated the value of applications in 
the domain of personalized oncology (42–64), for example by 
assessing the cost-effectiveness of molecular diagnostics (47, 50, 
60, 61), or by demonstrating that PLS models can be used to guide 
radiotherapy decisions (56, 59). The PLS approach was likewise 
often applied to model sequences of treatments and/or tests (42, 
44, 51–55, 61, 64–78). Blommestein et  al. (67), for instance, 
determined the cost-effectiveness of thirty treatment sequences 
including up to three lines of therapy for patients with multiple 
myeloma. A number of authors also used PLS models to represent 
the full clinical trajectory of a disease (79–81). An example is the 
model by Wang et  al. (81), which simulates costs, survival and 
QALYs for patients with follicular lymphoma across the treatment 
pathway. Other models included not only treatments, but also 
elements such as screening and prevention (69, 82–89). Tappenden 
et  al. (84), for instance, constructed a whole disease model of 
colorectal cancer, which proved capable of evaluating the majority 
of topics within the UK’s NICE colorectal cancer guideline within 
one consistent framework.

Health and care systems operation
HCSO models simulate healthcare systems and can be harnessed 

by healthcare managers to better understand and improve the delivery 
of care (90). The domain of HCSO was nearly monopolized by DES 
models (89.65%), and most researchers turned their attention to issues 
touching on patient scheduling and operational changes. To evaluate 
the effects of proposed alterations modelers typically focused on 
operational outcomes, particularly waiting time. The ABM model, as 

TABLE 2 Characteristics of DPM models.

Domain Number Percentage

Model type

State-transition microsimulation 65 61.90

Discrete event simulation 39 37.14

Timed automata 1 0.95

Subcategories

Cost-effectiveness 74 71.15

Health outcomes 25 24.04

Health outcomes and costs 3 2.88

Costs 2 1.92

Patients (cancer type)

Breast 17 16.19

Prostate 15 14.29

Lung 12 11.43

Colorectal 8 7.62

Other 52 50.00

Study setting (World Bank classification)

High income countries 88 83.81

Low and middle income countries 5 4.76

Unclassified* 12 11.43

*Papers that did not report patients’ nationality or that included data from patients from both high as low and middle income countries are categorized as unclassified.
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well as most DES models, were unit-specific, that is, they represented 
specific hospital departments dedicated to the delivery of cancer 
drugs, radiotherapy or surgery (i.e., micro-systems). The two papers 
on STMS, on the contrary, modeled the healthcare system at a national 
level (91, 92) (i.e., macro-systems).

We also examined the extent to which proposed quality 
improvements were implemented in clinical practice, given that 

it is assumed that the impact of HCSO models in healthcare is 
quite limited (93, 94). In this review, 27.59% of the authors did 
not explore any scenarios to improve the modeled system or 
explicitly stated that implementation was not their intention (91, 
92, 95–99). In the remaining publications an implementation was 
mentioned in 38.10% of the cases (100–107) and 19.05% (100, 
101, 105, 106) also reported an evaluation of the intervention.

TABLE 3 Characteristics of HCSO models.

Domain Number Percentage

Model type

DES 26 89.66

Microsimulation 2 6.90

Agent-based modelling 1 3.45

Subcategories

Patient scheduling 10 34.48

Operational changes 9 31.03

Capacity planning and management 5 17.24

Resource allocation 2 6.90

Miscellaneous 2 6.90

Resource scheduling 1 3.45

Outcomes*1,2

Waiting time 19 65.52

Throughput time 8 27.59

Resource utilization 5 17.24

Throughput 5 17.24

Working time 4 13.79

Overtime 4 13.79

Cost 2 6.90

Resource utilization 2 6.90

Health outcomes 1 3.45

Simulated setting

Micro-system 27 93.10

Macro-system 2 6.90

Patients (cancer type)

Not mentioned 17 62.07

Multiple 3 10.34

Lung 2 6.90

Skin 2 6.90

Breast 1 3.45

Colorectal 1 3.45

Bladder 1 3.45

Pediatric 1 3.45

Study setting (World Bank classification)

High income countries 25 86.21

Low and middle income countries 4 13.79

*1The total number of measured outcomes is greater than the number of HCSO publications because several papers assessed multiple outcomes.
*2Throughput refers to the number of patients that pass through the modeled system during a given time period and throughput time denotes the amount of time it takes for a patient to pass 
through the modeled system.
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Reasons for using PLS models

The reasons for choosing a PLS model were broadly in line with 
the presumed advantages reported in the literature. Within the DPM 
category, model choice was frequently motivated by the presence of 
heterogeneity in patient characteristics and pathways (47, 50, 51, 53, 
55, 61, 63, 65, 67, 74, 78–81, 108–118) or the importance of taking into 
account patient history (47, 50, 52, 68, 72, 79, 80, 108–110, 113, 115, 
116, 119–122). Notably, a number of authors within the DPM domain 
also drew attention to specific advantages of the DES framework, such 
as the avoidance of errors due to the use of discrete time cycles (42, 51, 
115, 119, 123) and a more efficient handling of competing risks (124). 
One paper also cited the ability to represent resources and to simulate 
the effects of wait times (125). All other DES models in the DPM 
category were, however, non-constrained resource models. Of note, a 
small number of DPM papers directly contrasted the PLS with the 
cohort approach. Jahn et al. (54) performed a cross-model validation 
of two models for personalized breast cancer treatment, a DES model 
and a cohort state-transition model, and observed that model choice 
can affect cost-effectiveness results. Gibson et al. (110) came to the 
same conclusion based on a comparison of the PLS approach with a 
survival partition and cohort model. Degeling et al. (115), in contrast, 
found comparable cost-effectiveness outcomes for a DES and a 
Markov model for metastatic colorectal cancer. Yet, the authors 
remarked that the DES model provided a more accurate representation 
of the clinical trial data in terms of mean health-state durations. In a 
similar vein, Pan et al. (116) reported that a DES model for prostate 
cancer predicted clinical outcomes from trial data more accurately 
than a survival partition model, especially over a longer time horizon.

HCSO modelers mainly used the PLS approach as a tool to gain 
knowledge about health care systems (91, 97–99, 101, 126–129) and 
to improve care delivery processes (101, 126, 130). In particular, PLS 
models can be used to explore a variety of “what if?” scenarios (100–
103, 105, 106, 126, 127, 129–133) while avoiding the risks and costs 
that real-life experimentation would entail (101, 106, 130, 131, 133). 
Improvements that are cost-free or even cost-saving can be uncovered 
(101, 106, 130, 131, 133), and users can learn how to more efficiently 
employ scarce resources (134). Furthermore, the model can not only 

support informed decisions (103, 130), but can also serve as a 
communication tool to convince other stakeholder s (101, 133, 134).

Reporting quality

The average reporting quality was 65.2% (SD = 11.4), and no 
significant time trend was observed, R2 = 0.011, F(1, 132) = 1.427, 
p = 0.234 (see Figure 3). There was no significant interaction between 
the independent variables F(1,127) = 0.001, p = 0.981 and no 
significant difference between modelling techniques (p = 0.648). 
Nonetheless, simple main effects analysis did demonstrate that DPM 
models (x̄ = 68.59, SD = 8.07) obtained significantly higher scores 
than HCSO models (x̄ = 53.06, SD = 10.77) (p < 0.001).

The fulfilment rate of individual checklist items is shown in Figure 4. 
Most criteria concerning model conceptualization (1–6) as well as those 
related to parameterization and uncertainty assessment (7–10) were 
fulfilled at high rates. Fulfilment rates for criteria regarding 
generalizability and stakeholder involvement (15–18), and especially 
those pertinent to validation (11–14), were, however, substantially lower.

Discussion

We have documented an increasing use of PLS models in cancer 
care and identified two distinct application areas of PLS models, 
namely the simulation of the progression of cancer and the modelling 
of the healthcare systems in which patients are treated. Although 
DPM and HCSO models have different functions and intended users, 
they could both contribute to the achievement of high-value cancer 
care. To fully tap the potential of these models, however, some points 
warrant closer scrutiny (Table 4).

Choosing valuable treatments

DPM models, the most frequently used category in this 
review, primarily evaluated treatment cost-effectiveness. The 

FIGURE 3

Average reporting quality (in %) per year.
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decision to adopt the PLS approach was frequently motivated by 
the need to represent heterogeneity in patient characteristics and 
pathways or to model patient history. Accordingly, PLS models 
were often applied in areas where these aspects are likely to be of 
particular importance. A prime example can be  found in 
personalized medicine, a burgeoning field of research in oncology 
(135). As it is challenging to accurately capture dynamic and 
diverse patient pathways in conventional cohort models, it has 

been argued that PLS models may be relatively superior in this 
area (26).

The modelling of sequences of treatments and/or tests is another 
area that may be well-suited to the PLS approach. Treatment sequences 
are a common feature of the contemporary management of metastatic 
cancer and identifying an optimal sequence for (subpopulations of) 
patients is the ambition of many researchers (136, 137). Answering 
such questions using randomized controlled trials is, however, 

FIGURE 4

Fulfilment rates for individual items of the reporting quality checklist.

TABLE 4 Comparison of existing evidence and new insights from this review.

Domain Existing evidence New insights

Application of PLS models 

in cancer care

The potential of PLS models in oncology had not 

been extensively explored, and no systematic review 

had synthesized their use.

This review documented the increasing adoption of PLS models in cancer care and 

identified two primary applications: disease progression modelling (DPM) and 

healthcare system operations (HCSO).

Advantages of PLS over 

traditional cohort models in 

health economics

PLS models were hypothesized to offer advantages 

over cohort models, particularly by addressing key 

limitations such as the inability to capture individual 

variability and the constraints of the Markovian 

memoryless property.

Empirical evidence confirms that researchers frequently use PLS to model patient 

heterogeneity and history. PLS is often applied in contexts where these factors are 

critical, such as assessing personalized medicine interventions and modelling 

treatment sequences.

Use of PLS in healthcare 

system optimization

PLS models had been applied in healthcare 

operations research, but their effectiveness and 

real-world implementation had not been 

systematically assessed.

While PLS models are proposed as solutions for optimising healthcare delivery, their 

implementation in clinical practice remains limited, with fewer than 50% of studies 

reporting real-world application.

Reporting quality and 

validation practices

Previous research highlighted concerns regarding 

inadequate reporting and validation of cohort-based 

health economic models, but it was unclear whether 

these issues also applied to PLS models.

This study confirmed deficiencies in reporting, particularly concerning validation 

practices for PLS models, and emphasized the need for stricter adherence to 

reporting guidelines.

Future research directions While there had been calls for broader adoption of 

PLS models in cancer care, a structured analysis of 

key research gaps was lacking.

This review identifies specific areas for improvement, including enhanced validation, 

direct comparisons with cohort models, and strategies to bridge the gap between 

model development and real-world implementation.

The table provides an overview of existing knowledge prior to this review and the novel insights generated through this systematic analysis.
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unfeasible (65, 67) and the difficulty of efficiently representing 
downstream consequences of earlier treatments in cohort models 
could hinder an accurate assessment of the (cost) effectiveness of 
treatments across the entire sequence (138). The PLS approach 
likewise appears suitable for the construction of generic models of the 
full disease course of a certain type of cancer. Such comprehensive and 
adaptive models allow the comparison of multiple interventions across 
the whole cycle of care and permit nuanced judgments on which 
treatments to use for which patient subgroups (84, 139). These models 
go beyond standard technology adoption questions and could support 
the move toward a health technology assessment paradigm that 
supports health technology management, aims for efficiency and 
considers whole system value from a long-term perspective (140–
142). This paradigm change is becoming more and more necessary 
due to the increasing strain on healthcare expenditures (143).

Although these results suggest that the PLS approach may have 
merit in a few noteworthy fields of research, the true litmus test for PLS 
models in the DPM domain is a head-to-head comparison with cohort 
models. In this review, four model comparisons were identified. This 
review’s observation that model choice can impact outcomes is 
particularly significant. In some cases, such as for the analysis of patient-
level time-to-event data, a PLS model may be more appropriate than a 
cohort model (115, 116). Nevertheless, the scarcity of identified model 
comparisons precludes drawing conclusions about the relative merits of 
PLS models in cancer care and continuing work in this area therefore 
represents an important avenue for further research. Researchers should 
ideally also take into account potential drawbacks of the PLS approach, 
such as increased complexity, computational intensity and data 
requirements (8, 27). Although validity should always take precedence 
over simplicity, the ISPOR-SMDM Modeling Good Research Practices 
Task Force recommends that models should be  kept as simple as 
possible (11). PLS models should therefore not replace cohort models 
as the default option in cancer care, but rather be employed when 
required by the demands of the decision problem (32).

Improving the value of cancer care delivery

The HCSO domain formed the second important application 
area of PLS models in this review. Consistent with previous reviews 
(33, 93), models were generally unit-specific and simulated a certain 
clinic or a specific hospital department. In the HCSO domain, 
authors employed the PLS approach to acquire knowledge of health 
care systems and to improve care delivery processes. Nevertheless, 
although many papers in this review described solutions to enhance 
the quality of cancer care (95, 100, 101, 103, 107, 128, 130, 131, 144), 
it can currently not be established whether HCSO models lead to 
genuine benefits for patients or the organizations that care for them. 
Previous reviews have concluded that the application of modelling 
results in healthcare is remarkably low and it is estimated that 90% 
of these models have no influence on clinical practice (93, 145). In 
the present review, less than half of the papers that described 
experiments to improve modeled system mentioned an 
implementation in clinical practice and only about one in five also 
reported an evaluation of the intervention. It remains unclear 
whether these results stem from an implementation gap or 
inconsistent reporting. Promoting higher quality reporting, for 
example by encouraging the adherence to reporting guidelines such 

as those published by the World Health Organisation (146), could 
enable us to assess the scope of the implementation gap and may 
also reveal some of its causes. Bridging this gap is crucial, as 
research confined to academia does not directly benefit patients. 
Modelers may be advised to work out a systematic implementation 
strategy with key stakeholders to bridge the know-do gap. The 
Consolidated Framework for Implementation Research (CFIR) 
(147, 148), one of the most widely used implementation science 
frameworks, can assist researchers in planning for a 
successful implementation.

Setting higher standards: enhancing 
reporting quality

The assessment of reporting quality in PLS models revealed 
notable deficiencies, particularly in the area of validation, 
underscoring the need for greater transparency and rigor in future 
research. The lack of detailed reporting on model validation—defined 
as the evaluation of whether a model is a proper  and sufficient 
representation of the system for a particular application (149)—aligns 
with findings from previous reviews (37, 150). The importance of 
validation is paramount, as decision-analytic models are intended to 
guide decision-making. For these models to effectively serve that 
purpose, decision-makers must have confidence in the accuracy and 
reliability of the results.

Different types of validation play a crucial role in strengthening 
the credibility of decision-analytic models (151). Although 72% of the 
papers reviewed reported conducting one or more types of validation, 
significant gaps remain. Face validation, reported in only 15% of 
studies, ensures that the model aligns with current medical science 
and the best available evidence. Cross-validation, noted in 41% of 
studies, compares models using different methods to ensure similar 
outcomes. External validation, present in 48% of papers, confirms that 
model predictions align with real-world results, such as clinical trial 
outcomes. Predictive validation, regarded as the most esteemed form 
of validation due to its alignment with the core purpose of 
modelling—forecasting future outcomes—was reported in only 1% 
of studies.

Growing awareness of the significance of validation has prompted 
calls for adherence to standardized validation guidelines (152). 
Researchers employing PLS models should particularly heed this call 
to action, as these models tend to be  more complex and less 
transparent, potentially undermining trust in their findings (27). 
Actively engaging with stakeholders can enhance the development of 
valid models, making them more relevant and practical (153). This 
collaborative approach could bridge the gap between academia and 
real-world healthcare, transforming theoretical exercises into 
actionable tools that provide tangible benefits.

Limitations

This review is subject to some limitations that need to 
be  mentioned. Firstly, the search was limited to peer-reviewed 
research articles, which may have led to the exclusion of some relevant 
papers. Nevertheless, our comprehensive search of four major 
databases likely provides a representative snapshot of the literature. 
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Secondly, although agreement rate was 100%, the second reviewer 
only screened a representative sample of full-text papers.

Conclusion

The cancer care landscape is rapidly evolving and new additions to 
the expanding therapeutic armamentarium arrive continuously, often 
accompanied with stratospheric costs and unclear benefits (154). 
Policymakers, healthcare managers and clinicians face difficult decisions 
under high uncertainty and require models that accurately reflect the 
complexities of cancer care. PLS models could assist the cancer 
community in evaluating the (cost) effectiveness of cancer therapies, 
and due to their ability to take into account patient heterogeneity and 
history, these models may in some cases be more appropriate than 
conventional cohort models. Nevertheless, comprehensive comparisons 
with cohort models will be necessary to definitely ascertain the relative 
advantages and disadvantages of PLS models in the DPM domain. 
Additionally, PLS models may be used to better understand cancer care 
systems and to improve the delivery of care. The actual contribution of 
HCSO models to cancer care remains, however, unestablished and 
future studies will need to systematically assess and report the impact 
these models have on clinical practice. Finally, in both the DPM and 
HCSO domain more attention should be paid to the reporting quality 
of PLS models. In agreement with previous research (37), the assessment 
of papers in the present review revealed room for improvement in 
several areas, particularly with respect to model validation. Moreover, 
average reporting quality did not improve over time.
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