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Effect and prediction of 
long-term weather and pollutant 
exposure on hemorrhagic fever 
with renal syndrome: based on 
statistical models
Weiming Hou *

Department of Medical Engineering, Air Force Medical Center, PLA, Air Force Medical University, 
Beijing, China

Background: Previous studies have typically explored daily lagged relationships 
between hemorrhagic fever with renal syndrome (HFRS) and meteorology, 
with a limited seasonal exploration of monthly lagged relationships, 
interactions, and the role of pollutants in multiple predictions of hemorrhagic 
fever.

Methods: Our researchers collected data on HFRS cases from 2005 to 2018 
and meteorological and contaminative factors from 2015 to 2018 for the 
northeastern region. First, we applied the moving epidemic method (MEM) to 
estimate the epidemic threshold and intensity level. Then, we used a distributed 
lag non-linear model (DLNM) and a generalized additive model (GAM) with a 
maximum lag of 6 months to evaluate the lagged and interaction effects of 
meteorological and pollution factors on the HFRS cases. Multiple machine 
learning models were then applied after Spearman’s rank correlation coefficient 
analysis was performed to screen for environmental factors in the Northeastern 
region.

Results: There was a yearly downward trend in the incidence of HFRS in the 
northeastern region. High prevalence threshold years occurred from 2005 
to 2007 and from 2012 to 2014, and the epidemic months were mainly 
concentrated in November. During the low prevalence threshold period, the 
main lag factor was low wind direction. In addition, the meteorological lag 
effect was pronounced during the high prevalence threshold period, where the 
main lag factors were cold air and hot dew point. Low levels of the AQI and PM10 
and high levels of PM2.5 showed a dangerous lag effect on the onset of HFRS, 
while extremely high levels of PM2.5 appeared to have a protective effect. High 
levels of the AQI and PM10, as well as low levels of PM2.5, showed a protective 
lag effect. The model of PM2.5 and the AQI interaction pollution is better. The 
support vector machine (SVM)-radial algorithm outperformed other algorithms 
when pollutants are used as predictor variables.

Conclusion: This is the first mathematically based study of the seasonal 
threshold of HFRS in northeastern China, allowing for accurate estimation of the 
epidemic level. Our findings suggest that long-term exposure to air pollution is 
a risk factor for HFRS. Therefore, we should focus on monitoring pollutants in 
cold conditions and developing HFRS prediction models.
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1 Introduction

Hemorrhagic fever with renal syndrome (HFRS), also known as 
epidemic hemorrhagic fever, is a rodent-borne disease caused by 
various strains of the hantavirus or Seoul virus, characterized by fever, 
hemorrhage, and acute renal dysfunction (1). As one of the countries 
most affected by the HFRS epidemic, China has seen a significant 
decrease in the incidence of HFRS in most regions since 2000.
Although preventive measures such as rodent eradication and 
vaccination have been implemented (2), transient epidemics still 
occur at certain times and in specific regions.

Early assessments of epidemic thresholds and risk classification 
focused on influenza and respiratory infections (3, 4), which have 
proven novel in application and effective for infectious diseases in 
China. However, there is a lack of relevant studies on HFRS. Earlier 
studies have suggested that climatic factors may contribute to the 
incidence of HFRS. According to an epidemiological survey in 2002, 
rainfall was identified as a predictor of HFRS transmission in the 
epidemic source (r = −0.63) (5). Furthermore, several studies have 
gradually refined the understanding of the relationship between 
meteorological factors and HFRS, highlighting varying effects in 
terms of lag and dose–response relationships. For example, in Nei 
Menggu province, Wen-Yi Zhang et  al. found that rainfall, land 
temperature, and humidity were associated with HFRS onset at a lag 
of 3–5 months, after controlling for autocorrelation, seasonality, and 
long-term trends (6). Recent studies have also shown that wet and 
warm climatic conditions in the northeastern favor the occurrence 
and growth of HFRS (7). However, there is limited variability in 
climatic factors across different epidemic risk classifications. In 
addition, HFRS may be associated with air pollutants in terms of 
incidence because it is partly transmitted via the aerosol route. 
However, although several studies have confirmed the lag and 
correlation with air pollution in infectious diseases, few studies have 
been conducted on HFRS (8, 9).

The overall goal of this study was to explore the epidemiological 
characteristics of HFRS, the graded warning system, the lag and 
interaction effects of climate and pollutants, and the subsequent 
development of models for predicting HFRS outbreaks. Our specific 
objectives were to (a) calculate the epidemic thresholds and assess the 
risk levels, (b) explore the effects of lags and interactions of 
meteorological and pollution factors, and (c) construct stratified 
models for HFRS onset, selecting appropriate models for different  
populations.

2 Materials and methods

2.1 Setting

Supplementary Figure S1 shows the geographical location of the 
study area—Heilongjiang, Jilin, and Liaoning provinces. The three 
provinces are located in the northeastern of China and have medium 
levels of economic development and population size.

2.2 Data collection

We obtained HFRS case surveillance data from the National 
Public Health Data Center of China1 for the study area covering the 
period from 2005 to 2018. All patients were diagnosed according to 
the HFRS management criteria issued by the Ministry of Health of the 
People’s Republic of China. We  obtained the corresponding daily 
weather data, including air temperature and dew point temperature, 
from the China Meteorological Data Sharing Service (data.cma.cn). 
Pollutant information, including CO, NO2, and O3, was originally 
sourced from the National Oceanic and Atmospheric Administration  
(NOAA).

2.3 Estimation of the epidemic threshold 
and intensity level

We used the R language implementation of the moving epidemic 
method (MEM) (package “mem”), which is available online for free. 
The method is based on a complex mathematical algorithm that can 
be summarized in three steps. The first step is the division of the 
pre-epidemic, epidemic, and post-epidemic periods. In the second 
step, the pre- and post-epidemic values of the historical seasons are 
used to calculate the baseline and epidemic thresholds. In the third 
step, the maximum values of n surveillance indicators during the 
epidemic period are selected separately to calculate different epidemic 
intensity thresholds. The unilateral 50%CI upper limit of the geometric 
mean of the n maximum surveillance indicators during the epidemic 
period is defined as the medium intensity threshold, the unilateral 
90%CI upper limit as the high-intensity threshold, and the unilateral 
95%CI upper limit as the very high-intensity threshold.

2.4 The lagging and interaction effect of 
DLNM and GAM

Distributed lag non-linear models (DLNM) have been widely 
used to assess the exposure–lag–response relationship between 
environmental factors and human diseases such as congenital heart 
disease, hand, foot, and mouth disease, and chronic sinusitis (8, 10–
12). The model can be written as follows:

 

( ) ( ) ( ) ( )
( )

1log , ,lag,
,

t t t

t

E Y NS M df df NS X X
NS Time df Month
α

β
  = + + ∑ + ∑ + 

+

To analyze the lag and extreme effects of climate factors, air 
temperature, dew point temperature, wind direction, and wind speed 
were considered and applied to the cross-basis functions of a 

1 https://www.phsciencedata.cn/
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DLNM. Here, Yt is the number of the HFRS cases in monthly t; α1 is 
the intercept of the entire model; NS is a natural cubic spline that acts 
as a smooth function of the model; M represents the estimated climate 
or pollutants variable related to HFRS; and Xt represents other climate 
and pollutant variables involved in the pathogenesis of HFRS, for 
which non-linear confounding effects are adjusted. When constructing 
the meteorological factor model, ( )tX∑  does not exist, whereas in 
the pollution model, meteorological factors are used as confounding 
factors to construct ( )tX∑ . The NS was applied to adjust for the 
monthly confounding effects in the model. Month is a binary variable 
used to control the effect of time, and β represents regression 
coefficients. The optimal degrees of freedom (df) for the spline 
function were estimated using the Akaike information criterion for 
quasi-Poisson (Q-AIC) and minimum partial regression coefficient 
(PACFmin) criteria. The NS with 4 df was used for the climate factors, 
except for wind direction, which used 5 df during the period of low 
epidemic intensity. For both the high epidemic intensity period and 
the overall model, the NS with 4 df was applied to the climate and 
pollutant factors. The lag space was set to 3 df. The NS with 2–3 df/year 
was applied to the time variable in both pollutant and climate models. 
The climate model was constructed using the glm () function, while 
the pollution model was constructed using the gam () function.

Subsequently, a generalized additive model (GAM) was used to 
explore the interaction between the pollutants and the prevalence of 
HFRS. The model formula can be written as follows:

 ( ) ( ) ( ) ( )2 1 2 3log ,t tE Y s X X s X Xα  = + + + ∑ 

α2 is the intercept; X1 represents the AQI, whereas X2 and X3 
denote the other two pollutants. s () indicates a penalized spline 
function. s (X1, X2) represents the spline function for the interaction 
between the parameters X1 and X2. X1, X2, and X3 represent 6-month 
lagged variables. ( )tX∑  represents the factors of climate.

2.5 Construction of a prediction model in 
GPR and SVM

A Gaussian process (GP) can be regarded as an extended function 
of a multivariate Gaussian distribution, which can be applied to a wide 
range of variables. In a Gaussian process (GP), it is assumed that any 
finite set of data follows a multivariate Gaussian distribution. Prior 
beliefs concerning the relationships between variables are incorporated 
into these (an infinite number of) multivariate Gaussian distributions 
to create a model that represents the observational variance. The 
combination of multiple Gaussian distributions in a GP can effectively 
model non-linear relationships and is more versatile than traditional 
parametric models, which depend on fitting a global model. This is 
because multivariate Gaussians can represent local covariance patterns 
between individual sites (13).

Support vector machines (SVMs) are a non-probabilistic binary 
linear regression method. Given a set of training data labeled as 
belonging to one of two classes, the algorithm maps the data into a 
space and defines a hyperplane that maximizes the margin between 
the two classes to separate them. This plane is called the “maximal 
marginal hyperplane.” An algorithm uses a kernel approach to acquire 
non-linear mapping to the feature space if linear integration is 

impossible. Thus, the hyperplane of the feature space stands for the 
non-linear boundary of the determination in the input space (14). All 
model metrics are compared using traditional machine learning 
metrics such as RMSE, R2, and MAE (15–17). A total of 75% of the 
dataset is used as the training set, while the remaining 25% is used as 
the test set. All analyses in our study were performed using R software 
(version 4.1.3).

3 Results

3.1 HFRS surveillance in northeastern China

A total of 59,431 HFRS cases were reported in the three eastern 
provinces of China from 2005 to 2018, showing a decreasing trend 
each year (Table 1). This was followed by the main epidemic area in 
Heilongjiang province, with a total of 28,074 cases until 2018. The 
incidence of influenza was primarily observed in the individuals aged 
15–39 and 40–59 years, accounting for 86.42% of all cases.

Based on Table 1, however, there was a short-term rise in the cases 
from 2012 to 2014. We also performed a calculation of the prevalence 
threshold and determined from Supplementary Table S1 that the 
optimal parameter δ was 7.0 after the calculation of the popular 
threshold model. As shown in Table 2, the years with a high prevalence 
threshold were 2005–2007 and 2012–2014, while the years with a low 
prevalence threshold were 2008–2011 and 2015–2018. Based on the 
threshold model prediction shown in Table 2 and Figure 1, it was 
concluded that the epidemic months were primarily concentrated 
in November.

3.2 Exposure–response relationships and 
lagging effect for the climate factors

The summary statistics for all HFRS cases and environmental 
variables in northeastern China are shown in Supplementary Table S2. 
The Spearman’s rank correlation coefficient analysis showed that 
HFRS was significantly correlated with air temperature (r = −0.18, 
p < 0.05), dew point temperature (r = −0.23, p < 0.01), wind direction 
(r = 0.22, p < 0.01), and wind speed (r = 0.29, p < 0.01) (Supplementary  
Table S3). As shown in Supplementary Figure S2, these climate factors 
were associated with high relative risk at the lags above moderate 
levels, except for air temperature.

From the dose–response relationship shown in Supplementary  
Figure S3, air temperature showed mostly a U-shaped relationship with 
the risk of HFRS, both in general and across the different regions and age 
groups, while the other factors mostly showed an arch bridge-shaped 
relationship. In Liaoning province, air temperature, dew point 
temperature, and wind speed all showed a parabolic decreasing trend in 
their relationship with HFRS risk. As shown in Supplementary  
Table S5, the climate lag effect was weak during the low prevalence 
threshold period, with sensitivity mainly concentrated in the high 
prevalence areas of Heilongjiang province and the 0–14 years age group, 
where the main lag factor was low wind direction. As shown in 
Supplementary Table S6, the meteorological lag effect was higher during 
the high prevalence threshold period, with sensitivity mainly 
concentrated in the 0–14 years and 60 years and above age groups, where 
the main lag factors were cold air and hot dew point. When comparing 
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TABLE 1 Distribution of the HFRS cases by age groups, region, and season in northeastern China, 2005–2018.

Characteristic 0–14 15–39 40–59 ≧60 Total Population (104) Incidence
(10−2%)

No. of the HFRS cases (%)

Year 2005 245(2.26%) 5,148(47.54%) 4,586(42.35%) 850(7.85%) 10,829 10,757 1.01

2006 138(1.8%) 3,680(47.98%) 3,310(43.16%) 542(7.07%) 7,670 10,917 0.7

2007 60(1.17%) 2,386(46.64%) 2,268(44.33%) 402(7.86%) 5,116 10,952 0.47

2008 30(0.85%) 1,519(43.29%) 1,637(46.65%) 323(9.2%) 3,509 10,874 0.32

2009 31(0.93%) 1,313(39.42%) 1,651(49.56%) 336(10.09%) 3,331 10,907 0.31

2010 36(1.2%) 1,178(39.21%) 1,432(47.67%) 358(11.92%) 3,004 10,955 0.27

2011 38(1.17%) 1,162(35.91%) 1,630(50.37%) 406(12.55%) 3,236 10,966 0.3

2012 54(1.51%) 1,283(35.76%) 1737(48.41%) 514(14.33%) 3,588 10,973 0.33

2013 52(1.33%) 1,311(33.5%) 1973(50.41%) 578(14.77%) 3,914 10,976 0.36

2014 45(1.15%) 1,228(31.36%) 1992(50.87%) 651(16.62%) 3,916 10,976 0.36

2015 28(0.93%) 895(29.7%) 1,538(51.05%) 552(18.32%) 3,013 10,947 0.28

2016 17(0.66%) 699(27.11%) 1,384(53.69%) 478(18.54%) 2,578 10,910 0.24

2017 36(1.3%) 743(26.81%) 1,432(51.68%) 560(20.21%) 2,771 10,875 0.25

2018 32(1.08%) 784(26.52%) 1,478(50%) 662(22.4%) 2,956 10,836 0.27

Region Heilongjiang 344(1.23%) 11,459(40.82%) 13,018(46.37%) 3,253(11.59%) 28,074 3,819 7.35

Jilin 176(1.33%) 5,388(40.71%) 6,252(47.24%) 1,418(10.71%) 13,234 2,736 4.84

Liaoning 322(1.78%) 6,482(35.77%) 8,778(48.44%) 2,541(14.02%) 18,123 4,362 4.15

Season Spring (March–May) 270(1.69%) 6,660(41.63%) 7,322(45.77%) 1745(10.91%) 15,997

Summer (June–

August)
126(1.01%) 4,824(38.68%) 6,004(48.14%) 1,518(12.17%) 12,472

Autumn (September–

November)
230(1.37%) 6,213(36.93%) 8,139(48.38%) 2,241(13.32%) 16,823

Winter (December–

February)
216(1.53%) 5,632(39.83%) 6,583(46.56%) 1708(12.08%) 14,139

Total 842(1.42%) 23,329(39.25%) 28,048(47.19%) 7,212(12.14%) 59,431 10,917 5.44
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the climatic lags during the low and high prevalence threshold periods 
(Supplementary Tables S5, S6), we found that low wind direction and 
windy conditions showed a dangerous lag effect on HFRS onset (OR > 0), 
while high wind direction and windless conditions showed a protective 
lag effect (OR < 0). In addition, air temperature showed protective effects 
at both low and high levels, while cold air showed a dangerous effect in 
the 0–14 years age group during the high prevalence threshold period 
(OR (95% CI): 3.2e+17(8.4e+08, 1.2e+26)). Cold dew point had a little 

lag effect, while hot dew point showed a protective effect during the low 
prevalence threshold period. However, this effect was reversed during 
the high prevalence period.

3.3 Exposure–response relationships and 
lagging effect for the pollutants

The Spearman’s rank correlation coefficient analysis showed that 
HFRS was significantly correlated with the AQI (r = 0.40, p < 0.05), 
PM2.5 (r = 0.37, p < 0.05), and PM10 (r = 0.40, p < 0.01) 
(Supplementary Table S4). As shown in Supplementary Figure S4, 
these factors were associated with high relative risk at the lags above 
high levels, except for PM10. From the dose–response relationship 
shown in Figure  2, PM2.5 mostly showed an arch bridge-shaped 
relationship, while the AQI and PM10 mostly showed a U-shaped 
relationship with the risk of HFRS, both in general and across the 
different regions and age groups. In Jilin province and the 0–14 years 
age group, the AQI exhibited a parabolic decreasing trend, while 
PM2.5 showed a parabolic increasing trend. As shown in Figure 3, in 
terms of the total pollution lags, the effects of the low-level pollutants 
were mainly concentrated in the long-term lag conditions 
(3–6 months), while the effects of the high-level pollutants were 
mainly concentrated in the short-term lag conditions (1–2 months). 
In terms of the lagging trend, PM2.5 differed from the other pollution 
factors. As shown in Table 3, except for high-level PM10, the lag effect 
of the other pollution factors was more pronounced, and the 
sensitivity was mainly concentrated in Liaoning province and the age 
group of 40–59 years. Among these, we found that low levels of the 
AQI and PM10 and high levels of PM2.5 showed a dangerous lag effect 
on the onset of HFRS (OR > 0), while extremely high levels of PM2.5 
(P95) showed a protective effect. In addition, high levels of the AQI 
and PM10 and low levels of PM2.5 showed a protective lag effect 
(OR < 0). However, at extremely high levels of the AQI (P95), a 
dangerous effect was observed.

TABLE 2 Characteristics of the peak values in each year used in the model.

Year Peak (per 
10−5)

Peak 
month

Epidemic 
threshold

Threshold intensity Level Series

Medium High Very 
high

2005 1.57 11 0.46 0.46 0.64 0.80 Very high High

2006 1.03 11 0.46 0.46 0.74 0.98 Very high High

2007 0.81 11 0.40 0.41 0.77 1.02 High High

2008 0.47 11 0.46 0.46 0.81 1.08 Medium Baseline

2009 0.44 6 0.47 0.47 0.81 1.07 Baseline Baseline

2010 0.57 11 0.47 0.47 0.80 1.07 Medium Baseline

2011 0.43 11 0.46 0.46 0.65 0.83 Baseline Baseline

2012 0.65 11 0.46 0.46 0.55 0.68 High High

2013 0.60 11 0.38 0.38 0.50 0.60 High High

2014 0.55 11 0.38 0.38 0.51 0.62 High High

2015 0.42 11 0.39 0.39 0.52 0.64 Medium Baseline

2016 0.41 11 0.40 0.40 0.52 0.62 Medium Baseline

2017 0.35 11 0.39 0.39 0.53 0.64 Baseline Baseline

2018 0.47 11 0.40 0.40 0.52 0.62 Medium Baseline

FIGURE 1

Surveillance and early warning of HFRS in northeastern China during 
1–12 months in 2018.
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3.4 Interaction and comparison of the 
multiple pollutant models

From Supplementary Figure S5, we can see that the AQI interacted 
with PM2.5 and PM10 in relation to HFRS incidence. PM10 was weakly 
positively correlated with the risk of HFRS, while PM2.5 showed the 
opposite relationship. From the interaction effect shown in Figure 4, 
we found that low AQI combined with high levels of PM2.5 and PM10 
had the greatest impact on HFRS onset. The results from the test in 
Supplementary Table S7 indicate that the model involving the 
interaction between PM2.5 and the AQI performed better (R2 = 44.1%). 

From Supplementary Table S8 and Table 4, the model fit was best in 
Liaoning province among the different regions (R2 > 70%) and in the 
15–39 age group. In addition, the GPR model showed the same fit as 
that of the SVM model. In the GPR model, the prediction results were 
good, except for the polydot kernel function. In the SVM model, good 
prediction results were observed with the radial and sigmoid kernel 
functions. Based on the SVM-radial model for exploring the 
importance of the variables related to HFRS, the priority order was the 
pollutant factors (in the order of the AQI, PM10, and PM2.5), followed 
by the climatic factors (in the order of windspeed, dew point 
temperature, and air temperature).

FIGURE 2

Effect of the different pollutants on the incidence of HFRS across the different months for total, regions, and age groups.

FIGURE 3

Summary of the estimated extreme effects at the 5th and the 95th percentile of the pollutants on the HFRS cases for the total during the different lag 
months. The median value of each pollutant (AQI: 76.79, PM2.5: 48.7 μg/m3, PM10: 84.89 μg/m3) serves as a reference level.
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TABLE 3 The cumulative effects of the extreme pollutant factors on the HFRS cases by region and age group.

Series Variables Cumulative effects (95%CI)

Low AQI effect High AQI effect Low PM2.5 effect High PM2.5 effect Low PM10 effect High PM10 effect

Total cases
7.8e+05(78.501, 7.7e+09)

7.5e+03(15.225, 3.7e+06)

0.051(0.002, 1.323)

1e+04(0.003, 3.3e+10)

1.1e−04(7.2e−08, 0.182)

0.004(0.000, 0.384)

22.119(0.692, 707.182)

0.067(0.000, 1.8e+04)

4e+04(7.046, 2.3e+08)

1.1e+03(3.266, 3.7e+05)

0.070(0.004, 1.248)

0.364(0.000, 1.3e+04)

Region

Heilongjiang
4.8e+06(0.808, 2.8e+13)

2.4e+04(0.628, 8.9e+08)

0.046(0.000, 13.048)

7.5e+05(0.000, 8.5e+16)

0.000(0.000, 29.414)

0.003(0.000, 10.229)

17.086(0.041, 7110.833)

0.002(0.000, 5.1e+06)

4743.176(0.003, 7.3e+09)

257.344(0.018, 3.8e+06)

0.147(0.001, 16.933)

2.665(0.000, 8.4e+07)

Jilin
3.2e+04(0.031, 3.3e+10)

1.1e+03(0.101, 1.3e+07)

0.029(0.000, 3.540)

0.005(0.000, 1.5e+07)

0.001(0.000, 44.948)

0.010(0.000, 10.270)

38.629(0.245, 6.1e+03)

9.2e+03(0.000, 6.5e+11)

185.119(0.002, 1.7e+07)

24.452(0.011, 5.3e+04)

0.948(0.020, 44.050)

2.9e+04(0.028, 3e+10)

Liaoning
1.6e+05(844.167, 3.1e+07)

2.4e+03(70.763, 8.3e+04)

0.128(0.021, 0.802)

1.1(221.522, 5.4e+09)

1.6e−04(2.5e−06, 0.010)

0.005(0.000, 0.064)

12.214(1.754, 85.054)

0.001(0.000, 0.988)

4.7e+05(693.362, 3.2e+08)

6478.497(80.564, 5.2e+05)

0.018(0.002, 0.160)

0.001(0.000, 1.786)

Age group

0–14 years
3.9e+17(0.000, 1.4e+57)

0.415(0.000, 7.7e+38)

0.000(0.000, 5.3e+09)

0.000(0.000, 3.8e+81)

0.000(0.000, 3.9e+24)

0.000(0.000, 2.7e+15)

6.2e+05(0.000, 2.3e+23)

1.3e+21(0.000, 1.1e+103)

4.4e+14(0.000, 1e+61)

7.2e+09(0.000, 1.2e+41)

0.000(0.000, 1.4e+11)

0.000(0.000, 5.9e+52)

15–39 years
4.9e+05(0.775, 3.1e+11)

6.1e+03(0.748, 4.9e+07)

0.034(0.000, 3.569)

51.177(0.000, 7.9e+10)

0.001(0.000, 24.237)

0.009(0.000, 7.870)

18.395(0.130, 2.6e+03)

3.181(0.000, 1.4e+08)

5.1e+04(0.009, 2.9e+11)

1192.604(0.034, 4.2e+07)

0.099(0.001, 17.719)

11.978(0.000, 1.2e+09)

40–59 years
1e+07(336.722, 3.1e+11)

4.7e+04(45.058, 4.9e+07)

0.012(0.000, 0.460)

14.229(0.000, 2e+08)

6.6e−06(1.7e−09, 0.026)

0.001(0.000, 0.104)

124.231(2.633, 5860.926)

29.291(0.000, 2.7e+07)

2.7e+05(107.071, 6.6e+08)

3812.795(19.754, 7.4e+05)

0.045(0.003, 0.614)

0.448(0.000, 5.8e+03)

60 years and above
50.471(4e−03, 5.9e+05)

7.647(0.014, 4.3e+03)

11.547(0.368, 362.732)

1.8e+15(1.6e+08, 2e+22)

0.223(0.000, 427.895)

0.576(0.005, 69.983)

0.105(0.003, 4.041)

5.8e−12(7.6e−18, 4.4e−06)

5.465(0.000, 1.1e+09)

3.431(0.000, 1.3e+06)

0.376(0.001, 223.061)

0.008(0.000, 1.8e+08)

Bold font indicates statistical significance at the 0.05 level.
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4 Discussion

In the European Centre for Disease Prevention and Control 
(ECDC), the MEM is a standardized approach for epidemiological 
classification and early warning of infectious diseases (18). However, 
the application is limited to diseases with a yearly upward trend, such 
as influenza and hand, foot, and mouth disease. The better-controlled 
infectious diseases, such as HFRS, have limited application in 
epidemic grading. Based on recent global environmental pollution 
and the short-term annual rise in hemorrhagic fever cases, this study 
applied the MEM to classify and issue warnings regarding its epidemic 
status. As the MEM was originally applied to weekly cases, monthly 
data were used in this study. The selection range for the δ parameter 
was adjusted from 2.5–5.0 to 4.0–8.0, and the adjustment was made 
based on the criteria developed after testing with reference to the data.

The prediction of HFRS is widespread both domestically and 
internationally, with models ranging from ARIMA (19) to Holt–
Winters (20) using time series analysis for the univariate prediction 
of HFRS, achieving good results. However, since HFRS is a natural 
epidemic, environmental factors greatly influence the transmission 
of the pathogen and the host. Therefore, this study examined the 
impact of meteorological factors with lag effects during different 
periods, classified into high and low epidemic phases using the 
MEM. This will help future disease control departments implement 
targeted preventive measures and strategies under different climatic 
conditions based on the epidemic intensity. We found that Liaoning 
province exhibited different susceptibility compared to the other 
regions. This finding is in agreement with the findings of several 
studies, which indicated that the HFRS epidemic in Liaoning 
province follows a bimodal pattern (21, 22). During the high epidemic 
period, HFRS was mainly affected by cold air, with the most 
susceptible population being in the 0-14-years age group. This finding 

is consistent with the findings of studies conducted in other regions 
of China (23, 24). The main reason may be that cold air increases 
indoor activity among young, immunocompromised individuals. 
Since rodents are the primary hosts of the HFRS virus, cold air also 
raises the likelihood of rodents entering indoor spaces, which 
significantly exacerbates the incidence of HFRS. Research on the 
impact of pollutants on diseases dates back to a survey conducted in 
the United States in 1964 (25). A subsequent study in the U.S. found 
that long-term exposure to fine particle pollution was linked to death 
from ischemic heart disease and stroke, highlighting the need for 
continued improvements in air quality to prevent cardiovascular 
disease (26). In the field of infectious diseases, air pollution research 
has primarily focused on respiratory diseases, with little attention 
given to natural epidemic diseases such as HFRS. A survey in Tianjin 
found that air pollution control efforts were primarily focused on 
fulfilling local responsibilities (27), highlighting the impact of air 
pollution on local health and diseases. Therefore, this study first 
explored the lagged relationship between air pollution and HFRS, 
identifying particulate matter (PM) as the main environmental factor. 
Specifically, low levels of PM10 and high levels of PM2.5 were significant 
at a maximum lag of 6 months, with sensitivity concentrated in the 
age group of 40–59 years. The reason for this may be that middle-
aged individuals are more likely to overlook pollution issues during 
periods of high air pollution, increasing their time and chances of 
being exposed to environmental hazards. This, in turn, can 
significantly enhance exposure to pathogens and host animals. 
Moreover, for a transmission pathway as unique as aerosols, 
particulate matter may contribute to the transmission rate, although 
the exact mechanism remains unknown. This study also conducted a 
multiple regression analysis of environmental factors to explore the 
predictive power of machine learning. Although time variables were 
not included in the prediction model, as in the study by Chao Zhang 

FIGURE 4

The fitting interactions of the association between the pollutants and HFRS cases in northeastern China during 2015–2018 based on the generalized 
additive model (GAM).
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TABLE 4 Comparison of the prediction results with the different kernels of the support vector machine (SVM) models.

Model Series Parameters cv.fold Training set Test set

RMSE R2 MAE RMSE R2 MAE

SVM (Linear)

Total cases cost = 10,gamma = 0.143 10 60.657 0.687 32.258 84.242 0.086 70.695

Region

Heilongjiang cost = 10,gamma = 0.143 10 39.826 0.684 18.846 54.348 0.007 41.752

Jilin cost = 5,gamma = 0.143 10 10.986 0.712 6.546 16.699 0.022 12.518

Liaoning cost = 10,gamma = 0.143 10 14.752 0.756 9.796 30.271 0.335 24.729

Age group

0–14 years cost = 0.1,gamma = 0.143 10 2.097 0.193 1.510 1.892 0.085 1.325

15–39 years cost = 10,gamma = 0.143 10 14.014 0.790 8.570 17.932 0.386 14.841

40–59 years cost = 10,gamma = 0.143 10 30.523 0.696 17.297 44.173 0.105 35.462

60 years and above cost = 0.1,gamma = 0.143 10 22.295 0.197 14.206 17.911 0.092 13.482

SVM (Polynomial)

Total cases degree = 3,cost = 4,gamma = 0.143 10 69.488 0.585 38.329 76.208 0.114 64.232

Region

Heilongjiang degree = 3,cost = 1,gamma = 0.143 10 58.073 0.429 32.649 43.421 0.077 30.560

Jilin degree = 3,cost = 4,gamma = 0.143 10 11.554 0.680 6.786 16.653 0.020 12.378

Liaoning degree = 3,cost = 4,gamma = 0.143 10 17.466 0.655 11.811 30.125 0.354 23.966

Age group

0–14 years degree = 3,cost = 0.1,gamma = 0.143 10 2.097 0.193 1.510 1.892 0.085 1.325

15–39 years degree = 3,cost = 3,gamma = 0.143 10 17.890 0.656 11.781 15.327 0.449 13.408

40–59 years degree = 3,cost = 2,gamma = 0.143 10 39.535 0.499 24.128 38.274 0.182 29.505

60 years and above degree = 3,cost = 0.1,gamma = 0.143 10 22.295 0.197 14.206 17.911 0.092 13.482

SVM (Radial)

Total cases cost = 1,gamma = 0.5 10 66.263 0.705 39.039 75.872 0.103 59.891

Region

Heilongjiang cost = 1,gamma = 0.5 10 49.024 0.695 25.009 48.785 0.007 34.382

Jilin cost = 1,gamma = 0.5 10 10.968 0.767 6.570 15.864 0.009 11.854

Liaoning cost = 1,gamma = 1 10 11.380 0.897 7.870 31.249 0.404 26.547

Age

0–14 years cost = 1,gamma = 4 10 1.135 0.800 0.567 2.017 0.000 1.524

15–39 years cost = 1,gamma = 1 10 13.255 0.879 7.932 15.210 0.453 13.080

40–59 years cost = 1,gamma = 1 10 26.272 0.856 15.701 44.812 0.043 32.347

60 years and above cost = 1,gamma = 2 10 12.728 0.808 5.716 19.829 0.004 15.141

SVM (Sigmoid)

Total cases coef0 = 0.1,gamma = 0.5 10 66.263 0.705 39.039 75.872 0.103 59.891

Region

Heilongjiang coef0 = 0.1,gamma = 0.5 10 49.024 0.695 25.009 48.785 0.007 34.382

Jilin coef0 = 0.1,gamma = 0.5 10 10.968 0.767 6.570 15.864 0.009 11.854

Liaoning coef0 = 0.1,gamma = 1 10 11.380 0.897 7.870 31.249 0.404 26.547

Age 0–14 years coef0 = 0.1,gamma = 4 10 1.135 0.800 0.567 2.017 0.000 1.524

15–39 years coef0 = 0.1,gamma = 1 10 13.255 0.879 7.932 15.210 0.453 13.080

40–59 years coef0 = 0.1,gamma = 1 10 26.272 0.856 15.701 44.812 0.043 32.347

60 years and above coef0 = 0.1,gamma = 2 10 12.728 0.808 5.716 19.829 0.004 15.141
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et al. (24), the application of different models with varying parameters 
for hierarchical exploration helped reduce errors from omitted 
variables and increased confidence in the predictive power. The 
results showed better prediction accuracy in Liaoning province, 
which is consistent with previous findings regarding the lagged 
sensitivity of environmental factors. The SVM model proved to 
be more stable than the GPR. This also confirmed the advantage of 
combining the traditional ARIMA time series model with the SVM 
algorithm to enhance the time series model for HFRS disease 
prediction, as demonstrated by Chao Zhang et al. (24). However, this 
study focused more specifically on the northeastern region of China 
and did not explore the southern regions, which limited the ability to 
extrapolate the effects of HFRS and natural environmental factors 
across the country.

5 Conclusion

This is the first mathematically based study on the seasonal 
threshold of HFRS in northeastern China, enabling accurate 
estimation of the epidemic levels. Our findings support that long-term 
exposure to air pollution is a risk factor for HFRS. Therefore, 
we should focus on monitoring pollutants in cold conditions and 
developing HFRS prediction models.
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