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cytotoxic drug vapor 
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Objective: Several studies have demonstrated that hazardous drugs can 
evaporate even at ambient temperature during their preparation in healthcare 
facilities, potentially posing a health risk for clinicians. The National Institute for 
Occupational Safety and Health (NIOSH) has defined closed system transfer 
device (CSTD) performance as preventing the release of hazardous drugs in the 
form of vapor, aerosol, or droplets. Most CSTDs can be  used to store drugs 
for up to 7 days after their preparation. However, as some drugs are stable for 
more than 7 days, the CSTD usage period represents a limiting factor leading 
to residual drug waste. We investigated whether the Chemfort® CSTD with the 
ToxiGuard® system, an activated carbon matrix, minimizes the exposure to 
hazardous drug vapors or aerosols that may be released for 28 days after drug 
preparation.

Methods: Cyclophosphamide, a cytotoxic drug with relatively high vapor 
pressure was chosen as the representative drug to demonstrate vapor escape 
prevention. Testing was performed using intact vial adaptors (with ToxiGuard®) 
after incubation for 28 days, intact vial adaptors (with ToxiGuard®) without 
incubation, a vial adaptor from which the carbon matrix was removed (positive 
control) and a vial adaptor containing only water (negative control). After each 
test, the components were rinsed or swabbed to test for cyclophosphamide 
contamination.

Results: No escaped cyclophosphamide was detected in the tests performed 
using Chemfort® with intact ToxiGuard®. In the system tested without ToxiGuard®, 
110.3 ng of escaped cyclophosphamide were detected.

Conclusion: The intact Toxi Guard®, as part of the Chemfort® vial adaptor, 
prevents release of hazardous cyclophosphamide from the vial into the 
environment for up to 28 days. This result supports potential extension of its 
usage period and potential drug waste prevention with associated cost savings.
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Introduction

Cytotoxic drugs are characterized by their ability to disrupt the cell cycle and induce 
apoptosis in rapidly dividing cells (1). While this mechanism of action is vital for combating 
cancer, it also poses significant health hazards to individuals who come into contact with these 
substances. Healthcare personnel, including pharmacists, nurses, and pharmacy technicians, 
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are routinely exposed to cytotoxic drugs during their daily clinical 
duties (2–6). This exposure can occur at various stages of drug 
handling, such as compounding, administration, and waste 
disposal (7).

The consequences of inadvertent exposure to cytotoxic agents can 
be dire. These substances are associated with a range of adverse health 
effects, including acute and chronic toxicities, carcinogenicity, 
mutagenicity, and reproductive toxicity (collectively called CMR 
hazards) (5, 8, 9). Healthcare personnel exposed to cytotoxic drugs 
face an elevated risk of developing a spectrum of health problems, 
ranging from local effects such as skin or eye irritation, headache, 
nausea or dizziness, and acute toxicity to long-term health 
complications and morbidity such as cancer (10–13).

Recognizing the significance of this occupational health concern, 
healthcare institutions, regulatory agencies, and healthcare workers 
themselves have increasingly sought ways to mitigate the risks 
associated with cytotoxic drug handling (14). Strategies for 
minimizing exposure range from the use of personal protective 
equipment, stringent handling protocols, and staff training initiatives 
to closed system transfer devices (CSTDs) (15–20). The National 
Institute for Occupational Safety and Health (NIOSH) 2004 alert (21) 
and the 2008 revision of Chapter <797> of the United  States 
Pharmacopeia (USP) “Pharmaceutical Compounding—Sterile 
Preparations” (22) recommended the use of CSTD together with other 
safe-handling guidelines. The European Commission’s Guidelines for 
Good Manufacturing Practice for Medicinal Products for Human and 
Veterinary Use (23), also recommends the usage of closed systems 
depending on risk assessment results.

CSTDs employ a mechanical barrier to facilitate the process of 
reconstituting drug powder and transferring a drug solution into 
empty or pre-filled containers, such as infusion bags, bottles or 
syringes. The dual objectives of CSTDs are to preserve product sterility 
and to safeguard healthcare professionals from potential exposure to 
CMR toxic substances (20, 21, 24). USP <800> “Hazardous Drugs - 
Handling in Healthcare Settings” (22) supports previous compounding 
recommendations outlined in USP <797> and mandates CSTD use 
for hazardous drug administration when the dosage form enables 
using such devices (20).

Chemfort® (Simplivia Healthcare Ltd., Kiryat Shmona, Israel; 
branded OnGuard® 2  in the USA) is a CSTD with a unique 
ToxiGuard® technology. It comprises two components: (1) a 
hydrophobic acrylic copolymer membrane with a pore size of 0.2 
microns (Versapor®) that maintains the sterility of the drug in the vial 
during pressure equalization (25, 26), protects the drug from 
introduction of particulate matter, and prevents release of liquids and 
aerosols; and (2) an activated carbon layer (Flexzorb™) that 
mechanically prevents the release of drug vapor during preparation 
and administration. The currently approved usage period of the 
Chemfort® CSTD components is 7 days.

Cyclophosphamide is frequently prepared in hospitals and has a 
relatively high vapor pressure of 4.4 × 10−5 mmHg compared to other 
hazardous drugs (27). Therefore, it can serve as an appropriate 
example for testing scenarios of escaped drug vapors during cytotoxic 
drug preparations. A previous study has shown that the Chemfort® 
vial adaptor prevents the escape of cyclophosphamide drug vapor 
even after 3 years of simulated aging of the vial adaptors and 7 days 
of exposure to drug vapors (26), in line with its approved shelf life 
and usage period. In that study, 5 positive control vial adaptors 

lacking activated carbon layers were compared to 5 freshly 
manufactured vial adaptors and 2 vial adaptors at the end of their 
shelf life all connected to cyclophosphamide vials reconstituted 
immediately before testing, and 5 vial adaptors at the end of their 
shelf life connected to cyclophosphamide vials reconstituted 7 days 
prior to testing. Cyclophosphamide release was detected only for the 
samples lacking activated carbon, at quantities ranging from 22 ng 
to 112 ng.

Several drug stability studies have shown that reconstituted 
cyclophosphamide remains stable for long periods of time. For 
example, the decomposition of cyclophosphamide stored at 2–8°C 
was <1 and <1.11% after 7 days and 14 days, respectively (28). 
Cyclophosphamide dissolved in dimethyl sulfoxide and stored at 4°C 
remained 100% stable even after 3 months (29). Accordingly, some 
multidose vials of cyclophosphamide are approved for storage of up 
to 28 days following first use (30). Furthermore, a recent study has 
shown the ability of Chemfort® vial adaptors to maintain drug vial 
sterility for up to 28 days after first puncture (31) Therefore, a key 
question is whether the performance of the Chemfort® vial adaptors 
can be extended beyond 7 days of exposure to drug vapors.

In this study we  examined whether Chemfort® with the 
ToxiGuard® system can minimize exposure to hazardous drug vapors 
or aerosols that may be released or generated during drug preparation 
with the system and for the subsequent 28 days. The performance of 
devices at the end of their 3-year shelf life was also examined.

Materials and methods

A model system was developed to establish extreme laboratory 
conditions (26), in which drug vapors are generated to a much larger 
extent than in typical working environments in hospitals and 
pharmacies. These extreme conditions included heating the vials in 
a closed test chamber to 50° C and introducing a constant flow of 
nitrogen into the vials to enhance the generation of drug aerosols and 
vapors. Any potential drug vapors present in the air released from the 
Chemfort® vial adaptors were collected and then analyzed by liquid 
chromatography with tandem mass spectrometry (LC/MS/MS).

Before the study began, all product vials were cleaned and dried 
to remove any residues from production or shipping by rinsing with 
5% Alconox detergent solution (Sigma-Aldrich, St. Louis, MO, USA) 
followed by wiping with 70% isopropyl alcohol wipes (PROSAT® 
Sterile™, Contec Inc. Spartanburg, SC, USA). The bottles were then 
air dried before proceeding with the vapor trapping experiment.

Four different setups were used to examine whether drug 
vapors escape the system during drug preparation: (1) 
cyclophosphamide vials equipped with intact vial adaptors 
incubated in an oven at 30° C for 28 days after reconstitution (5 
samples), (2) cyclophosphamide vials equipped with intact vial 
adaptors that were tested immediately after reconstitution (2 
samples), (3) cyclophosphamide vial equipped with a vial adaptor 
lacking the carbon layer of the ToxiGuard® that was tested 
immediately after reconstitution (positive control, 1 sample), and 
(4) a vial containing water equipped with an intact vial adaptor (1 
replicate) incubated in an oven at 30° C for 28 days (negative 
control, 1 sample). Sample sizes for setups 2 and 3 were smaller than 
for 1, as these setups were tested using the same equipment in a 
previous publication (26). Setups 2 and 3 were included in this 
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study to validate the experimental process, but resources were 
invested in a larger sample size for the novel setup. All vial adaptors 
tested had previously undergone simulated aging equivalent to 
3 years. This was achieved by incubating the vial adaptors at 55° C 
for 135 days according to the Standard Guide for Accelerated Aging 
of Sterile Medical Device Packages (32). Three years is the approved 
shelf life of the tested Chemfort® devices.

Cyclophosphamide (Endoxan 500 mg, Baxter, Deerfield, IL, USA) 
was used as a representative drug to test the ability of Chemfort® to 
minimize exposure to hazardous drug vapors or aerosols released or 
generated during drug compounding and vial storage.

Vapor trapping

To measure the amount of vapor that escapes the Chemfort® 
system during cyclophosphamide preparation, a vapor trapping 
system was set up. The vial equipped with a Chemfort® vial adaptor 
was placed in a reactor vessel. A 0.80⨯38-mm 21G needle was 
introduced through both the reactor vessel stopper and the vial 
adaptor septum such that an external stream of nitrogen gas 
(250 mL/min) flowed into the liquid pathway of the vial adaptor 
(Figure 1). In this manner, the nitrogen gas entered the vial via the 
liquid pathway of the vial adaptor, forcing air to exit the vial through 
the air pathway of the vial adaptor into the reactor vessel. Air 
exiting the reactor vessel passed through a gas outlet line and tubing 
(PHARMA-50 Tubing, ID 4.76 mm, OD 9.53 mm, Dow Corporate, 

Midland, MI, USA) into a cold trap collection vessel (Labconco, 
Kansas City, MO, USA). The reactor vessel was kept in an oven at 
50° C and the collection trap was immersed in a cooling bath kept 
at approximately −50° C using a chiller. Analyte vapors were 
collected from the nitrogen stream for 5 h.

Collection and recovery of escaped 
cyclophosphamide vapor

To collect the escaped drug for quantification, at the end of the 
collection period all potentially contaminated surfaces were wiped 
(vial, vial adaptor, and reactor vessel) or rinsed (tubing and collection 
vessel) as follows. The round-bottom collection flask together with 
the attached connector were rinsed with 10 mL diluent, and the 
tubing along with the tube connector attached to the reaction vessel 
were rinsed with 10 mL diluent. Each portion of diluent was collected 
and analyzed separately. Swabs (Low Total Organic Carbon Alpha® 
Polyester Knit TX714K, Texwipe, Kernersville, NC, USA) were 
soaked in diluent (1:1 methanol:water), then the interior surfaces of 
the reactor vessel top (swab 1) and bottom (swab 2), and drug vial 
exterior together with vial adaptor exterior (swab 3) were wiped with 
separate swabs. Next, each swab was placed separately in a tube, 
extracted with 10 mL of diluent (1:1 methanol:water), and sonicated 
for ten minutes.

The samples were removed and stored in a refrigerator at 2–8° C 
for either 2 or 5 days until they were analyzed.

FIGURE 1

Schematic of experimental setup. Components are out of scale. Adapted from Levin and Sessink (26) with permission. VA, vial adaptor; 
CP, cyclophophamide.
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Liquid chromatography with tandem mass 
spectrometry analysis

Following extraction, 1,000 μL of the solution were mixed in a 
high-pressure liquid chromatography (HPLC) vial with 50 μL of 
internal standard solution (0.5 μg/mL D4-cyclophosphamide, Toronto 
Research Chemicals, Toronto, ON, Canada).

Analysis was performed with a 3200 Q TRAP Linear Ion Trap 
Quadrupole MS/MS (Sciex, Framingham MA, USA) combined with 
an Agilent 1100 HPLC system (Agilent Technologies, Santa Clara, 
CA, USA).

A Phenomenex Synergi Polar-RP 80A, 4 μ, 2⨯100-mm separation 
column operated at 35°C was used with a flow of 0.65 mL/min. 
Elution was performed using a gradient of 10 mM ammonium 
formate and acetonitrile (Table 1). The total runtime was 7.5 min. The 
retention time was 2.8 min.

The QTRAP  3200 mass spectrometer was operated in MRM 
mode using electrospray ionization in positive ion mode (ESI). 
Desolvation temperature was 650°C with an ion spray voltage of 
5,000 V and a nitrogen curtain gas flow of 10 L/min. Source gas flow 
was set at 30 L/min (nitrogen). The detector energies were set at 
declustering potential of 50 V and collision potential of 30 V using 
nitrogen as collision gas. Selected ions were 261.1 (parent) and 139.8 
(fragment) for cyclophosphamide and 265.1 (parent) and 142.0 
(fragment) for the internal standard d4-cyclophosphamide. The limit 
of detection for cyclophosphamide was <0.2 ng on swabs and 0.02 ng/
mL in solution.

Results

Before vapor trapping, no cyclophosphamide was found in wash 
solutions or swab extract solutions of any of the experimental setups. 
The results of cyclophosphamide detection in vapor traps after drug 
preparation and incubation are shown in Table 2. As expected, no 
cyclophosphamide was detected in the test with the negative control 
vial, which contained water only, and which was performed with an 
intact ToxiGuard®. No escaped cyclophosphamide was detected in the 
tests performed using Chemfort® with an intact ToxiGuard® - either 
immediately or after incubation for 28 days. In contrast, without the 
carbon layer of the ToxiGuard® component (tested immediately), a 
total of 110.3 ng of escaped cyclophosphamide were detected. Thus, 
an intact Toxi Guard®, as an integral part of the Chemfort® vial 
adaptor, prevents release of hazardous cyclophosphamide from the 
vial into the environment.

Discussion

Several studies have demonstrated that hazardous drugs can 
evaporate at ambient temperature during their preparation in 
healthcare facilities (3, 25, 33, 34). NIOSH defines CSTD performance 
by its ability to fully contain hazardous drugs in the form of vapor, 
aerosol, or droplets (21). The International Society of Oncology 
Pharmacy Practitioners (ISOPP) has also referred to prevention of the 
escape of hazardous drug or vapor concentrations outside the system 
in their definition of CSTDs (19). The use of a vapor containment 
performance protocol for CSTDs was also mentioned in European 
Parliament Policy Recommendations (35).

The Chemfort® vial adaptor contains two channels; one of them 
serves as the air pathway for pressure equalization and the other as the 
liquid pathway for fluid transfer into and out of the vial (Figure 2A). 
The ToxiGuard® component of the vial adaptor is situated at the most 
exterior point of the air pathway and comprises a 0.2-micron 
hydrophobic membrane and a 100% activated carbon drug binding 
matrix (Zorflex activated carbon cloth), such that air exiting the vial 
passes first through the membrane and then through the carbon 
matrix (Figure 2B). The hydrophobic membrane blocks the passage of 
aqueous liquids and aerosols out of the air channel, while maintaining 
high air permeability. The manufacturing process for the activated 
carbon matrix results in a woven carbon cloth with a highly 
microporous structure and strong electrostatic forces. This matrix is 
highly efficient in adsorbing both organic and inorganic molecules 
from vapor that may pass through the 0.2-micron membrane, 
preventing their release into the environment.

The vapor containment ability of a ToxiGuard®-based CSTD 
(Chemfort®’s predecessor, Tevadaptor/OnGuard® in the USA) was 
demonstrated in accordance with the 2016 unified draft NIOSH 
protocol (36) using 2-phenoxyethanol as a surrogate for hazardous 
drugs. This compound represents a worse case model for hazardous 
drugs in terms of its vapor pressure, Henry’s volatility constant, 
chemical structure, and physicochemical behavior (27). The 2016 
draft NIOSH protocol enables quantitative assessment of all types of 
CSTDs regardless of their technology (36). When using Tevadaptor, 
no vapor release was detected above the limit of quantification for the 
assay (<0.88 parts per billion) (27). In the current study, 
cyclophosphamide, a cytotoxic drug with relatively high vapor 
pressure was used to demonstrate vapor escape prevention.

According to the Chemfort® instructions for use, the vial 
adaptors may be used for up to 7 days following attachment to a drug 
vial. During this period, they are constantly exposed to drug vapor. 
In a prior study, the functionality of the carbon matrix was tested 
immediately after vial adaptors were attached to the vials for the 
preparation of cyclophosphamide and 5-fluorouracil and 7 days later 
for cyclophosphamide alone. Additionally, some of the vial adaptors 
were at the end of their 3-year shelf life. The results demonstrated 
that one week of exposure to hazardous drug vapor did not reduce 
the adsorption capability of the activated carbon matrix, as no 
release of cyclophosphamide was detected, even after 7 days 
exposure at the end of the vial adaptor shelf life (26). In the previous 
study, between 22 and 112 ng of cyclophosphamide were detected 
for positive control samples. The quantity determined for the 
positive control in this study (110 ng) was within the same range. 
The variability among results in the previous study indicates that 
without the activated carbon layer of ToxiGuard® contamination is 

TABLE 1 Liquid chromatography gradient for cyclophosphamide elution.

Time (min) 10 mM ammonium 
formate solution (%)

Acetonitrile 
solution (%)

0 90 10

0.5 90 10

1 10 90

3 10 90

3.1 90 10

7.5 90 10
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consistently detected at the extreme testing conditions applied. The 
level of contamination is, however, unpredictable and highly 
variable. The current study has shown that the activated carbon layer 
of the Chemfort® vial adaptor ToxiGuard® plays an important role 
in preventing drug vapor escape of one of the most volatile 
hazardous drugs under extreme conditions, even after 28 days of 
incubation at the end of the vial adaptors’ shelf life. The test 
conditions to release the drug vapors were evaluated by collecting 
vapors and aerosols using a vial adaptor lacking an activated 
carbon  layer (without incubation). Under this test condition 
cyclophosphamide was released and spread outside the vials, 
contaminating the vial adaptor and drug vial, the vessel top and its 
connector, and the tubing and its connector. Interestingly, 
contamination was not detected in the round bottom flask or vessel 
bottom. However, investigation of the spread of contamination to 
specific locations is beyond the scope of this study. Given the 
extreme conditions, the relative volatility of the tested drug, and the 

age of the devices tested, these results can represent a worst-case 
usage of the Chemfort® vial adaptor, suggesting that vapors of all 
other hazardous drugs would most likely be fully contained under 
clinical use conditions when using Chemfort® up to 3 years after its 
production and for a duration of up to 28 days.

It is important to note that the findings of this study apply only to 
the Chemfort® CSTD. Additional studies to evaluate whether other 
CSTDs have the same capabilities are recommended.

Conclusion

The findings of the study indicate that the Chemfort® CSTD 
prevents the escape of vapors of hazardous drug preparations for up 
to 28 days, potentially helping to protect healthcare personnel 
handling of such drugs, even when stored for an extended period 
of time.

TABLE 2 Detection of cyclophosphamide (ng) on surfaces in the vapor trap system after 5 h of vapor trapping.

Experimental setup CSTD Chemfort® with intact vial 

adaptors

Chemfort® with intact vial 

adaptors

Chemfort® with intact 

vial adaptor

Chemfort® with 

intact vial adaptor

Number of replicates N = 5 N = 2 N = 1 N = 1

Barriers ToxiGuard® ToxiGuard® No carbon matrix ToxiGuard®

Drug tested Cyclophosphamide Cyclophosphamide Cyclophosphamide Water

Incubation period 28 days 0 days 0 days 28 days

Cyclophosphamide 

(ng) found in wash 

solutions and swab 

extract solutions of 

vapor trap 

components after 

vapor trapping

Round-bottom flask ND ND ND ND

Vial adaptor and drug vial ND ND 109.30 ND

Vessel top and connector ND ND 0.29 ND

Vessel bottom ND ND ND ND

Tubing and connector ND ND 0.69 ND

Total ND ND 110.30 ND

CSTD, closed system transfer device; ND, not detected. The limit of detection for cyclophosphamide was <0.2 ng.

FIGURE 2

(A) Cross-section of the Chemfort® vial adaptor. (B) ToxiGuard® component of the Chemfort® vial adaptor.
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