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Background: Different strategies have been developed to minimize under-
five mortality (U5M) in sub-Saharan African (sSA) countries; however, it is still 
a major health concern for children in the region. Spatiotemporal modeling is 
important for areal data collected over time. However, when the number of time 
points and spatial areas is large and the areas are disconnected, fitting the model 
becomes computationally complex because of the high number of required 
parameters to be estimated. Therefore, the main aim of this study is to adopt a 
spatiotemporal dynamic model that includes the confounding effects between 
time, space, and their interactions with fixed covariates, with a special emphasis 
on U5M across disconnected sSA countries.

Method: We used nationally publicly representative Demographic and Health 
Survey (DHS) data for the period from 2000 to 2020. Bayesian spatiotemporal 
hierarchical modeling with an integrated nested Laplace approximation (INLA) 
program was used to model the spatiotemporal distribution of U5M among 
children across 37 districts located in four disconnected sSA regions: Ethiopia, 
Nigeria, Zimbabwe, and Ghana.

Results: A total of 170,356 under-five children from 37 districts were considered, and 
15,467 died before the age of five. The relative risk of U5M in the first DHS was 2.02, 
which sharply decreased to 0.5  in the recent phase. The proportion of improved 
access to water, sanitation, clean fuel use, urbanization, and access to health 
facilities in the district had a significant negative association with U5M. The higher the 
proportion of these covariates, the lower is the prevalence of childhood mortality.

Conclusion: This study revealed evidence of strong spatial, temporal, and 
interaction effects that influence under-five mortality risk across districts. 
Improving the women’s literacy index, access to improved water, the use of 
clean fuel, and the wealth index are associated with an improvement in the risk 
of mortality among under-five children across the districts. Districts in Nigeria 
and Ethiopia have the highest risk of U5M; hence, districts in these countries 
require special attention.
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Introduction

Under-five mortality (U5M) is the probability that a certain child 
will die before celebrating the age of five. This is considered one of the 
benchmarks of a given country’s health indicators and progress toward 
the achievement of development goals (1, 2). In 1990, the World 
Summit for Children set the goal of reducing U5M births by a third 
(70 per 1,000 live) between 1990 and 2000 (3). This was approved by 
the Millennium Development Goal (MDG) 4, which proposed a 
two-thirds reduction between 1990 and 2015 (4). As part of the 
Sustainable Development Goals (SDG), target 3.2 seeks to end 
preventable under-five child deaths and reduce the U5M rate to 25 per 
1,000 live births by 2030 (5). Between 1990 and 2015, a 53% reduction 
in U5M was obtained globally (1, 6), but the lowest reduction was 
recorded in sub-Saharan African (sSA) countries. The international 
development goal benchmark on the U5M has improved over time 
owing to the accessibility of data and increased advanced methodology. 
In all countries, the burden of U5M is expected to be concentrated in 
some districts over time; identifying these highly concentrated areas 
and directing suitable interventions to these areas will accelerate 
national U5M reductions to ensure effective resource allocation.

The spatiotemporal models have become increasingly common in 
different areas of applications, such as public health and medicine, 
epidemiology, energy research, environmental sciences (7, 8), etc. To 
describe the pattern of disease counts and identify the hot/cold spot 
areas of the incidence level as well as time trends, spatiotemporal 
disease mapping models are commonly employed (9, 10). Moreover, 
in spatial and spatiotemporal statistics, the spatial dependency 
between neighboring regions should be properly defined prior to the 
analysis. The intrinsic conditional autoregressive (ICAR) model is a 
widely used approach for specifying spatial dependency (9). In the 
ICAR model, the map comprises nodes and edges that represent the 
respective areas and their neighboring relationships (11). In connected 
maps, all the prior nodes are connected, but sometimes a disconnected 
graph can arise when there are edges and nodes with no neighbors or 
when the study areas are split with subgraphs (11). There is limited 
literature on the specification of the ICAR approach for disconnected 
graphs, and few researchers have highlighted the situation of ICAR in 
disconnected regions (11, 12). We employed these techniques using 
childhood under-five mortality in four sSA-disconnected countries 
(Ethiopia, Ghana, Nigeria, and Zimbabwe). Bayesian framework 
approaches have been used, including parametric and non-parametric 
(13, 14) formulations of spatial areas, time trends, and space–time 
interactions. The parameter estimates were obtained from Markov 
chain Monte Carlo (MCMC) algorithms, which are computationally 
expensive and might also induce Monte Carlo error in parameter 
estimates, especially for space–time interaction effects (15, 16). As a 
result, to compute the posterior marginals of all parameters of interest, 
a new approach called the integrated nested Laplace approximation 
(INLA) was developed (17), which has a short computational time and 
is also more effective (18). Many studies on the spatial and temporal 
distribution of U5M have been conducted (1, 3, 19–22); however, their 
conclusions were limited because they failed to account for spatial, 
temporal, and spatiotemporal random effects with covariates. Often, 
in disease mapping, we assume that the graph is connected, meaning 
that all nodes connect to at least one other node. However, 
disconnected graphs can arise when there is free space between 
regions (islands with no neighbors or when the study region is split), 

resulting in separate subgraphs. Another important aspect is that 
using INLA for disconnected regions has a lower error than using 
separated regions (12, 23). We also aimed to find an overall estimate 
of the under-five mortality across the four sSA countries. This is 
because, in the spatiotemporal context, the covariates can exhibit 
temporal patterns in each area and spatial patterns in each year. As the 
model includes both spatial and temporal random effects, along with 
interaction terms, the source of confounding covariates may 
be  temporal, spatial, or their interaction. Therefore, in this study, 
we  adopt a model that accounts for spatiotemporal models with 
covariates and temporal, spatial, and spatiotemporal random effects 
to estimate the U5M rate across the districts of four disconnected 
countries in sSA.

Data sources

This study used the nationally representative Demographic and 
Health Survey (DHS) dataset, mainly conducted in low-income 
countries1 and shapefiles of administrative districts.2 In the DHS, 
multistage sampling was used to select the sample for each survey 
from the countries included in this analysis. The first step of the 
sampling procedure involved the selection of clusters (enumeration 
areas, or EAs), followed by systematic household sampling within the 
selected EA. The number of clusters is the first stage, which is selected 
from the list of EAs created in the recent population census of each 
country and households that are randomly selected in each EAs. From 
the selected households, women aged 15–49 years were selected for 
in-depth interviews (24). The DHS questionnaire was revised over 
different phases: the first phase DHS (1997–2003), second phase 
(2004–2008), third phase (2009–2013), fourth phase (2014–2018), and 
the most recent DHS, eighth phase (2019–2023), to observe the 
differences in the spatial, temporal, and spatiotemporal prevalence 
and associated factors of the U5M rate across districts in the 
study areas.

The DHS contains the population size of each country/district, 
with different geospatial covariates. The DHS has two-stage designs, 
and the number of clusters is the first stage, which is selected from the 
list of enumeration areas (EAs) created in the recent population 
census of each country. Households were randomly selected in each 
EA. From the selected households, women aged 15–49 years were 
selected for in-depth interviews (24). The sSA is a portion of the 
African continent and consists of 49 countries, including Ethiopia, 
Ghana, Nigeria, and Zimbabwe (25). For this study, we retained the 
DHS data collected in sSA countries that had at least four surveys 
representative at a sub-national (district, region) level, with a 
consistent set of district boundaries across DHS surveys. This 
requirement is very important for pooling information from different 
surveys across time. Moreover, when district boundaries changed over 
time across the surveys, we used the location of clusters (GPS) to 
relocate them into coherent district units. This led us to select 16 
surveys conducted in four disconnected sSA countries (Ethiopia, 
Nigeria, Ghana, and Zambia) between 2000 and 2020. Birth record 

1 https://dhsprogram.com

2 https://www.diva-gis.org/gdata
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files of under-five children from the sSA countries, which consisted of 
data on the full birth history of all reproductive women interviewed 
and information on health indicators of fertility and mortality rates, 
were used (Figure 1). Figure 2 shows the locations of 1,310, 2,230, 
3,287, and 2,632 clusters in the four disconnected sSA countries over 
four different DHS data collection periods.

Outcome variable

The outcome variable of interest for this study was the under-five 
mortality rate per 1,000 live births (19–21). The values of the variables 
were dichotomized as (1 = yes and 0 = no). The number of under-five 
child mortalities aggregated at the district level of the four 
disconnected sSA countries over the study period from 2000 to 
2020  in the five preceding DHS survey rounds was the outcome 
of interest.

Independent variables

The independent variables extracted were based on a review of the 
literature (19–22, 26–29). The independent variables were also 
aggregated over the districts, and the proportion of the variable of 
interest was computed. The variables included in the analysis are 
summarized in Table 1.

Statistical models

Several statistical approaches to model spatiotemporal data 
features have been implemented in the last two decades within the 
disease mapping framework (15, 16), and have recently become 
extensively used to describe the temporal evolution of district patterns 

of rates. In majority of previous studies, the hierarchical Bayesian 
under the fully Bayes approach based on Markov Chain Carlo 
(MCMC) methods (9, 16, 30) was used to model the spatiotemporal 
dataset; however, a novel method called integrated nested Laplace 
approximation (INLA) has become an alternative estimation 
procedure, which overcomes some of the limitations of the MCMC 
estimation technique, such as the computation burden needed when 
high-dimensional datasets are available (17, 31, 32).

Let { }1, ,iA i S= =   be  the areas to be  considered and 
{ };iN j A i j= ∈ ∈  the set of all areas and { }1, ,tT t T= =   be the time 

considered in the study. Let ( )1, ,T
it it itkx x x= 

 is the vector of 
standardized spatiotemporal covariates for fixed effects in areal units 
i and time t, ( )1, , T

kβ β β=   is the k -vector of the fixed effect 
parameters. Let Oit and ite , respectively, be the observed and expected 
number of subjects in area i at period t, itN  is the total population in 
area i and time t, where s

itO  depends on the aggregated (total) number 
of subjects s

itN  at risk in area i at time t. The crude prevalence rate s
itc  

and expected number of subjects in the population ( )ite  are given as 

,
s
its

it s
it

Oc
N

=  s
it

it it s
it

Oe N
N

= . The itO  follows a Poisson distribution with a 

mean of itµ  defined as ( )~it it it it itO Pois eω µ ω= . Where, 
( ) ( ) ( )log log logit it iteµ ω= + , ite  are the expected cases and itω  is a 

relative risk (RR).
The RR will be  decomposed additively into components 

depending on time, space, and/or both given as:

 ( ) ( )0log T
it it i ix v u tω η β β φ γ ψ= = + + + + + +  (1)

where 0β  is the intercept, the overall RR in the district, which is 
common to all the districts and years, ( )1, , T

sv v v= …  is the spatial 
random effect, ( )1, , T

iu u u= … models spatially-uncorrelated 
heterogeneity of the outcome variable, ( )1, , T

Tφ φ φ=   is a vector of 
unstructured temporal effect, γ  is the overall time trend (main) effect, 

FIGURE 1

Map of eligible sub-Saharan African countries included in the study.
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and ( )1, , T
sψ ψ ψ= …  is the area-level time effect (interaction between 

linear time trend and the district effect). Equation 1 can be expressed 
in matrix form as

 

( ) ( )
( ) ( )

01 1 1
1 1

TS T S T S

T S T S TS

X I v I u
I I I

η β β
φ γ ψ

= + + ⊗ + ⊗
+ ⊗ + ⊗ +  (2)

where ( )11 1 1, , , , , ,T S TSη η η η η= … … , 1 ,1TS T  and 1S are 
columns of ones of length , ,TS T  and S respectively, ,S TI I and TSI  are 

,S S T T× ×  and, TS TS×  identity matrices, respectively, and 
( )1, , kX X X=   is the TS k×  matrix of the standardized 

spatiotemporal covariates. The unstructured location level effects were 
modeled through independent normal distribution, ( )2~ 0,i uu N σ . 
According to the Besag (9), the vector of structured spatial effects 

( )1, , T
sv v v= …  were assigned by the intrinsic conditional auto-

regressive (ICAR), { }2~ ,i j i i iv v A N µ σ∈ , where 
i

i

j ijj A
i

ijj A

v w

w
µ ∈

∈

=
∑
∑

 

and 
2

2

i

v
i

ijj A w
δσ
∈

=
∑

. The spatial dependence parameter for the mean 

of iv  is shown by the weight matrix ( )ijw (21) is stated as:

 

1  
0ij

if locations i and j are neighors
w

otherwise
−

= 
  

(3)

The vector of structure temporal effect ( )1, , T
Tγ γ γ=   were 

assigned the first-order random walk (RW1) with prior distribution 

specified as; 
( ) ( )2

2
1/ exp

2
TWγ γ

γ
π γ σ γ γ

σ

  ∝ − 
  

, and Wγ  is the RW1’s 

structure matrix (32), where the unstructured temporal effect assumes 
no temporal structure for priors and an independent mean-zero and 
unknown variance ( )2( ~ 0,t N θφ σ . Moreover, the vector of interaction 

effects between location and time ( )11 1 1, , , , , , T
S T STTψ ψ ψ ψ ψ= … … …  

is assumed to follow a Gaussian kernel distribution with 

( ) ( )2
2

1/ exp
2

TWψ ψ
ψ

π ψ σ ψ ψ
σ

  ∝ − 
  

, where ( )vW W Wψ ψ= ⊗ .

Interaction types for spatiotemporal 
models

Four types of spatiotemporal interactions (Equation 2) are 
(unstructured/structured between location and time); interaction 
effects are observed (15), and each possible interaction effect is 
summarized in Figure 3.

In this study, we considered the most complex interaction (type 
IV), as it incorporates spatial and temporal dependence, which 
produces spatial and/or temporal confounding (33, 34). Details of the 
model descriptions are provided in the S1 file. The effect of time T  is 
different for each area because it depends on the covariates in that 
area, and the spatial effect associated with the thi  area is different each 
time. As a result, this model has time-varying spatial and space-
varying temporal effects. Since the disconnected regions can 
be different in terms of infrastructure, development, demographic, 
and socioeconomic situations, we assume that the spatial variations in 
the countries are quite different; hence, we split the random effect of 

FIGURE 2

Locations of four disconnected countries with their clusters (Enumeration Areas) in the four phases of DHS that we consider, with boundaries of 37 
districts in the four sSA countries. 
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the spatial components into four countries (9, 11, 12, 23). In this study, 
the U5M rates were aggregated over 37 districts in four sSA countries 
over four different waves of the DHS datasets. Data from the 
enumeration areas (EAs) of the districts were also available. To 
account for the variation in the size of the number of U5M children 
survey areas, the total number of under-five children (U5C) in the 
given district was included in the model as an offset (35) variable.

Model selection criteria

Different techniques were used to select the best model, including 
the Deviance Information Criterion (DIC) and the Widely Applicable 
Information Criterion (WAIC), with the lowest values indicating a 
better fit. For convenience, a DIC value greater than 3 was considered 
significant (18, 31).

Results

A total of 170,356 under-five children were recorded for all 37 
districts for the entire DHS phase (Phase 1: Phase 4) in four 
disconnected sSA countries (Ethiopia, Ghana, Nigeria, and 
Zimbabwe). There were 15,467 U5M cases among the children (2,684, 
4,544, 4,155, and 4,084 in phase I, II, III, and IV, respectively). For the 
first phase of the DHS (1997–2004), the districts that had a U5M rate 
greater than 100 per 1,000 live births included 17 districts (Northeast, 
Northwest, South–South, and North-central from Nigeria; Afar, 
Gambela, Oromia, Amhara, Dire Daw, Somali, Tigray, and Harari 
from Amhara; Upper West from Ghana; and Manicaland in 
Zimbabwe). However, in the recent DHS phase (2015–2019), almost 
all districts in Ghana, Addis Ababa, Tigray in Ethiopia, Matabeleland 
North, Masvingo, and Bulawayo in Zimbabwe had less than 50 U5M 
rates per 1,000 live births. The prevalence of U5M improved over time 
(11.4–7.9%) across the study areas. The district pattern in the U5M 
rate changed considerably throughout the different phases of the DHS 
data-collection period. Many regions in Nigeria and Ethiopia had the 
highest mortality among children under-five, but the regions in Ghana 
had the lowest U5M rate. In the first phase, almost none of the districts 
achieved any of the goals set to reduce the U5M rates. However, over 
time, some districts have achieved their goals. Moreover, Figure 4 
shows the standardized mortality ratio (SMR) and number of deaths 
for the years 2000–2020 for the four sSA countries. This result 
indicates that in the first DHS waves, Benshangul Gumuz and Afar in 
Ethiopia, Mashonland Central and Matabeleland in Zimbabwe, and 
Volta and Upper West in Ghana had the highest under-five mortality 
ratios. Moreover, we  observed that SMRs have been decreasing 
steadily over the last 20 years, indicating and illustrating continuous 
progress regarding mortality (Figure 4).

The three different models were compared using different 
statistical metrics (mean deviance, effective number of parameters, 
and deviance information criteria). The spatiotemporal model (Model 
3), with the interaction effects of covariates with both random effects 
of time and space, had the lowest DIC and WAIC, implying that it was 
the best-fit model (Table 2). Therefore, the Bayesian inference of fixed-
effect parameters with a 95% credible interval for Model 3 was 
computed using INLA.

The posterior mean estimates of the marginal spatial log odds for 
the U5M cases for each of the 37 administrative areas and a summary 
of the posterior mean estimate of the marginal temporal log odds of 
the U5M cases are summarized in Figure 5. The upper row shows the 
posterior log odds that the red color is toward high risk and the green 
color toward low risk of U5M among the districts across the countries. 
The spatial map reveals that a high risk is associated with the majority 
of the districts in Ethiopia and Zimbabwe, whereas a low risk is 
associated with the majority of the districts in Nigeria and Ghana. 
Finally, the temporal component revealed the posterior log odds of 
U5M among the four disconnected countries. The common risk to all 
districts for each of the disconnected countries and the table of the 
posterior mean of the main temporal effect in Figure 5 reveal a slight 
decrease in the global trend over time passes, indicating that there 
might be an effect on the whole district that produces a decrease in 
risk of U5M along the phases. The improvement of U5M in Zimbabwe 
is better than the others, and in Nigeria, it is relatively low, but in all 
countries, it sharply improved over time.

TABLE 1 The description of the covariates included in the model.

Child level covariates Descriptions

% of children’s nourished (no CIAF) The proportion of children with normal 

nutritional status

% female children The proportion of female children

% of children with a dietary diversity 

score

The proportion of children with at least a 

minimum dietary diversity score

% of child born The proportion of children of birth order

Maternal/household-level covariates Description

% of women with literacy The proportion of women with a literacy 

rate

% of mothers below the median age The proportion of mothers below the 

median age

% of women with high autonomy The proportion of women with low 

autonomy

% of access sanitation facilities Percentage of population using at least 

basic sanitation services

% access to safe water The proportion of households with 

improved water

% of clear fuels used The proportion of households with use 

of clear fuel

% of women with media exposure The proportion of women with media 

exposure

% of the working status of the mother the proportion of women with working 

status

% of the working status of the father The proportion of men with working 

status

% of households live in rural areas The households living the rural areas

% of health facility The percentage of women who delivered 

at health facilities

% of wealth quantile (WQ) The proportion of households with a 

high poverty rate

CIAF, composite index for anthropometric failure (44) and dietary diversity (44, 45).
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The posterior mean estimates of the log odds of the spatiotemporal 
model for the U5M cases for the 37 districts over the four waves of the 
DHS datasets are presented in Figure 6. This showed that specific 
temporal trends vary across districts; hence, including the interaction 
term in the model is appropriate. The posterior log odds of the spatial 
effect for a given district were different in each phase of the DHS 
period. A posterior log odds mean greater than one indicates an excess 
risk of U5M among children in each of the four sSA countries. 
Moreover, an increased risk of U5M was observed in the maps that 
became darker red, and a lower risk became darker green. Over time, 
from DHS phases 1 to 4, the risk of U5M decreased in the majority of 
the districts. However, in the majority districts of Nigeria and 
Ethiopia, the U5M improved slowly, indicating that there are 
confounding factors associated with the posterior log odds of U5M 
across a particular district in the country. Most of the districts in 
Ghana (except Ashanti and Brong Ahafo) were consistently at a lower 
U5M risk, especially after the third DHS phase. Specifically, for the 
recent DHS phase (2015–2019), the predicted posterior risk revealed 

that the highest mortality rates were those in the Somali, SNNP, and 
Afar regions in Ethiopia; Northwest and Southwest in Nigeria; and 
Brong Ahafo and Ashanti in Ghana. However, the majority of the 
regions in Nigeria and Ethiopia have the highest posterior U5M rates 
compared to Ghana and Zimbabwe (Figure 6).

Table 3 shows the estimated coefficients of covariates (fixed effects) 
in the selected model, together with the estimated hyperparameters of 
the spatial, temporal, and spatiotemporal random effects on the under-
five mortality cases. Some fixed effects reveal that the 95% credible 
intervals of the estimates do not contain zero. This suggests that these 
factors have a major effect on the heterogeneity of the U5M risk across 
sSA countries. An increase of one unit in the access to improved 
sanitation index (standard deviation) is associated with a decrease of 
approximately 34% (exponent of the log odds), 59, 4, and 14% in the 
relative risk of U5M in Ethiopia, Ghana, Nigeria, and Zimbabwe, 
respectively. Although an increase of 1 unit index in improved water is 
associated with 11, 28, 20, and 30% decreases of the relative risk in U5M 
rate across Ethiopia, Ghana, Nigeria, and Zimbabwe, respectively. 

FIGURE 3

Illustration of the four interaction types.
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Moreover, an increase of one unit index in rural residence settlement 
and poor wealth quantile index is associated with an increase of around 
45, 48, 68, and 15% and 67, 14, 62, and 82%, respectively, in the risk of 

under-five mortality in Ethiopia, Ghana, Nigeria, and Zimbabwe, 
respectively. The estimated hyperparameters and proportions of the 
total variability explained by the spatial, temporal, and spatiotemporal 
random effects of the spatiotemporal model are summarized in Table 3. 
From the total variance explained by random effects, the estimated 
contribution of temporal effects is larger than that of the spatial and 
interaction effects in all countries.

Discussion and conclusion

Under-five mortality is a major global public health issue that 
disproportionately affects children, mainly in less developed nations, 
including sub-Saharan Africa (36). Previous studies of area-level 

FIGURE 4

Standardized Mortality Rate and mean under-five mortalities per 1,000 live births and number surveyed (cases) of under-five children for each of the 
districts across the study period in four sSA countries.

TABLE 2 Model comparison and selection for different spatiotemporal 
models with different specifications for each of the random effects with 
R-INLA.

Types of models D PD DIC WAIC

Model ST1 2613.60 375.14 3412.53 4194.30

Model ST2 305.92 90.34 1133.98 1128.54

Model ST3 303.86 89.37 1131.91 1125.33

PD, effective number of parameters, D the mean deviance, ST1-3: spatiotemporal model 
included in the mathematical Equations 1–3.
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FIGURE 5

Spatial and temporal effects in the U5M rate across districts of four sSA countries (A) mean posterior log odds of U5M for districts (B) provides the 
common posterior temporal mean log odds (trend) of U5M for the districts of each country.

FIGURE 6

Posterior log odds of U5M by districts over the study period: darker red (high risk) and darker green (lower risk).
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variation in under-five mortality disparities have been limited to large 
administrative areas where stable estimates of under-five mortality 
rates by lower administrative districts can be determined, leaving 
many sSA countries unexplored. The district-level direct estimates 
(crude) of certain variables are less common and unstable in showing 
the real distribution of the variables of interest. The objective of this 
study was to describe the district-level disparities in U5M rates across 
the 37 districts using the birth record dataset in four disconnected sSA 
country files (2000–2019) with the application of spatiotemporal 
models. A number of models with different assumptions have been 
used to explore the spatiotemporal effects of covariates in U5M (1, 3, 
19–22, 30, 37, 38), but this is the first study to incorporate interactions 
of spatiotemporal random effects with time-varying confounders to 
estimate U5M across districts using the R-INLA package for four 
disconnected sSA countries. The study revealed a significant effect of 
both time and space main effects on U5M risk, and the effects of either 
of the two depend on the other and the interaction. Generally, there 
is notable evidence of a steady decline in the district levels of under-
five mortality risk for the 20-year study period, although the levels 
remain high. These findings are in line with prior studies that reported 
similar temporal decreases in under-five mortality risk across the 
sub-Saharan African districts (17, 39–42). However, the U5M across 
four sSA countries in the period of 2000–2019 reveals a general 
decline in U5M risks; the mortality rates in the Ethiopia and Nigeria 

districts were relatively higher than those in Ghana and Zimbabwe. 
The reason why these districts in Nigeria and Ethiopia are high might 
be that these two countries are the most populated in Africa. Previous 
studies have shown the effects of different covariates on the U5M rate 
using different models (1, 3, 19–21, 39, 40, 43). In the majority of these 
previous studies, the spatial distribution and variation trends of 
under-five mortality have been explored at the country level (1, 3, 20, 
21, 43), and these studies did not observe the potential interaction 
effects between the covariates and the random effects of time, space, 
and their possible interactions. Therefore, our study examined the 
effects of different covariates on the spatial and temporal trends of 
under-five mortality rates, as well as spatiotemporal variations across 
the study areas. Specifically, we  found that a child with an 
undernutrition status is directly associated with, which is in line with 
the study reported by UNICEF (1, 21). Children living in rural areas 
are more likely to die than those living in urban areas are. This is in 
line with the study conducted (1, 3, 17, 20, 21, 35, 37, 41, 43), and this 
is the fact that individuals living in rural residences are frequently 
economically worse than their urban counterparts. A child born at a 
health facility had a lower risk than their home-born counterparts, 
which is in line with previous studies (21, 22, 39, 42); this is likely 
because mothers may be provided with an important understanding 
of health practices needed to improve their nutritional status and that 
of their families. Moreover, the use of improved health facilities (water 

TABLE 3 Posterior mean, standard deviation, and the 95% credible intervals for the fixed effects for the selected model with R-INLA.

Intercept sSA countries Ethiopia Ghana Nigeria Zimbabwe

Variables Mean (95% Cr.I) Mean (95% Cr.I) Mean (95% Cr.I) Mean (95% 
Cr.I)

Mean (95% Cr.I)

Intercept 0.41 (0.38, 0.43) 0.54 (0.50, 0.58) 0.39 (0.30, 0.48) 0.09 (0.06, 0.12) 0.57 (0.51, 0.63)

% of children’s nutrition −0.06 (−0.16, 0.05) −0.58(−0.73, −0.44) −0.06 (−0.16, 0.04) −0.56 (−0.76, 0.35)

% female children −0.13 (−0.18, −0.08) 0.21 (0.11, 0.31) −0.02 (−0.06, 0.03) 0.16(0.07, 0.24)

% of children with minimum DDS 0.06 (−0.09, 0.21) −0.43 (−0.48, 0.41) −0.37 (−0.48, −0.26) −0.13 (−0.16, −0.11)

% of child born 0.17 (0.04, 0.31) 0.27 (0.20, 0.35) 0.23 (0.07, 0.38) −0.44 (−0.62, −0.26)

% of women with literacy −0.20 (−0.34, −0.07) −0.11 (−0.14, −0.08) −0.75 (−0.86, −0.63) 0.14 (−0.04, 0.33)

% of mothers below the median age 0.42 (0.37, 0.48) −0.35 (−0.51, −0.20) −0.16 (−0.28, −0.05) 0.56 (0.46, 0.66)

% of women with low autonomy 0.07 (−0.01, 0.15) −0.51 (−0.86, −0.15) −0.24 (−0.30, −0.18) 0.04 (−0.12, 0.19)

% of access to safe sanitation −0.42 (−0.50, −0.33) −0.90 (−0.97, −0.83) −0.04 (−0.09, 0.01) −0.15 (−0.25, −0.05)

% access to safe water −0.23 (−0.36, −0.11) −0.33 (−0.51, −0.15) −0.22 (−0.31, −0.14) −0.35 (−0.51, −0.18)

% of clear fuels used −0.35 (−0.51, −0.18) −0.27 (−0.67, 0.13) −0.82 (−0.92, −0.73) −0.44 (−0.58, −0.30)

% of women with media exposure −0.28 (−0.40, −0.15) −0.12 (−0.16, −0.09) −0.44 (−0.55, −0.32) −0.2 (−0.62, 0.21)

% of the working status of the 

mother

0.12 (0.07, 0.17) −0.56 (−0.70, −0.42) −0.28 (−0.36, −0.20) 0.01 (−0.20, 0.22)

% of the working status of the father 0.16 (0.07, 0.25) 0.47 (0.35, 0.60) −0.07 (−0.10, −0.03) −0.1 (−0.20, −0.01)

% of households live in rural areas 0.51 (0.10, 0.91) 0.13 (0.11, 0.16) 0.48 (0.43, 0.54) 0.6 (0.16, 1.04)

% of health facility −0.31 (−0.48, −0.15) −0.12 (−0.49,0.24) −0.41 (−0.52, −0.30) −0.05 (−17, 0.08)

% of poor wealth quantile 0.37 (0.31, 0.42) 0.39 (0.35, 0.43) 0.52 (0.51, 0.56) 0.14(0.07, 0.22)

Hyperparameters in the model

Area (spatial effect) 0.57 (0.40, 0.71) 0.63 (0.17, 1.08) 0.581 (0.102, 1.838) 35.9 (0.206, 247.6) 10.5 (0.78, 49.43)

Time (temporal effect) 2.76 (2.10, 3.57) 6.27 (0.11, 39.59) 0.663 (0.001, 4.614) 37.2 (0.361, 246.5) 1.98 (0.02, 12.68)

Area–Time (interaction effects) 1.22 (0.98, 1.54) 5.73 (1.80, 14.07) 0.504 (0.189, 1.117) 14.3 (2.51, 46.63) 3.62 (0.82, 11.15)

The parameters are in the log-odds scale, Cred.I: credible interval.
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and fuel use) is linked to a decrease in the under-five mortality risk 
because improved water, sanitation, and use of clean fuel will 
minimize the direct effect of infectious diseases.

Among the given models, the contributions of different time and 
space components were examined using DIC, and the effective number 
of parameters was estimated. The best-fitting model captured the 
temporal dependence structure and spatial autocorrelation of the data 
and was further improved by incorporating time-varying covariates, 
accounting for the extra variability that was not captured by the main 
district and time effects. Most previous studies did not see the potential 
interaction effects between the covariates and the random effects of 
time, space, and their possible interactions. One of the aims of the 
present study was to examine the effects of different covariates on the 
spatial and temporal trends of under-five mortality rates as well as 
spatiotemporal variations across the study areas. In our analysis, 
we  addressed the potential challenges associated with spatial 
confounding caused by the district-level covariates. We also illustrate 
techniques for the specification of graphs for disconnected regions. 
We  explored whether the spatial patterns of U5M risk differed 
significantly during the study period and quantified the spatiotemporal 
interactions across the districts. First, spatiotemporal models 
incorporate spatial, temporal, and interaction effects without 
introducing district-level covariates. In the second model, 
we  incorporated neighborhood-level covariates. In our analysis, 
we  addressed the potential challenges associated with spatial 
confounding accounted for by the district-level covariates. To the best 
of our knowledge, this is the first study to describe district-level 
disparities in under-five mortality across sub-Saharan African 
countries. Describing the district-level variation of under-five mortality 
rate variation within the country may inform future research on the 
determinants of these disparities, as well as efforts to reduce inequalities 
and the burden of under-five mortality risks across the sub-Saharan 
African countries. This study had some limitations. We  specified 
widely used neighborhood structure definitions: two districts are 
neighbors if they share a common border (contiguity). However, there 
are other options, such as distance-based methods that measure the 
distance between two centroids or points, which are worth further 
investigation in future research.
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