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Background: Coronavirus disease 2019 (COVID-19), caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic affecting 
millions worldwide. This study aims to bridge the knowledge gap between acute 
and chronic symptoms, vaccination impact, and associated factors in patients 
across different low- and middle-income countries (LMICs).

Materials and methods: The study included 2,445 participants aged 18 years 
and older, testing positive for COVID-19. Data collection involved screening for 
medical histories, testing records, symptomatology, and persistent symptoms. 
Validated instruments, including the DePaul Symptom Questionnaire (DSQ-2) 
and the Patient Health Questionnaire-9 (PHQ-9), were used. We applied a self-
supervised and unsupervised deep neural network to extract features from the 
questionnaire. Gradient boosted machines (GBM) model was used to build a 
risk calculator for chronic fatigue syndrome (CFS), depression, and prolonged 
COVID-19 symptoms.

Results: Out of the study cohort, 68.1% of the patients had symptoms lasting 
longer than 2 weeks. The most frequent symptoms were loss of smell (46.8%), 
dry cough (40.1%), loss of taste (37.8%), headaches (37.2%), and sore throat 
(28.9%). The patients also reported high rates of depression (47.7%), chronic 
fatigue (6.5%), and infection after vaccination (23.7%). Factors associated with 
CFS included sex, age, and smoking. Vaccinated individuals demonstrated lower 
odds of experiencing prolonged COVID-19 symptoms, CFS, and depression. 
The predictive models achieved a high area under the curve (AUC) scores of 
0.87, 0.82, and 0.74, respectively.

Conclusion: The findings underscore the significant burden of long-term 
symptoms such as chronic fatigue and depression, affecting a considerable 
proportion of individuals post-infection. Moreover, the study reveals promising 
insights into the potential benefits of vaccination in mitigating the risk of 
prolonged COVID-19 symptoms, CFS, and depression. Overall, this research 
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contributes valuable knowledge towards comprehensive management and 
prevention efforts amidst the ongoing global pandemic.

Clinical trial registration: Clinical trials.gov, NCT05059184.

KEYWORDS

long COVID, post-acute sequelae, chronic fatigue syndrome, depression, COVID-19, 
LMICs, vaccination, hospitalization

1 Introduction

Long COVID, also called ‘post-acute sequelae of COVID-19’, is a 
complex condition involving a diverse array of often severe symptoms 
that persist beyond the initial phase of infection with the severe acute 
respiratory syndrome coronavirus (SARS-CoV-2) (1, 2). It is estimated 
that globally, a minimum of 65 million individuals are affected by long 
COVID, considering a conservative estimate of 10% of individuals 
who have been infected with SARS-CoV-2, which is based on over 651 
million documented COVID-19 cases worldwide (3). The incidence 
of long COVID varies, with estimates indicating it affects 
approximately 10–30% of individuals who were not hospitalized for 
their initial COVID-19 infection and 50–70% of those who were 
hospitalized (1, 2), and 10–12% of individuals who were vaccinated 
against COVID-19 (4–6). Long COVID is observed across a broad 
range of age groups and levels of disease severity during the acute 
phase. Most long COVID cases occur in patients who did not require 
hospitalization during their initial mild acute illness, overall reflecting 
the broader demographic distribution of COVID-19 cases (6, 7).

Limited research has examined the burden of long COVID in low- 
and middle-income countries (LMICs), with the International Severe 
Acute Respiratory and Emerging Infection Consortium 
characterization protocol being a notable exception. Among 14,112 
recovered COVID-19 patients from 20 countries across four 
continents, 5,565 (39.4%) were from nine LMICs (8).

In the LMICs, there is a dearth of comprehensive research 
regarding long COVID syndrome prevalence and risk factors. 
Nevertheless, existing studies have investigated the extended health 
consequences faced by survivors of severe acute respiratory syndrome 
(SARS) and LMICs respiratory syndrome (MERS), two prior 
coronavirus outbreaks that share similarities with COVID-19 in terms 
of clinical manifestations, transmission modes, and potential 
complications (7). Aldhawyan et al. investigated the prevalence and 
risk factors of long COVID in the Eastern Province of Saudi Arabia, 
analyzing data from 1,355 recovered patients. Findings highlight the 
influence of sociodemographic and clinical factors on long COVID 
symptoms, emphasizing the need for targeted management 
strategies (9).

The limited characterization of COVID-19 in LMICs may obscure 
the true extent of long COVID, which remains largely unmeasured. 
Many LMICs lack the necessary research and surveillance 
infrastructure to accurately assess its prevalence and impact. 
Investigating long COVID in these regions is further complicated by 
weak referral systems and limited capacity for patient follow-up. 
Additionally, acute COVID-19 cases may be  underdiagnosed, 
especially in LMICs, due to inadequate testing and underreporting of 
SARS-CoV-2 infections (10).

Given these challenges, we  conducted this multicentric 
collaborative study to comprehensively evaluate the acute and chronic 

symptoms associated with COVID-19. We also investigated potential 
comorbidities, particularly focusing on depression, after COVID-19 
vaccination, especially in the LMICs where data remain limited. The 
secondary objective is to develop and validate a machine learning risk 
calculator for patients in LMICs.

2 Methods

This study is designed to explore long COVID symptoms in 
individuals who tested positive for COVID-19. A total of 2,445 
participants from Egypt, India, Pakistan, Syria, and Yemen were 
included. Data were collected through structured interviews, 
incorporating validated questionnaires that assessed demographics, 
medical history, COVID-19 testing, symptoms, and treatments. The 
methodology employed various statistical and machine learning 
techniques, including principal component analysis (PCA), clustering, 
and deep neural networks, to analyze the data and predict outcomes 
such as fatigue, depression, and symptom duration. We adhered to 
ethical standards and utilized secure data storage for analysis.

2.1 Study design, setting and participants

The current investigation constitutes a cross-sectional involving 
structured screening interviews, mirroring those conducted on 
individuals who have experienced symptoms for a duration ranging 
from 1 week to less than 6 months (11). The study was registered at 
clinicaltrials.gov under the NCT number: NCT05059184. The 
sampling method was based on a convenience sampling approach, 
targeting individuals aged 18 years and older who had tested positive 
for COVID-19 through either diagnostic or antibody tests. 
Participants were recruited from five countries—Egypt, India, 
Pakistan, Syria, and Yemen—between September 2021 and September 
2022. We targeted individuals aged 18 years and above who had tested 
positive for COVID-19, either through diagnostic or antibody tests 
and had experienced symptoms. The Centers for Disease Control and 
Prevention (CDC) indicate that long COVID can be identified as early 
as 4 weeks after the initial infection (12).

2.2 Variables and data sources

Participants were screened using validated measurement 
instruments to collect data on their medical history, COVID-19 
testing, symptomatology, treatments, and vaccination. The research 
involved a 155-item questionnaire covering a variety of factors:

 • Demographics and baseline characteristics (15 items)
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 • COVID-19 testing (4 items)
 • COVID-19 experience (6 items)
 • Hospitalization (3 items)
 • Treatments (2 items)
 • Vaccination (5 items)
 • DePaul Symptom Questionnaire (DSQ) for chronic fatigue 

symptoms (54 items)
 • Patient Health Questionnaire (PHQ-9) for depression (9 items)
 • Other COVID-19 symptoms (57 items).

The DSQ-2 is designed to assess ME/CFS symptoms, 
encompassing fatigue, post-exertional malaise, sleep disturbances, 
pain, neurological/cognitive impairments, as well as autonomic, 
neuroendocrine, and immune symptoms. It employed a 14-question 
short version with Likert-type scales for frequency and severity ratings 
(13, 14). The Patient Health Questionnaire (PHQ-9), comprised nine 
questions about mood and feelings experienced over the preceding 
2 weeks, with responses rated on a 4-point scale. Cumulative scores 
were utilized to categorize levels of depression (15). Other symptoms 
were identified through a comprehensive literature review (16–18).

2.3 Study conduct

Local health authorities systematically gathered data from 
confirmed COVID-19 cases. Various groups within the same 
institution were allowed to engage, with the inclusion of new 
collaborators. Data collection transpired via direct physician-patient 
interviews at outpatient clinics, facilitated by written informed 
consent. Stringent measures were instituted to uphold patient 
confidentiality and data integrity. Collected data, sourced from both 
local and national entities, was channeled to a secure platform 
overseen by the central research team, utilizing Microsoft Forms. The 
subsequent secure storage of data for analysis adhered rigorously to 
ethical standards and the Declarations of Helsinki.

The study was conducted following the Declaration of Helsinki to 
safeguard participant and patient rights (19). The Institutional Review 
Board (IRB) diligently adhered to both national and local standards 
throughout the approval process. Subsequently, comprehensive 
briefings detailing project results and findings were provided to 
actively engaged governmental and academic entities. Furthermore, 
IRB approvals were secured from the Ethics Committees associated 
with collaborating centers responsible for data collection.

2.4 Statistical methods

2.4.1 Data cleaning and variable preparation
We built an R package for data preparation and variables 

wrangling for this project “Shaheen. Questionnaire” which can 
be  found at: https://github.com/doctor-shaheen/Shaheen.
Questionnaire.

The original data frame contained 173 variables divided into 
sections as follows demographic and pre-COVID-19 disease history, 
COVID-19 infection and treatments, COVID-19 vaccination, chronic 
fatigue history, DSQ questionnaire, and PHQ-9 questionnaire.

Multichoice questions were converted into dummy variables, and 
we  excluded variables that were frequent in less than 10% of the 

population due to the high rate of missing data and imbalance issues 
that could be introduced into the statistical models. There were 500 
remaining variables. The remaining data had a missing rate of less 
than 0.01%.

The missing data were explored for the cause of any type of 
missing, and data that were missing due to a known cause (the patients 
did not experience the symptoms, or the criteria did not apply to 
them) were solved. The remaining variables with unknown missing 
data were imputed by the mode. We used the IOM Clinical Case 
Definition algorithm to make a scoring system for chronic fatigue 
questionnaires (20). The IOM Clinical Case Definition is a widely used 
diagnostic framework for CFS, also known as myalgic 
encephalomyelitis (ME/CFS) (20). Symptom duration was categorized 
after removing outliers > 40 days because it still had non-gaussian 
distribution (Supplementary Figures S1, S2).

2.4.2 Data preprocessing
Highly correlated variables (>0.99), and zero variance variables 

were excluded. Categorical variables were converted into dummy 
variables, then we  preprocessed the data using three methods: 
centering, scaling, and Yeo-Johnson transformation. These methods 
are used to standardize the data and make it more symmetric and 
normal-like (21). We  used resampling methods for the model 
including fatigue as an outcome to overcome the imbalanced 
representation of the variables (22).

2.5 Machine learning

2.5.1 Clustering and principal component analysis 
(PCA)

We performed density-based clustering on the 50 outcome 
variables using the HDBSCAN (Hierarchical Density-Based Spatial 
Clustering of Applications with Noise) algorithm, which can identify 
clusters with different densities and shapes. We  employed an R 
package that provides an implementation of the HDBSCAN 
algorithm. We optimized the “minPts” parameter, which determines 
the minimum cluster size, by running 200 iterations and selecting the 
value that yielded the highest sum of stability scores. The stability 
scores quantify how sensitive each cluster is to variations in the 
parameter (23).

We also applied PCA analysis to obtain a low-dimensional 
representation of the outcome variables that preserve most of the data 
variability. PCA is a linear transformation method that computes 
orthogonal directions (principal components) that account for the 
most variation in the data. We determined the number of principal 
components to retain using the elbow method, which is a heuristic 
technique that locates a point of inflexion in the plot of cumulative 
variance explained versus several components. We used the principal 
components for subsequent analysis (24).

2.5.2 Deep neural networks
We constructed a deep-learning auto-encoder network using the 

TensorFlow framework (25). The model has two components an 
encoder and a decoder. The encoder receives an input layer with 54 
features and applies three dense layers with 50, 2, and 1 neuron 
respectively, each followed by a dropout layer with a rate of 0.1. The 
first two dense layers use the “relu” activation function, while the last 
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one does not use any activation function. The encoder produces a 
single value that corresponds to the latent representation of the 
input, which we  extracted and used as a dependent variable 
representing the outcomes. We then fitted a linear regression model 
to examine the relationship between the predictors and the 
50-variable outcomes using this latent variable. The decoder takes 
the output of the encoder and applies three dense layers with 50, 2, 
and 54 neurons respectively, each followed by a dropout layer with a 
rate of 0.1. The first two dense layers use the “relu” activation 
function, while the last one does not use any activation function. The 
decoder generates a vector of 54 values that corresponds to the 
reconstructed input.

In addition to the auto-encoder network, we used another method 
to extract embedding features from the high-dimensional fifty-four 
variable outcomes. We used self-supervised contrastive representation 
learning, which is a technique that learns to distinguish between 
similar and dissimilar data points based on their features. We used the 
PyTorch-SCARF (Self-Supervised Contrastive Learning using 
Random Feature Corruption) algorithm, which is an implementation 
of the model architecture described by Bahri et al. (26). The SCARF 
model, like the auto-encoder, can learn hidden features from the data 
and can remove irrelevant and unnecessary information, resulting in 
a lower-dimensional representation of the data. The SCARF model 
works by randomly corrupting some of the features of the data and 
then learning to align the original and corrupted representations using 
a contrastive loss function. We trained the SCARF model to extract a 
two-dimensional representation of the fifty-four variable outcomes. 
The resulting embeddings were further analyzed and used as a 
dependent variable to build another linear regression model with 
independent variables (26).

2.5.3 Predicting outcomes (depression, fatigue, 
and symptoms duration)

We used the “h2o” package to build three machine-learning 
models to predict depression, chronic fatigue, and symptom duration. 
We  used the AUTOML method, which automatically selects and 
compares multiple algorithms based on their performance (27). 
We found that tree-based models, such as random forests and gradient 
boosting machines, performed well with our data, so we further fine-
tuned their hyperparameters. We used cross-validation with 5 folds to 
train the models on 80% of the data and then tested them on the 
remaining 20% of the data. To evaluate and diagnose the models, 
we used several metrics, such as the area under the curve (AUC), 
receiver operator curve (ROC), Brier score, accuracy, sensitivity, 
specificity, and confusion matrix. These metrics measure how well the 
models can classify the outcomes and how often they make errors. 
(For all model training and hyperparameters, see Supplementary files).

2.5.4 Interpretation of models
To interpret the models and understand the effects of the predictor 

variables on the outcome variable, we used two methods: Shapely 
Additive Explanations (SHAP) importance and variable importance 
plots. SHAP importance is a method that measures the contribution 
of each variable to the model prediction by computing the Shapley 
values, which are based on game theory. Shapley values represent the 
average marginal contribution of a variable across all possible subsets 
of variables. SHAP importance plots show the mean absolute Shapley 
values for each variable, ranked from highest to lowest. The higher the 

SHAP value is, the more important the variable for model 
prediction (28).

Variable importance plots are another method that measures the 
importance of each variable by calculating the decrease in model 
performance when a variable is randomly permuted. This means that 
the variable is replaced by noise, which breaks its relationship with the 
outcome variable. Variable importance plots show the decrease in 
model performance for each variable, ranked from the highest to the 
lowest. The higher the decrease is, the more important the variable for 
model prediction (27).

2.5.5 Statistical analysis
We used mean, standard deviation, frequency, and percentages to 

describe and summarize the variables. We used chi-square, t-test and 
ANOVA, correlation, unadjusted logistic, linear regression, and 
standardized mean difference (SMD) for univariate analysis. We also 
built adjusted linear regression and logistic regression models for 
multivariate analysis. Backward stepwise selection was used to select 
variables that were included in the adjusted multivariate models. The 
dependent variables for the models were as follows: chronic fatigue 
score, depression score and symptoms duration, auto-encoder 
bottleneck layer, and embedding.

We assessed the model fit and calibration using the Akaike 
information criterion (AIC), the C-statistic, and the Hosmer-
Lemeshow (H&L) test. The AIC measures the trade-off between the 
complexity and the goodness of fit of the model, with lower values 
indicating a better fit. The C-statistic measures the ability of the model 
to correctly classify the outcome, with values ranging from 0.5 (no 
discrimination) to 1.0 (perfect discrimination). The H&L test compares 
the observed and expected frequencies of the outcome in subgroups of 
the data, with a non-significant p-value indicating a good calibration.

All statistical analysis and model building were done using R 
version 4.3.1 and Python 3.11.4.

The model training was done using the M1 Apple Silicon CPU (29).

3 Results

3.1 Demographics

We included 2,445 patients, 43.5% of whom were male (1,063). 
Participants were from Egypt (29.98%), Pakistan (17.47%), India 
(15.68%), Syria (15.75%), and other countries (21.11%). The largest 
age group was 40–49 years (53.6%), followed by 50–59 (12.3%), 18–29 
(10.5%), ≥60 (10.0%), and 30–39 (9.8%). Most were non-smokers 
(79.7%), while 9.7% were occasional and 10.5% regular smokers. The 
average BMI was 25.43 (±5.06), and 35.7% were healthcare 
professionals. (Table 1; Figure 1).

3.2 Pre-infection medical history

Pre-existing conditions were grouped into gastrointestinal, 
haematological, respiratory, neurological, allergies, and other 
categories. Common conditions included vertigo (15.7%), mould 
infections (12.8%), environmental allergies (12.8%), anaemia (9.9%), 
insomnia (9.9%), hypertension (9.7%), and mental health diagnoses 
(9.6%) (Supplementary Table S1; Supplementary File).

https://doi.org/10.3389/fpubh.2025.1416273
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shaheen et al. 10.3389/fpubh.2025.1416273

Frontiers in Public Health 05 frontiersin.org

3.3 Vaccination, hospitalization, and 
treatments

Most of the vaccinated patients had received 2 shots (57.6%), 
while 23.4% were unvaccinated. The number of vaccinations was 
highly correlated (Pearson correlation r = 0.79) with the vaccination 
status variable (Supplementary Table S2).

Of the total sample, 304 patients (12.4%) were hospitalized, 
and 252 (10.3%) required oxygen support. Most (75.8%) received 
a COVID-19 vaccine, with AstraZeneca (23.0%), Sinovac (21.5%), 
Sinopharm (9.9%), Pfizer (10.5%), and Moderna/others (10.1%) 
being the most common. Common treatments included 
paracetamol (35.6%), aspirin (29.0%), azithromycin (36.9%), 
steroids (20.3%), and ibuprofen/naproxen (18.8%). Other 
medications included antihistamines (14.6% type 1, 9.5% type 2), 
antioxidants (7.9%), and omega-3 (8.8%) (Supplementary  
Table S2).

3.4 Symptoms of COVID-19 infection

The most common symptoms were loss of smell (46.8%), dry 
cough (40.1%), loss of taste (37.8%), headaches (37.2%), and sore 
throat (28.9%), lasting an average of 13.63 ± 17.50 days. 
Depression (47.7%), chronic fatigue (6.5%), and post-vaccination 
infection (24.2%) were also reported. Over 10% experienced 
migraine, tinnitus, dizziness, memory loss, brain fog, mood 
changes, and various systemic symptoms (Supplementary Table S3; 
Figure 2).

3.5 Female health

1,322 women were included with COVID-19, 80.2% of whom had 
regular menstrual cycles, and 2.0% were pregnant. Prolonged symptoms 
(>2 weeks) occurred in 68.1, and 7.6% reported chronic fatigue 
(Supplementary Table S3). Regular cycles were significantly linked to 
prolonged symptoms (p < 0.001, SMD 0.368), while pregnancy had no 
impact. Multivariate analysis confirmed regular cycles as an 
independent risk factor (OR 1.50, p  = 0.017) (Table  2, 
Supplementary Tables S5, S6).

3.6 Infection after vaccination and 
associated symptoms

Among 2,337 participants, 734 (31.4%) were unvaccinated, 
1,050 (44.9%) were vaccinated without reinfection, and 553 (23.7%) 
were vaccinated but reinfected. Depression was more common in 
the unvaccinated (50.3%) and reinfection (48.6%) groups than in 
the non-reinfection group (44.4%) (p  = 0.037). Long-lasting 
symptoms (>2 weeks) were most frequent in the unvaccinated 
(78.7%), followed by non-reinfection (69.5%) and reinfection 
(59.1%) groups (p  < 0.001). Chronic fatigue was highest in the 
reinfection group (9.4%) (p  < 0.001) (Table  3, Supplementary  
Table S7).

Multivariable analysis linked reinfection risk to anger (OR 1.33, 
p  = 0.051), insomnia (OR 1.44, p  = 0.043), chest pain (OR 1.58, 
p = 0.009), joint pain (OR 1.46, p = 0.005), abdominal pain (OR 1.53, 
p = 0.004), and chronic fatigue (OR 2.32, p < 0.001). Lower reinfection 
risk was associated with irritability (OR 0.59, p = 0.003), fragmented 
sleep (OR 0.70, p  = 0.042), sore throat (OR 0.79, p  = 0.075), and 
muscle aches (OR 0.59, p < 0.001) (Supplementary Table S8).

3.7 Risk factors for long infection duration

The multivariate model identified factors linked to prolonged 
symptoms (>2 weeks). Increased risk was associated with vaccination 
(OR 1.58, p < 0.001), migraine (OR 1.48, p = 0.036), and naproxen use 
(OR 1.74, p = 0.002). Lower risk was seen with pre-infection vertigo 
(OR 0.68, p = 0.002), hospitalization (OR 0.36, p < 0.001), anaemia 
(OR 0.62, p = 0.003), hypertension (OR 0.62, p = 0.003), lower BMI 
(OR 0.97, p = 0.006), aspirin (OR 0.61, p = 0.001), azithromycin (OR 
0.71, p = 0.001), and steroids (OR 0.71, p = 0.004). No significant 
association was found for paracetamol, ibuprofen, antioxidants, type-2 
antihistamines, omega-3, or IBS (Table 4).

TABLE 1 Shows the demographic, pre-COVID-19 medical history and 
patient country distribution.

Variable N (%)

Total Participants 2,445

  BMI [mean (SD)] 25.42 (5.07)

Age group (%)

  18–29 267 (10.9)

  30–39 244 (10.0)

  40–49 1,369 (56.0)

  50–59 312 (12.8)

  >60 253 (10.3)

Sex = Male (%) 1,063 (43.5)

Healthcare professional = Yes (%) 912 (37.3)

Smoking (%)

  Never 2039 (83.4)

  Occasionally 248 (10.1)

  Regularly 158 (6.5)

Country %

  Afghanistan 158 (6.1)

  Algeria 48 (1.8)

  Egypt 767 (29.9)

  India 401 (15.6)

  Iran 92 (3.5)

  Libya 59 (2.3)

  Pakistan 448 (17.4)

  Qatar 10 (0.39)

  Sudan 9 (0.35)

  Syria 403 (15.7)

  Turkey 10 (0.39)

  United Arab Emirates 44 (1.7)

vWest Bank and Gaza 42 (1.6)

  Yemen 67 (2.6)
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FIGURE 1

Geographic distribution of patients by country. Color gradient interpretation: yellow-green: highest number of patients (>600). Teal-blue: moderate 
number of patients (200–600). Dark purple: lowest number of patients (<200). Geographic representation: highest patient representation: Egypt, 
Pakistan, Syria, India. Moderate representation: Afghanistan, Iran, Libya, Yemen. Lower representation: Algeria, West Bank and Gaza, UAE, Turkey, Qatar, 
Sudan.

FIGURE 2

Reported Symptoms of COVID-19 Infection. The horizontal bar chart illustrates the prevalence of various reported symptoms among individuals with 
COVID-19. Each bar represents the percentage of participants who reported experiencing the given symptom. The number beside the bar indicates 
the number of cases representing that percentage.
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TABLE 2 Logistic regression model for symptoms duration in female group only; AIC = 1459.4, C-statistic = 0.697, H&L = Chi-sq (8) 8.61 (p = 0.376).

Dependent: 
symptoms 
duration

<2 weeks >2 weeks OR (univariable) OR (multivariable)

Menstruation No 113 (45.6) 135 (54.4) - -

Yes 282 (28.1) 721 (71.9) 2.14 (1.61–2.85, p < 0.001) 1.50 (1.07–2.09, p = 0.017)

Before COVID vertigo 

dizziness

No 306 (29.3) 738 (70.7) - -

Yes 116 (41.7) 162 (58.3) 0.58 (0.44–0.76, p < 0.001) 0.61 (0.45–0.82, p = 0.001)

Hospitalization No 343 (28.8) 846 (71.2) - -

Yes 79 (59.4) 54 (40.6) 0.28 (0.19–0.40, p < 0.001) 0.32 (0.20–0.51, p < 0.001)

COVID 19 vaccination No 136 (43.5) 177 (56.5) - -

Yes 286 (28.3) 723 (71.7) 1.94 (1.49–2.52, p < 0.001) 1.44 (1.07–1.93, p = 0.016)**

Pre-existing conditions 

anaemia

No 345 (30.8) 775 (69.2) - -

Yes 77 (38.1) 125 (61.9) 0.72 (0.53–0.99, p = 0.041) 0.67 (0.47–0.95, p = 0.025)

Pre-existing conditions 

migraine

No 383 (32.4) 800 (67.6) - -

Yes 39 (28.1) 100 (71.9) 1.23 (0.84–1.83, p = 0.302) 1.37 (0.89–2.14, p = 0.156)

Pre-existing conditions 

irritable bowel syndrome 

IBS

No 369 (30.6) 838 (69.4) - -

Yes 53 (46.1) 62 (53.9) 0.52 (0.35–0.76, p = 0.001) 0.60 (0.39–0.92, p = 0.018)

BMI Mean (SD) 26.4 (6.0) 24.7 (5.2) 0.95 (0.93–0.97, p < 0.001) 0.98 (0.95–1.00, p = 0.053)

Aspirin No 294 (30.6) 668 (69.4) - -

Yes 128 (35.6) 232 (64.4) 0.80 (0.62–1.03, p = 0.083) 0.69 (0.45–1.05, p = 0.082)

Paracetamol No 262 (31.1) 580 (68.9) - -

Yes 160 (33.3) 320 (66.7) 0.90 (0.71–1.15, p = 0.406) 0.86 (0.66–1.13, p = 0.270)

Ibuprofen No 353 (32.3) 740 (67.7) - -

Yes 69 (30.1) 160 (69.9) 1.11 (0.81–1.51, p = 0.523) 1.66 (1.00–2.75, p = 0.049)

Antioxidants No 393 (32.3) 823 (67.7) - -

Yes 29 (27.4) 77 (72.6) 1.27 (0.82–2.00, p = 0.294) 1.69 (1.02–2.89, p = 0.048)

Anti-type two histamine No 394 (32.9) 802 (67.1) - -

Yes 28 (22.2) 98 (77.8) 1.72 (1.13–2.71, p = 0.015) 1.67 (1.05–2.73, p = 0.035)

Omega 3 No 366 (30.9) 820 (69.1) - -

Yes 56 (41.2) 80 (58.8) 0.64 (0.44–0.92, p = 0.015) 0.71 (0.48–1.07, p = 0.100)

Azithromycin No 248 (29.6) 589 (70.4) - -

Yes 174 (35.9) 311 (64.1) 0.75 (0.59–0.95, p = 0.019) 0.74 (0.57–0.96, p = 0.025)

Steroids No 313 (28.8) 773 (71.2) - -

Yes 109 (46.2) 127 (53.8) 0.47 (0.35–0.63, p < 0.001) 0.73 (0.52–1.03, p = 0.071)

**Subgroup analysis revealed that vaccination acutely and significantly decreased the symptoms duration by 59.1% vs. 74.1% (p-value < 0.001).

TABLE 3 Infection after vaccination univariate comparison.

Infection after 
vaccination

Not vaccinated Infected Before, No 
Reinfection After

Infection after 
vaccination

p SMD

n 734 1,050 553

Depression = Yes (%) 369 (50.3) 466 (44.4) 269 (48.6) 0.037 0.079

Symptom’s duration = more 

than 2 weeks (%)

578 (78.7) 730 (69.5) 327 (59.1) <0.001 0.288

Chronic fatigue = Yes (%) 54 (7.4) 41 (3.9) 52 (9.4) <0.001 0.149
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3.8 Symptoms associated with prolonged 
infection duration

A runny nose (OR 1.25, p = 0.044) increased the odds of 
prolonged symptoms (>2 weeks) by 25%, while other symptoms, 
including brain fog, anxiety, anger, loss of smell, tachycardia, loss of 
appetite, shortness of breath, dry cough, and abdominal pain, reduced 
the odds by 22 to 40% (Supplementary Table S9).

3.9 CFS risk factors

CFS was associated with mental health disorders (OR 2.11, 
p = 0.001), vertigo/dizziness (OR 2.73, p < 0.001), smoking (OR 
2.39, p = 0.005), hospitalization (OR 2.41, p < 0.001), vitamin D 
deficiency (OR 2.74, p < 0.001), asthma (OR 2.01, p = 0.013), 

diabetes type 2 (OR 2.45, p = 0.001), nightmares (OR 2.51, 
p = 0.001), and paracetamol use (OR 1.49, p = 0.029), while male 
sex (OR 0.64, p = 0.040), good pre-COVID health (OR 0.64, 
p = 0.023), and anti-type one histamines (OR 0.52, p = 0.024) 
reduced the risk (Supplementary Table S10).

3.10 Symptoms associated with chronic 
fatigue

Chronic fatigue was associated with brain fog (OR 1.52, p = 0.045), 
anxiety (OR 1.62, p = 0.028), depression (OR 2.41, p < 0.001), 
insomnia (OR 2.10, p < 0.001), palpitations (OR 1.93, p = 0.002), loss 
of appetite (OR 1.83, p = 0.002), joint pain (OR 1.53, p = 0.036), and 
muscle aches (OR 1.51, p = 0.041), while altered smell reduced the risk 
(OR 0.48, p = 0.019) (Supplementary Table S11).

TABLE 4 Logistic regression model for symptoms duration; AIC = 2661.6, C-statistic = 0.689, H&L = Chi-sq (8) 7.12 (p = 0.524).

Dependent: 
symptoms 
duration

<2 weeks >2 weeks OR (univariable) OR (multivariable)

Sex Female 422 (31.9) 900 (68.1) - -

Male 280 (27.6) 735 (72.4) 1.23 (1.03–1.47, p = 0.024) 1.19 (0.98–1.46, p = 0.080)

Before COVID vertigo 

dizziness

No 560 (28.3) 1,416 (71.7) - -

Yes 142 (39.3) 219 (60.7) 0.61 (0.48–0.77, p < 0.001) 0.68 (0.53–0.87, p = 0.002)

Hospitalization No 549 (26.5) 1,521 (73.5) - -

Yes 153 (57.3) 114 (42.7) 0.27 (0.21–0.35, p < 0.001) 0.36 (0.27–0.48, p < 0.001)

COVID 19 vaccination No 226 (40.9) 327 (59.1) - -

Yes 476 (26.7) 1,308 (73.3) 1.90 (1.56–2.32, p < 0.001) 1.58 (1.27–1.95, p < 0.001)**

Pre-existing conditions 

anaemia

No 612 (29.0) 1,497 (71.0) - -

Yes 90 (39.5) 138 (60.5) 0.63 (0.47–0.83, p = 0.001) 0.62 (0.46–0.85, p = 0.003)

Pre-existing conditions 

hypertension high blood 

pressure

No 595 (28.0) 1,527 (72.0) - -

Yes 107 (49.8) 108 (50.2) 0.39 (0.30–0.52, p < 0.001) 0.62 (0.45–0.85, p = 0.003)

Pre-existing conditions 

migraine

No 651 (30.2) 1,504 (69.8) - -

Yes 51 (28.0) 131 (72.0) 1.11 (0.80–1.57, p = 0.537) 1.48 (1.03–2.16, p = 0.036)

Pre-existing conditions 

irritable bowel syndrome 

(IBS)

No 637 (29.3) 1,535 (70.7) - -

Yes 65 (39.4) 100 (60.6) 0.64 (0.46–0.89, p = 0.007) 0.73 (0.52–1.04, p = 0.082)

Pre-existing conditions 

mould

No 605 (29.5) 1,446 (70.5) - -

Yes 97 (33.9) 189 (66.1) 0.82 (0.63–1.06, p = 0.127) 0.77 (0.58–1.02, p = 0.063)

BMI Mean (SD) 26.3 (5.4) 25.0 (4.9) 0.95 (0.94–0.97, p < 0.001) 0.97 (0.96–0.99, p = 0.006)

Aspirin No 470 (28.1) 1,201 (71.9) - -

Yes 232 (34.8) 434 (65.2) 0.73 (0.60–0.89, p = 0.001) 0.61 (0.46–0.83, p = 0.001)

Naproxen No 581 (30.4) 1,328 (69.6) - -

Yes 121 (28.3) 307 (71.7) 1.11 (0.88–1.40, p = 0.378) 1.74 (1.22–2.49, p = 0.002)

Azithromycin No 404 (27.2) 1,080 (72.8) - -

Yes 298 (34.9) 555 (65.1) 0.70 (0.58–0.84, p < 0.001) 0.71 (0.59–0.86, p = 0.001)

Steroids No 505 (26.8) 1,378 (73.2) - -

Yes 197 (43.4) 257 (56.6) 0.48 (0.39–0.59, p < 0.001) 0.71 (0.56–0.90, p = 0.004)

**Subgroup analysis revealed that vaccination acutely significantly decreased the symptoms duration 59.1% vs. 74.1% (p-value < 0.001) infected after vaccination vs. infected before 
vaccination or did not receive vaccination, respectively.
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3.11 Depression risk factors

Depression risk increased with age 40–49 (OR 1.43, 
p = 0.032), healthcare work (OR 1.24, p = 0.034), poor 
pre-COVID health (OR 2.27, p < 0.001), prior mental health 
diagnosis (OR 3.90, p < 0.001), tinnitus (OR 1.88, p = 0.001), 
vertigo (OR 2.54, p < 0.001), smoking (OR 1.41, p = 0.027), 
oxygen support (OR 2.30, p < 0.001), anemia (OR 1.40, p = 0.041), 
diabetes (OR 1.95, p = 0.001), migraine (OR 1.55, p = 0.016), IBS 
(OR 2.03, p < 0.001), insomnia (OR 1.74, p = 0.001), nightmares 
(OR 1.79, p = 0.018), aspirin (OR 1.70, p = 0.001), and omega-3 
(OR 1.53, p = 0.010). Male sex (OR 0.64, p < 0.001), excellent 
pre-COVID health (OR 0.68, p < 0.001), vision problems (OR 
0.70, p = 0.026), paracetamol (OR 0.76, p = 0.006), and anti-H2 
histamines (OR 0.50, p < 0.001) lowered risk (Supplementary  
Table S12).

3.12 Symptoms associated with depression

Depression risk increased with migraine (OR 1.47, p = 0.003), 
tinnitus (OR 1.47, p = 0.039), vertigo (OR 1.49, p = 0.003), brain fog 
(OR 2.21, p < 0.001), depression (OR 2.22, p < 0.001), anger (OR 1.38, 
p = 0.020), emotional instability (OR 2.12, p < 0.001), insomnia (OR 
1.50–2.65, p ≤ 0.001), tachycardia (OR 1.43, p = 0.013), and 
abdominal pain (OR 1.44, p = 0.010). Reproductive/urinary symptoms 
(OR 0.63, p = 0.009) and sore throat (OR 0.80, p = 0.042) lowered risk 
(Supplementary Table S13).

3.13 Summary of clustering and latent 
feature analysis

3.13.1 HDBSCAN and PCA
HDBSCAN failed to identify meaningful clusters, classifying most 

patients as noise, while PCA revealed three principal components 
explaining 30% of variance but lacking clear separation 
(Supplementary Tables S14–S16, Supplementary Figures S3–S6).

3.13.2 Neural network latent features
Deep learning models (SCARF & encoder bottleneck) showed 

strong correlations among outcome variables, suggesting shared 
underlying features rather than distinct subgroups. SCARF’s first 
latent feature correlated positively with all outcomes except 
reproductive and urinary symptoms, with a high similarity to encoder 
outputs (R2 = 0.5), reinforcing the multisystemic nature of COVID-19 
(Supplementary Tables S17, S18).

3.13.3 Encoder bottleneck layer analysis
The model fit was reasonable (AIC = 26,190.1, R2 = 0.35). Factors 

positively associated with encoder values included pre-COVID 
tinnitus, vertigo, dizziness, hospitalization, and insomnia, while male 
sex, antihistamine use, and vitamin D deficiency had negative 
associations (Supplementary Table S18).

3.13.4 SCARF embeddings analysis
The model explained 40% of variance (AIC = 4,483.7). Pre-COVID 

tinnitus, vertigo, and hospitalization were positively associated with 

embeddings, whereas antihistamine use and mood-related irritability 
had negative associations (Supplementary Table S20).

3.14 Prediction models summary

The AutoML algorithm selected the GBM model as the 
best performer.

3.14.1 Chronic fatigue
High AUC (0.87) but low accuracy (0.73), worse than NIR (0.94). 

High PPV (0.99), moderate sensitivity (0.72), and high specificity 
(0.90), but low NPV (0.18) and kappa (0.22), with significant false 
positive/negative imbalance.

3.14.2 Depression
High AUC (0.82) and accuracy (0.76), outperforming NIR (0.52). 

Strong PPV (0.76), NPV (0.77), sensitivity (0.80), and moderate 
specificity (0.73) and kappa (0.52), with balanced false positives/
negatives.

3.14.3 Symptom duration
Moderate AUC (0.74) and accuracy (0.69), similar to NIR (0.68). 

Low PPV (0.51), high NPV (0.83), moderate sensitivity (0.69), 
specificity (0.69), and kappa (0.35), with notable false positive/
negative imbalance (Figure 3).

Supplementary Tables S22–S24 provide scaled variable 
importance for predicting depression, symptom duration, and 
chronic fatigue.

3.15 Model deployment

The best-performing models are then implemented in a shiny 
app and deployed online at https://ahmedshaheen.shinyapps.io/
shaheen-covid/.

4 Discussion

We analyzed 2,445 patients, with 43.5% males, primarily from 
Egypt, Pakistan, India, and Syria, and most aged 40–49 years. 
Non-smokers constituted 79.7, and 35.7% were healthcare 
professionals. Pre-existing conditions included gastrointestinal, 
hematological, respiratory, neurological, and allergic disorders. 
Among the sample, 12.4% were hospitalized, 75.8% were 
vaccinated, and common treatments included paracetamol 
(35.6%), aspirin (29.0%), and azithromycin (36.9%). Key symptoms 
included loss of smell (46.8%), dry cough (40.1%), and headaches 
(37.2%), lasting an average of 13.6 days. Reinfection after 
vaccination occurred in 23.7% and was associated with higher 
depression and chronic fatigue rates. Prolonged symptoms 
(>2 weeks) were linked to vaccination, migraine, and naproxen 
use, while factors such as hospitalization, hypertension, and steroid 
use reduced symptom duration. Specific symptoms and pre-existing 
conditions influenced the risk of chronic fatigue and prolonged 
infection duration. Detailed statistical analyses are available in the 
Supplementary material.
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These findings are consistent with previous studies that have 
reported similar symptom profiles in long COVID patients (30–39).

Our analysis revealed several interesting associations. The prevalence 
of migraines (18.0%) in our cohort was higher than the estimated 
10–15% in the general population (23), consistent with emerging 
research linking COVID-19 to an increased risk of migraines (24). While 
the exact mechanisms remain unclear, they may involve inflammatory, 
vascular, or neurological factors triggered by the viral infection, as 
suggested by recent neuroimaging studies (40, 41).

We also highlighted the substantial impact of COVID-19 on the 
genitourinary system, with 90.3% of participants reporting reproductive 
and urinary symptoms. This finding aligns with recent reports of 
alterations in menstrual cycles, sexual function, and urinary tract 
infections in COVID-19 patients (42, 43). The potential mechanisms, 
such as hormonal imbalance, immune dysregulation, endothelial 
damage, or direct viral invasion, warrant further investigation. 
Intriguingly, our results suggest that normal/regular menstrual cycles 
were associated with prolonged COVID-19 symptoms (> 2 weeks). This 
unexpected finding could be attributed to various factors, including 
hormonal fluctuations influencing immune responses (44, 45).

However, the lack of significant effect of pregnancy on COVID-19 
outcomes should be interpreted cautiously due to the small sample 
size of pregnant patients in our cohort, contrasting with some previous 
studies that found increased risks for pregnant women (28).

Our machine learning models identified several factors associated 
with prolonged symptoms, including vaccination status, migraine, and 
naproxen use. Conversely, factors such as vertigo or dizziness before 
infection, hospitalization, and certain medications were associated with 
a decreased risk of prolonged symptoms. These findings provide valuable 
insights for risk stratification and potential therapeutic approaches in 
managing long COVID, building upon previous predictive models 
developed by Sudra et al. (46) The neurological implications of long 
COVID are particularly noteworthy. Our findings found high rates of 
depression (47.7%) and chronic fatigue (6.5%), which may be linked to 
various mechanisms including neuroinflammation, disruption of 
neurotransmitter systems, autonomic dysfunction, and the psychological 
impact of persistent symptoms. These findings are in line with the 
evidence in the literature and emphasize the need for comprehensive care 
approaches that address both the physical and mental health aspects of 
the condition (47–54).

5 Limitations

Despite the strengths of our study, including its large sample size 
and diverse cohort, several limitations must be acknowledged. The 
cross-sectional design limits our ability to establish causal 
relationships, and the focus on patients with symptoms lasting at least 
4 weeks may have excluded individuals with shorter-term or milder 
cases of long-term COVID-19. The reliance on self-reported data 
introduces the possibility of recall bias, and the overrepresentation of 
participants from certain countries may limit the generalizability of 
our findings. Self-reported symptom data is prone to recall bias, 
leading to inaccurate symptom reporting, and subjective assessment 
bias, as perceptions vary between individuals. Selection bias can skew 
results if certain groups are more likely to participate, while social 
desirability bias may cause underreporting of stigmatized behaviors. 
These limitations are common in long COVID research and highlight 
the need for longitudinal studies with diverse populations (42).

Handling missing data and rare variables also limits current 
analysis, and further post hoc analysis can be  useful. Lack of an 
external validation dataset limits the generalizability of the model, and 
we recommend future research focusing on external validation. The 
calibration results of our predictive models, as indicated by Brier 
scores, revealed varying levels of performance across different 
outcomes. The model for fatigue demonstrated good predictive 
performance (Brier score = 0.08), while models for symptom duration 
(Brier score = 0.18) and depression (Brier score = 0.17) showed 
moderate accuracy.

These results are comparable to other predictive models in 
COVID-19 research (46) and highlight both the potential utility of 
predictive models in managing long COVID and the inherent 
challenges in predicting complex, multifactorial outcomes. Our use of 
advanced machine learning techniques, including SCARF and 
encoder neural networks, provided valuable insights into the latent 
features associated with long COVID. However, the inability of the 
HDBSCAN method to yield meaningful clusters highlights the 
complex and heterogeneous nature of long COVID symptoms, which 
may not conform to distinct, easily separable categories. This aligns 
with recent discussions in the field about the challenges of categorizing 
long COVID symptoms (55).

FIGURE 3

Receiver Operating Characteristic (ROC) Curves for Prediction Models. ROC curves for three predictive models evaluating (A) symptom duration, 
(B) chronic fatigue, and (C) depression. The models compared include AutoML (red), GBM (green), and GBM grid ensemble (blue). The x-axis 
represents the false positive rate, and the y-axis represents the true positive rate.
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6 Conclusion

Our findings significantly advance our understanding of long 
COVID, particularly in the context of low- and middle-income 
countries. Further, they underscore the need for comprehensive, 
multidisciplinary approaches to managing long COVID, addressing 
both physical and mental health aspects. Future research should focus 
on external validation of our predictive models, longer-term follow-up 
of patients, and more in-depth exploration of the mechanisms 
underlying the observed associations. As the global community 
continues to grapple with the long-term consequences of the 
COVID-19 pandemic, studies like ours provide critical insights to 
inform clinical practice, public health strategies, and future 
research directions.
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