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As air pollution events increasingly threaten public health under climate change, 
more precise estimations of air pollutant exposure and the burden of diseases (BD) 
are urgently needed. However, current BD assessments from various sources of air 
pollutant concentrations and exposure risks, and the derived uncertainty still needs 
systematic assessment. Owing to growing health and air quality data availability, 
machine learning (ML) may provide a promising solution. This study proposed 
an ML-measurement-model fusion (MMF) framework that can quantify the air 
pollutant biases from the Chemical Transport Modeling (CTM) inputs, and further 
analyze the BD biases concerning various sources of air pollutant estimations and 
exposure risks. In our study region, the proposed ML-MMF framework successfully 
improves CTM-modeled PM2.5 (from R2 = 0.41 to R2 = 0.86) and O3 (from R2 = 0.48 
to R2 = 0.82). The bias quantification results showed that premature deaths in 
the study region are mainly biased by boundary conditions (Improvement Ratio, 
IR = 99%) and meteorology (91%), compared with emission and land-use data. 
The results of further analysis showed using observations only (PM2.5: 17%; O3: 
56%) or the uncorrected CTM estimations (PM2.5: −18%; O3: 171%) contributed 
more BD biases compared with employing averaged risks without considering 
urbanization levels (PM2.5: −5%; O3: −4%). In conclusion, employing observations 
only, uncorrected CTM estimations, and homogeneous risks may contribute to 
non-negligible BD biases and affect regional air quality and risk management. To 
cope with increasing needs of finer-scale air quality management under climate 
change, our developed ML-MMF framework can provide a quantitative reference 
to improve CTM performance and priority to improve input data quality and CTM 
mechanisms.
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1 Introduction

The burden of the disease (BD) has been extensively employed to describe the impact of 
exposure to ambient air pollution on regional and global air quality and risk management. The 
Global Burden of Disease (GBD) project estimated that about 2.94 and 0.47 million premature 
deaths worldwide could be attributed to ambient particulate matter and ozone (O3) pollution, 
respectively (1). However, due to the assumptions of the Integrated Exposure-Response (IER) 
algorithm employed by GBD, the GBD estimations more focus on long-term and cumulative 
exposure but overlook the temporal fluctuation of short-term exposure (2). Since extreme 
events such as wildfires and transboundary pollution have frequently deteriorated regional air 
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quality (3, 4), short-term air pollution exposure and the derived acute 
BDs should be further studied and systematically investigated.

The current BD estimations remain significant uncertainty due to 
various sources of air pollutant concentrations and exposure risks. 
PM2.5- and/or O3-derived BD estimations usually rely on air pollutant 
observations and/or Chemical Transport Model (CTM) estimations 
and city-level or nation-specific exposure risks. When local health and 
air quality data in regions, cities, and communities become more 
available, finer-scale air quality and risk management have gradually 
come to be recognized, and hourly or daily PM2.5 and O3 exposure 
estimations are urgently needed, but the exploration of exposure 
uncertainty from either observations or CTM still have limited 
improvements and remain discrepant.

CTMs have been applied to simulate air pollutant concentrations 
for decades due to their capability to model air quality for areas 
without observations. Their numerical algorithms and knowledge-
based inputs also facilitate users to explore environmental issues and 
predict future trends (5, 6). However, current estimations from CTMs 
or ensemble databases such as the global chemistry transport model 
(GEOS-Chem), Community Multiscale Air Quality Modeling System 
(CMAQ), or the Model Inter-Comparison Study for Asia (MICS- 
Asia) (6) were directly verified by limited observations and remained 
significant bias. Demanding computational resources and time also 
slows down model improvement (7, 8).

Owing to the development of environmental monitoring 
techniques and increasingly available environmental data in recent 
years, machine learning (ML) has provided effective and promising 
applications to improve the accuracy of CTM predictions (9–11). ML 
algorithms such as regression-based model (12), tree-based model 
(13), and neural networks (14, 15) have been utilized to correct 
modeling results and develop Measurement-model fusion (MMF) 
techniques based on observations, emission data, meteorological data, 
land-use data or other auxiliary data (16). For example, Lu et al. (15) 
employed three ML methods coupling with the CMAQ model to 
forecast O3 concentration, and the results showed that long short-term 
memory recurrent neural network (LSTM-RNN) can reduce most 
biases and had the best performance among three ML methods (15). 
Sayeed et  al. (17) used meteorological data, CMAQ outputs, and 
observations and applied a convolutional neural network (CNN) to 
forecast air pollutants such as PM2.5, PM10, and NO2, and the CNN 
model improved the yearly index of the agreement by 13–40% for the 
selected pollutants (18). However, although previous studies proved 
the capabilities of ML and DL techniques to improve modeling 
performance, the biases between modeled estimations and 
observations were not systematically investigated.

Technically, the bias of CTM estimation is the difference between 
modeling estimation and observation and affected by modeling inputs 
including emission inventory, boundary conditions, local meteorology, 
and land-use data (15, 18). Multiple reasons such as inaccurate 
modeling inputs (19, 20), accumulation of input biases during the 
modeling process, and imperfect chemical and physical mechanisms 
(21) in the model contribute to biases. However, few studies further 
quantified the potential confounders or input components that cause 
biases and derived biases in BD calculations. CTMs and modeling 
inputs also remained unfixed and hardly benefited from ML modeling 
except for corrected estimations. Moreover, although ML models 
showed good capabilities in bias correction, the biases between 
modeled estimations and observations were not systematically 

investigated, and the bias originating from individual modeling inputs 
was neither quantified.

Another potential concern of regional BD or GBD is overlooking 
heterogeneous exposure risks among different urbanization levels. For 
instance, higher premature death risks in rural areas and higher 
cardiovascular disease risks in urban areas due to PM2.5 exposure have 
been identified (22–24). Population density and distribution also 
significantly affect regional BDs estimations, which could be seriously 
underestimated if exposure risks in urban areas are higher than 
average. As most current BD calculations still employed regional or 
nation-level risk and population, further assessment considering risk 
spatial heterogeneity should be evaluated to support community-level 
air quality management.

To meet the needs of more accurate PM2.5 and O3 exposure 
assessment, improvement of CTM modeling performance, and finer-
scale air quality and risk management, this study proposed the 
machine learning-measurement-model fusion (ML-MMF) framework 
that can improve CTM modeling performance, quantify the sources 
of CTM estimation biases from the modeling inputs and further 
explore the bias of BD derived from different PM2.5 and O3 
concentration data, and exposure risks. Taiwan was selected as the 
study region due to its isolated geography, well-established air quality 
monitoring network, routinely updated emission inventory, and 
available health insurance database. The goal of this study is to 
improve PM2.5/O3 concentrations and premature death estimations, 
quantify the sources of CTM estimation biases from the modeling 
inputs (emissions, boundary conditions, local meteorology, and land 
uses), and compare premature deaths from different PM2.5/O3 
concentration data and exposure risks. Section 2 introduces dataset 
preparation (Section 2.1), the developed ML-MMF framework in this 
study, the bias quantification techniques (Section 2.2), and the use of 
the burden of the disease estimation for sensitivity analysis (Section 
2.3). Section 3 illustrates the improved performance of modeling 
results (Section 3.1), the results of PM2.5 and O3 modeling bias 
quantification (Section 3.2), and the results of further analysis 
considering different parameters to calculate the burden of the disease 
(Section 3.3). Section 4 elaborates on the proposed perspectives 
(Section 4.1) and limitations (Section 4.2) of this study.

2 Methodology

2.1 Dataset preparation

The weather research and forecasting model (WRF, version 3.8) 
and CMAQ model (version 5.2) with the Carbon Bond 6 and AERO6 
mechanisms were used to simulate meteorological fields and air 
pollutant concentrations, respectively. The WRF-CMAQ modeling 
nested four layers from East Asia (81 km × 81 km) to Taiwan island 
(3 km × 3 km) which covers 90 (row) × 135 (column) horizontal grid 
cells (Supplementary Figure S1) (25, 26). Emissions were from the 
Taiwan Emission Data System (TEDS) version 10.0 which was 
developed by the Taiwan Environmental Protection Administration 
(Taiwan EPA).

ML-MMF input variables are retrieved from CMAQ inputs 
including emissions, boundary conditions, meteorology, and land-use 
data (Supplementary Table S1). Hourly observational data of PM2.5 
and O3 in January, April, July, and October 2016 from 73 air quality 
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monitoring stations (Figure 1) in six air quality regions were used. 
Daily PM2.5 and maximum daily 8-h ozone average (MDA8 O3) were 
calculated based on the standards of the World Health Organization 
(WHO) and Taiwan EPA and used as the dependent variables. The 
chosen independent variables are related to the emission of precursors 
(PM2.5, NOx, SOx, NH3, and VOCs) and meteorological conditions. 
Meteorological factors on 850 and 690 hPa layers were selected to 
represent the weather conditions of the mixing layer and low 
troposphere layer (15).

2.2 ML-MMF framework

The flowchart of the ML-MMF framework is presented in 
Figure 2. First, all inputs served as predictors including CMAQ 

output, emissions, boundary conditions, meteorology, and 
land-use data were aggregated to the same resolution 
(3 km × 3 km); Observations were further combined to predictor 
datasets, and the grid cells having observations were used for the 
learning process. A random selection was employed; 60% of the 
data set was selected as the training dataset, and 40% was used as 
the testing dataset. Second, five ML techniques including the 
k-nearest neighbors’ regression (KNN), regression tree (RT), 
random forest (RF), gradient-boosted tree models (GBM), and 
convolutional neural network (CNN) that can deal with 
non-linearity were trained with a 10-fold cross-validation to 
predict daily PM2.5 and MDA8 O3 with the best schemes. Finally, 
the testing dataset was applied to all models to validate the 
predictions, and the best algorithm was used for further 
analysis (27).

FIGURE 1

Air quality monitoring network (n = 73) and air quality regions in Taiwan.
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2.3 Bias quantification

Different scenarios were designed to quantify bias between 
CMAQ raw output and observations (Table 1 and Appendix I). 
S1_BASE is the base scenario that uses all inputs for prediction and 
serves as a baseline for comparing with the other scenarios, and 
the following scenarios illustrate individual improved performance 
by including each data (emission, boundary condition, 
meteorological, and land-use data) for MMF. The bias 
quantification technique utilized PM2.5 and O3 estimations from 
each scenario. For each region, total bias ( TotalC∆ ) was defined by 
the changing population-weighted PM2.5 and O3 between CMAQ 
raw output and S1_BASE ( Total CMAQ S1_ BASEC C C∆ = − ). The 
modeling capability of each component was defined by the 
following scenarios (S2-S5). For example, the modeling capability 
of emissions was defined by the changing concentration between 
CMAQ output and S2_EM ( 1,EM CMAQ S2_ EMC C C∆ = − ). For all 
components, the calculated biases were further used to apportion 
their contributions to the total bias through multiple linear 
regression (MLR):

 Total 0 1 i,EM 2 i,BC 3 i,MT 4 i,LUC C C C C ε∆ = β + β ∆ + β ∆ + β ∆ + β ∆ +

where i represent the application of the scenarios ( EMC∆ , 
BCC∆ , MTC∆ , and LUC∆ ); 0β  is the intercept; 1β  to 4β  

represents contributed bias with a unit increase of delta PM2.5 or O3 
concentration. The products including 1 EMCβ ∆ , 2 BCCβ ∆ , 

3 MTCβ ∆ , and 4 LUCβ ∆  are the changed concentrations from 
emissions, boundary conditions, meteorology, and land-use data, 
respectively. ε  are residuals and represent biases from other 
unidentified factors.

2.4 Sensitivity analysis

Premature deaths were used to illustrate the potential BD bias by 
adopting different sources of air pollutant concentrations and 
exposure risks and are calculated from concentration-response 
functions (CRFs) (23, 28):

 
( )( )0C C

0Y E P 1 e A−β⋅ −= ⋅ ⋅ − ⋅

where Y  is the number of premature deaths; 0E  is the mortality 
rate; P is the population; The coefficient â is the short-term exposure 
risk of acute death due to PM2.5 or O3 exposure, which would consider 
heterogeneous risks among different urbanization levels 
(Supplementary Table S2) (23); A  is a scalar (1/365). 0C  is the 
threshold concentration. The threshold concentration was set as 
25 μg/m3 for daily PM2.5 or 60 ppb for MDA8 O3 (29). C is the 
exposure concentration from observations, CMAQ, or 
ML-MMF estimations.

3 Results

3.1 Improved modeling performance

This section describes the improved performance of modeling 
results by using different data for CMAQ and ML models. The 
modeling performance of CMAQ and ML models for the designed 
scenarios is shown in Table 1. The R2 of CMAQ output is 0.41 and 
0.48 for PM2.5 and O3, respectively, and the R2 of S1_BASE, including 
all the auxiliary data for MMF, can be enhanced to 0.68–0.95 and 
0.62–0.93 for PM2.5 and O3, respectively concerning different 

FIGURE 2

Technical flowchart of the proposed machine learning-measurement model fusion (ML-MMF) framework for PM2.5 and O3 prediction.
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techniques, which CNN has the highest R2, followed by RF 
and GBM.

Considering each ML technique, however, CNN shows an 
overfitting tendency. Although different split portions of training and 
testing data were tried, the overfitting persisted. Thus, CNN results 
were not considered in further analysis. Next, both RF and GBM have 
comparable higher training R2 (RF: 0.87 and 0.84 for PM2.5 and O3; 
GBM: 0.86 and 0.82 for PM2.5 and O3). By comparing the spatial 
distribution between CMAQ, RF, and GBM outputs (Figure 3), PM2.5 
and O3 estimations significantly approximate closer to observations 
after ML-MMF. CMAQ tends to underestimate PM2.5 and overestimate 
O3, especially in western Taiwan. By comparing CMAQ (Figures 3a,d) 
and GBM output (Figures 3c,f), RF (Figures 3b,e) showed relatively 
homogenous spatial patterns of PM2.5 and O3. For example, observed 
PM2.5 in the western area is higher than RF-modeled PM2.5, while 
GBM-modeled PM2.5 showed comparable estimations as observations. 
In addition, O3 accumulation at the western side of the mountains is 
not reflected by the RF model as well, while GBM remains the spatial 
patterns of O3 accumulation from CMAQ and observation-level 
estimations. The homogenous spatial patterns of RF imply its inferior 
performance in spatial modeling and could be due to its lower variable 
importance priorities of elevation and land-use characteristics, where 
stiff terrain slopes in Taiwan could have much impact on air pollutant 
concentrations. On the other hand, GBM presents a more reasonable 
spatial distribution of PM2.5 and O3 which are closer to observations. 
The significantly lower concentrations in the central mountains and 
the eastern valley and the higher concentrations in the western plain 
are elaborated by GBM. Besides, the Multiple-model (MM) ensemble 
approach (30) was also assessed by using RF and GBM, but the R2 of 
the ensemble approach showed significant overfitting 
(Supplementary Table S3). Thus, based on modeling performance, 
spatial evaluation, and parsimonious principle, GBM was selected, 
and its results were used for further analysis.

Considering the impact from individual components (Table 1), 
the R2 suggests adding boundary conditions (S3_BC, 0.77 for PM2.5 
and 0.77 for O3) and meteorological factors (S4_MT, 0.77 for PM2.5 
and 0.73 for O3) would largely increase ML-MMF modeling 
performance compared with CMAQ output (0.41 for PM2.5 and 0.48 

for O3), implying that boundary conditions and meteorology 
contribute to most explained variance for ML-MMF.

3.2 Bias quantification

This section aims to quantify the PM2.5 and O3 bias by different 
sources of CMAQ inputs. The apportioned biases of PM2.5 and O3 
estimations from emission, boundary conditions, local meteorology, 
land-use data, and other unidentified factors and their spatial 
distributions are shown in Figure  4. Monthly biases from each 
component are listed in Supplementary Tables S4, S5, respectively. 
Compared with ML-MMF results, the CMAQ model underestimates 
PM2.5 for all regions by 0.99–4.56 μg/m3 (2–23%), where YCN is most 
underestimated (Figure 4a). The spatial distribution shows that the 
CMAQ model tends to overestimate (red) PM2.5 under hills and 
mountains and to underestimate (blue) in plains and basins, especially 
around coastal areas. The monthly patterns showed that April has 
more underestimations while October concentrations in western 
regions (CM, CT, YCN, and KP) are overestimated. Additionally, 
boundary conditions and local meteorology are the main driving 
forces to cause underestimation in January and April and 
overestimation in October. On the contrary, land-use data contributes 
a positive driving force in YCN, KP, and ET on the edge of hills or 
mountains, implying that the evaluation factors could cause positive 
biases when pollutants accumulate under hills or mountains. For O3 
(Figure 4b), the CMAQ model overestimates for all regions by 5.13–
10.96 ppb (17–29%), and O3 in almost western regions is 
overestimated. The monthly patterns showed July and October have 
more overestimations. NT, CM, and ET regions are more 
overestimated in July, while CT, YCN, and KP regions are more 
overestimated in October. Similar to PM2.5, boundary conditions and 
local meteorology are the main driving forces causing overestimation.

The results of the scenario design (Table 1) and bias quantification 
(Figure 4) show higher bias from boundary conditions, emphasizing 
the importance of boundary condition data quality for air quality 
modeling in Taiwan. The importance of boundary conditions results 
from frequent long-range transboundary air pollutants transported 

TABLE 1 Modeling performance evaluation (R2) of PM2.5 and O3 for different ML techniques and scenarios.

Scenario Input data KNN RT RF GBM CNN

Train Test Train Test Train Test Train Test Train Test

PM2.5

S1_BASE CMAQ+Emis+BC + Met+LU 0.68 0.68 0.76 0.77 0.87 0.87 0.86 0.86 0.95 0.83

S2_EM CMAQ + Emis 0.51 0.54 0.47 0.48 0.59 0.59 0.58 0.59 0.62 0.57

S3_BC CMAQ + BC 0.75 0.76 0.74 0.74 0.77 0.77 0.76 0.77 0.79 0.77

S4_MT CMAQ + Met 0.71 0.73 0.63 0.65 0.81 0.82 0.76 0.77 0.84 0.68

S5_LU CMAQ + LU 0.48 0.49 0.46 0.48 0.50 0.51 0.51 0.52 0.52 0.49

O3

S1_BASE CMAQ+Emis+BC + Met+LU 0.62 0.63 0.73 0.73 0.84 0.85 0.82 0.81 0.93 0.78

S2_EM CMAQ + Emis 0.51 0.49 0.49 0.48 0.53 0.52 0.56 0.55 0.58 0.51

S3_BC CMAQ + BC 0.78 0.77 0.75 0.74 0.78 0.78 0.77 0.77 0.79 0.76

S4_MT CMAQ + Met 0.70 0.69 0.62 0.61 0.78 0.79 0.74 0.73 0.78 0.63

S5_LU CMAQ + LU 0.51 0.47 0.49 0.48 0.52 0.49 0.53 0.51 0.54 0.50
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from mainland China in fall and winter (31, 32), which carry primary 
PM and precursors of secondary PM and O3 to Taiwan (27, 33), but 
such hourly- and daily-scale weather conditions and air pollutant 
concentrations are hard to be captured accurately by global or regional 
emission inventory and verified by ground-level observations. 
Additionally, the high sensitivity of the CMAQ model to boundary 
conditions suggested the need to improve aerosol mechanisms in the 
CMAQ model for a better simulation of particle matter transport and 
deposition over the marine boundary layer (34). For local meteorology, 
its inferior importance could be due to its collinearity with boundary 
conditions, or the current meteorological models still have limitations 
to predict over complex terrain and under extremely stable boundary 
layers (29, 35). On the other hand, emission inventory and land-use 
data only have relatively lower contributions, but it does not mean 
emission inventory and land-use data are not essential or not sensitive 
for CMAQ modeling. On the contrary, it reveals the emission and 
land-use data better explain the variance of PM2.5 and O3, so their 

derived biases are relatively lower than the bias from boundary 
conditions and local meteorology.

3.3 Further analysis of bias quantification

This section further utilizes the results of bias quantification and 
assesses the derived biases when different datasets are applied to 
calculate the number of premature deaths concerning PM2.5 and O3 
exposure. Premature deaths estimated by using observations only, 
CMAQ output, ML-MMF output, and respective scenario outputs are 
shown in Table  2, and observation-derived premature deaths 
employed the observations from the closest monitoring stations. The 
improvement ratio (IR) of each scenario (S2-S5) calculates the 
improved estimation ratio compared with ML-MMF output (S1). 
Regional premature deaths are illustrated in Supplementary Table S6. 
Overall, compared with the ML-MMF estimations, using observations 

FIGURE 3

Observations (circles) and modeled estimations (grids) for PM2.5 (a–c) and O3 (d–f) from CMAQ, RF, and GBM outputs.

https://doi.org/10.3389/fpubh.2025.1436838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kuo et al. 10.3389/fpubh.2025.1436838

Frontiers in Public Health 07 frontiersin.org

and uncorrected CMAQ output would overestimate deaths by 37 and 
79%, respectively. The overestimations of using observations are 
because most monitoring stations are in populated areas that have 
higher air pollutant concentrations, thus air pollutant concentrations 
in suburban and rural areas would be overestimated. If using CMAQ-
modeled estimations, most of the biased deaths are contributed by O3 

exposure (171%, 6,518 deaths) other than PM2.5 exposure (−18%, 
−641 deaths). The scenario results (S2-S5) show similar impacts as the 
bias quantification (Table  2) shows, which including boundary 
conditions would contribute the most improvement (IR = 99%) for 
burden calculation, followed by local meteorology (IR = 91%), 
emphasizing the biases of acute BDs in Taiwan are much driven by 

FIGURE 4

Spatial distributions of (a) daily PM2.5 and (b) MDA8 O3 maximum estimation biases and their quantified biases from emissions, boundary conditions, 
local meteorology, land-use data, and other unidentified factors. The total bias is defined by the subtraction of ML-MMF estimations from CMAQ 
outputs ( −C CCMAQ MMF). The histograms represent population-weighted concentrations.
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transboundary pollution. Thus, to improve the calculation of acute 
BDs in Taiwan, the data quality of boundary conditions and local 
meteorology should be preferentially improved for local air quality 
and public health management.

Further sensitivity analysis estimates the premature deaths by 
using different PM2.5/O3 estimations and exposure risks. The 
premature deaths estimated by using observation/average-risk, 
observation/heterogeneous-risk, CMAQ/average-risk, CMAQ/
heterogeneous-risk, ML-MMF/average-risk, and ML-MMF/
heterogeneous-risk outputs are shown in Supplementary Figure S2 
and Supplementary Table S7. For PM2.5, compared with the most ideal 
setting, ML-MMF/heterogeneous-risk deaths (n = 3,641), using 
closest observations would overestimate deaths by 17% (629) overall 
and 7–30% for western regions, and using CMAQ output would 
underestimate deaths by 18% (−641) overall. Furthermore, using 
average risk without considering heterogeneous risks would 
underestimate by 4% (−147) overall and 4–10% for respective regions. 
For O3, compared with the MMF/heterogeneous-risk deaths 
(n = 3,813), employing closest observations would overestimate total 
deaths by 56% (2135). Applying CMAQ output would highly 
overestimate total deaths by 171% (10,331 deaths), and the premature 
deaths in respective regions are overestimated by 114–303%. 
Additionally, using average risk would underestimate the deaths by 5% 
overall.

The results highlighted the potential BD biases by using different 
air pollutant concentration data and exposure risks. Both parameters 
can contribute considerable biases to BD calculation. Compared with 
the most ideal setting (ML-MMF output/heterogeneous risk), using 
observations only or CTM output only would contribute more bias 
than assuming averaged exposure risks for all areas. The higher 
sensitivity of air pollutant concentrations also implied that BD 
estimations using direct CTM output without observation-based 
correction or MMF would be  potentially biased. Directly using 
observations for burden calculation also inferiorly reflects air quality 
for areas without monitoring stations.

4 Discussion

4.1 Perspectives

This study provides several perspectives for future regional air 
quality management and BD estimation. First, future air quality and 
risk management will need more precise and finer-scale air pollutant 
exposure estimations. Although present CTM applications provide 
long-term estimations for chronic exposure assessment, hourly or 
daily CTM estimations for short-term exposure assessment or acute 

BD calculation still need correction by observations. At this moment, 
our ML-MML framework is recommended for improving CTM 
performance and can serve as a post-processing procedure to improve 
model mechanisms and input data qualities. The bias quantification 
technique can provide a quantified bias structure of CTM estimations, 
so model developers can have priorities to optimize CTM algorithms, 
or users can have references to improve modeling input data quality 
in their study region. For example, in this study, the bias quantification 
of modeled-PM2.5 and O3 suggesting the data quality of boundary 
conditions and local meteorology should be first improved.

Furthermore, regional BD calculation should carefully assess the 
biases from different sources of air pollutant estimations and exposure 
risks. Both parameters are sensitive to burden calculation and could 
contribute to considerable biases. Either directly using CTM outputs 
without MMF or observations only could misrepresent the real 
exposure scenarios. Assuming a single exposure risk value for the 
population among different urbanization levels also overlooks the 
imbalance of exposure risks among urban, suburban, and rural areas. 
Spatially resolved exposure risks can employ local health data and 
be extracted through the developed framework in our previous study 
(23). In this study, using observations only (17% for PM2.5 and 56% for 
O3) or the uncorrected CTM estimations (−18% for PM2.5 and 171% 
for O3) contribute more biases to the premature deaths than employing 
averaged risks (−5% for PM2.5 and − 4% for O3), but this disparity 
could be region-specific and need to rely on local assessment.

4.2 Limitations

This study still has some limitations. First, the ML models highly 
depend on the number of monitoring stations to reflect the impact of 
geological characteristics around stations. In Taiwan, because most 
monitoring stations are located in coastal, basins, and plains, and there 
is very little monitoring data in mountainous areas to improve CTM 
performance, some ML techniques such as RF cannot properly utilize 
land-use variables for ML-MMF modeling. The other alternative 
source to obtain ground-level data is satellite data, but it still has some 
limitations. The satellite data may not provide hourly or daily-scale 
measurements, which is needed for acute disease burden calculations. 
Furthermore, the satellite data are still easily biased by clouds and 
columns of atmospheric layers. Second, although the bias 
quantification can quantify the bias from each modeling input, the 
bias of each component is still the combined bias of inaccuracy of 
inputs and imperfect mechanisms in the model, which cannot 
be easily differentiated. For example, the meteorology-contributed 
bias could be  from the inaccurate estimations of meteorology 
modeling or imperfect physical/chemical mechanisms in the CTM.

TABLE 2 Estimated premature deaths due to daily PM2.5 and O3 exposure from closest observations, CMAQ, ML-MMF (S1), and individual scenario 
outputs [emissions (S2), boundary conditions (S3), local meteorology (S4), and land-use data (S5)].

Pollutant Observation CMAQ ML-MMF 
(S1)

ML-MMF scenario (improvement ratio*)

Emis (S2) BC (S3) Met (S4) LU (S5)

PM2.5 4,270 3,000 3,641 3,597 (93%) 3,636 (99%) 3,524 (82%) 3,082 (13%)

O3 5,948 10,331 3,813 2,902 (86%) 3,738 (99%) 3,419 (94%) 2,521 (80%)

Total 10,218 13,331 7,454 6,500 (84%) 7,374 (99%) 6,943 (91%) 5,603 (69%)

* S CMAQ
improvement ratio 100% , 2 5.

1 CMAQ
i

i
S
−

= − =
−


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5 Conclusion

More precise and finer-scale BD estimations are gradually 
recognized for regional air quality and risk management, but current 
regional BD estimations are still confounded by different sources of 
air pollutant concentration data and homogenous exposure risk 
among diverse urbanization levels. Although current ML applications 
can correct CTM results, the CTM mechanism and modeling input 
still hardly benefit from corrected results.

This study proposed an ML-MMF framework to improve regional 
BD estimation and further quantify the major bias sources of CTM 
estimations. In our case, bias quantification results showed that the 
CTM-modeled PM2.5/O3 are more affected by boundary conditions 
and local meteorology than other inputs, the derived premature 
deaths also presented that the acute BDs are mainly biased by 
boundary conditions (IR = 99%) and local meteorology (IR = 91%). 
Further sensitivity analysis highlighted the impact of different sources 
of air pollutant concentrations and exposure risks to BD estimations. 
Using observations only (17% for PM2.5 and 56% for O3) or the 
uncorrected CTM estimations (−18% for PM2.5 and 171% for O3) 
contribute more BD biases compared with employing averaged risk 
without considering urbanization levels (−5% for PM2.5 and − 4% for 
O3). However, the disparity could have regional specificity and need 
to rely on further regional assessment.

The study provides several perspectives for future regional air 
quality management and BD estimation. Since more air quality and 
health data become available, regional BD estimations should 
employ observation-corrected CTM results and finer-scale 
exposure risks. Furthermore, to improve CTM estimations, our 
bias quantification technique is recommended to provide a 
quantitative assessment of bias structure for improving input data 
quality and associated CTM mechanisms, so the study also provide 
references to improve CTM algorithms and modeling input data 
quality in their modeling domain.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

C-PK: Conceptualization, Methodology, Writing – original draft, 
Writing  – review & editing, Data curation, Formal analysis, 
Investigation, Validation, Visualization. JF: Conceptualization, 

Methodology, Writing – original draft, Writing – review & editing, 
Project administration. YL: Writing – review & editing.

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This study was 
supported by Taiwan EPA (110A252, 2021) and the National 
Institute of Environmental Health Sciences of the National 
Institutes of Health (NIH grant R01ES034175 (Y.L.& J.S.F)). The 
content is solely the responsibility of the authors and does not 
necessarily represent the official views of NIH.

Acknowledgments

We greatly thank National Energy Research Scientific Computing 
Center (NERSC), National Center for Atmospheric Research (NCAR), 
and Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge 
National Laboratory (ORNL) for providing the computational 
resources used in this research. We would also like to acknowledge 
Professor Hsin-Chih Lai in the Department of Green Energy and 
Environmental Resources, Chang Jung Christian University for 
providing data inputs for CMAQ modeling.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.1436838/
full#supplementary-material

References
 1. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative 

risk assessment of 84 behavioural, environmental and occupational, and metabolic risks 
or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for 
the global burden of disease Stu. Lancet. (2018) 392:1923–94. doi: 
10.1016/S0140-6736(18)32225-6

 2. Burnett RT, Pope CA, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk 
function for estimating the global burden of disease attributable to ambient fine 
particulate matter exposure. Environ Health Perspect. (2014) 122:397–403. doi: 
10.1289/ehp.1307049

 3. Stowell JD, Yang CE, Fu JS, Scovronick NC, Strickland MJ, Liu Y. Asthma 
exacerbation due to climate change-induced wildfire smoke in the Western US. Environ 
Res Lett. (2022) 17:4138. doi: 10.1088/1748-9326/ac4138

 4. Yang CE, Fu JS, Liu Y, Dong X, Liu Y. Projections of future wildfires impacts on air 
pollutants and air toxics in a changing climate over the western United States. Environ 
Pollut. (2022) 304:119213. doi: 10.1016/j.envpol.2022.119213

 5. Tan J, Fu JS, Dentener F, Sun J, Emmons L, Tilmes S, et al. Multi-model study of 
HTAP II on sulfur and nitrogen deposition. Atmos Chem Phys. (2018) 18:6847–66. doi: 
10.5194/acp-18-6847-2018

https://doi.org/10.3389/fpubh.2025.1436838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1436838/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1436838/full#supplementary-material
https://doi.org/10.1016/S0140-6736(18)32225-6
https://doi.org/10.1289/ehp.1307049
https://doi.org/10.1088/1748-9326/ac4138
https://doi.org/10.1016/j.envpol.2022.119213
https://doi.org/10.5194/acp-18-6847-2018


Kuo et al. 10.3389/fpubh.2025.1436838

Frontiers in Public Health 10 frontiersin.org

 6. Tan J, Fu JS, Carmichael GR, Itahashi S, Tao Z, Huang K, et al. Why do models perform 
differently on particulate matter over East Asia? A multi-model intercomparison study for 
MICS-Asia III. Atmos Chem Phys. (2020) 20:7393–410. doi: 10.5194/acp-20-7393-2020

 7. Kelly JT, Jang C, Zhu Y, Long S, Xing J, Wang S, et al. Predicting the nonlinear 
response of pm2.5 and ozone to precursor emission changes with a response surface 
model. Atmos. (2021) 12:1–1044. doi: 10.3390/atmos12081044

 8. Xing J, Zheng S, Ding D, Kelly JT, Wang S, Li S, et al. Deep learning for prediction 
of the air quality response to emission changes. Environ Sci Technol. (2020) 54:8589–600. 
doi: 10.1021/acs.est.0c02923

 9. Haupt SE, Cowie J, Linden S, McCandless T, Kosovic B, Alessandrini S. Machine 
learning for applied weather prediction. Proc Sci. (2018) 2018:276–7. doi: 
10.1109/eScience.2018.00047

 10. Kang GK, Gao JZ, Chiao S, Lu S, Xie G. Air quality prediction: big data and 
machine learning approaches. Int J Environ Sci Dev. (2018) 9:8–16. doi: 
10.18178/ijesd.2018.9.1.1066

 11. O’Gorman PA, Dwyer JG. Using machine learning to parameterize moist 
convection: potential for modeling of climate, climate change, and extreme events. J Adv 
Model Earth Syst. (2018) 10:2548–63. doi: 10.1029/2018ms001351

 12. Cheng FY, Feng CY, Yang ZM, Hsu CH, Chan KW, Lee CY, et al. Evaluation of 
real-time PM2.5 forecasts with the WRF-CMAQ modeling system and weather-pattern-
dependent bias-adjusted PM2.5 forecasts in Taiwan. Atmos Environ. (2021) 244:117909. 
doi: 10.1016/j.atmosenv.2020.117909

 13. Geng G, Meng X, He K, Liu Y. Random forest models for PM2.5 speciation 
concentrations using MISR fractional AODs. Environ Res Lett. (2020) 15:034056. doi: 
10.1088/1748-9326/ab76df

 14. Lightstone SD, Moshary F, Gross B. Comparing CMAQ forecasts with a neural 
network forecast model for PM2.5 in New  York. Atmos. (2017) 8:161. doi: 
10.3390/atmos8090161

 15. Lu H, Xie M, Liu X, Liu B, Jiang M, Gao Y, et al. Adjusting prediction of ozone 
concentration based on CMAQ model and machine learning methods in Sichuan-
Chongqing region, China. Atmos Pollut Res. (2021) 12:101066. doi: 
10.1016/j.apr.2021.101066

 16. Fu JS, Carmichael GR, Dentener F, Aas W, Andersson C, Barrie LA, et al. 
Improving estimates of sulfur, nitrogen, and ozone Total deposition through multi-
model and measurement-model fusion approaches. Environ Sci Technol. (2022) 
56:2134–42. doi: 10.1021/acs.est.1c05929

 17. Sayeed A, Lops Y, Choi Y, Jung J, Salman AK. Bias correcting and extending the 
PM forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmos 
Environ. (2021) 253:118376:118376. doi: 10.1016/j.atmosenv.2021.118376

 18. Sayeed A, Choi Y, Eslami E, Jung J, Lops Y, Salman AK, et al. A novel CMAQ-CNN 
hybrid model to forecast hourly surface-ozone concentrations 14 days in advance. Sci 
Rep. (2021) 11:10891. doi: 10.1038/s41598-021-90446-6

 19. Kim HC, Kim E, Bae C, Cho JH, Kim BU, Kim S. Regional contributions to 
particulate matter concentration in the Seoul metropolitan area, South Korea: seasonal 
variation and sensitivity to meteorology and emissions inventory. Atmos Chem Phys. 
(2017) 17:10315–32. doi: 10.5194/acp-17-10315-2017

 20. Mao Q, Gautney LL, Cook TM, Jacobs ME, Smith SN, Kelsoe JJ. Numerical 
experiments on MM5-CMAQ sensitivity to various PBL schemes. Atmos Environ. (2006) 
40:3092–110. doi: 10.1016/j.atmosenv.2005.12.055

 21. Dong X, Fu JS, Huang K, Tong D, Zhuang G. Model development of dust emission 
and heterogeneous chemistry within the community multiscale air quality modeling 
system and its application over East Asia. Atmos Chem Phys. (2016) 16:8157–80. doi: 
10.5194/acp-16-8157-2016

 22. Garcia CA, Yap PS, Park HY, Weller BL. Association of long-term PM2.5 exposure 
with mortality using different air pollution exposure models: impacts in rural and urban 
California. Int J Environ Health Res. (2016) 26:145–57. doi: 
10.1080/09603123.2015.1061113

 23. Kuo CP, Fu JS, Wu PC, Cheng TJ, Chiu TY, Huang CS, et al. Quantifying spatial 
heterogeneity of vulnerability to short-term PM2.5 exposure with data fusion framework. 
Environ Pollut. (2021) 285:117266. doi: 10.1016/j.envpol.2021.117266

 24. Liu Y, Yan M. Association of physical activity and PM2.5-attributable cardiovascular 
disease mortality in the United States. Front Public Health. (2023) 11:1224338. doi: 
10.3389/fpubh.2023.1224338

 25. Kuo CP, Liao HT, Chou CCK, Wu CF. Source apportionment of particulate matter 
and selected volatile organic compounds with multiple time resolution data. Sci Total 
Environ. (2014) 472:880–7. doi: 10.1016/j.scitotenv.2013.11.114

 26. Lai HC, Lin MC. Characteristics of the upstream flow patterns during PM2.5 
pollution events over a complex island topography. Atmos Environ. (2020) 227:117418. 
doi: 10.1016/j.atmosenv.2020.117418

 27. Kuo C, Fu JS. Ozone response modeling to NOx and VOC emissions: examining 
machine learning models. Environ Int. (2023) 176:107969. doi: 
10.1016/j.envint.2023.107969

 28. Bryan L, Landrigan P. PM2.5 pollution in Texas: a geospatial analysis of health 
impact functions. Front Public Health. (2023) 11:1286755. doi: 
10.3389/fpubh.2023.1286755

 29. World Health Organization. WHO air quality guidelines for particulate matter, 
ozone, nitrogen dioxide and sulfur dioxide: Global update 2005. Geneva: WHO (2005).

 30. Umar IK, Nourani V, Gökçekuş H. A novel multi-model data-driven ensemble 
approach for the prediction of particulate matter concentration. Environmental Science 
and Pollution Research. (2021) 28:49663–77. doi: 10.1007/s11356-021-14133-9

 31. Dong X, Fu JS, Huang K, Zhu Q, Tipton M. Regional climate effects of biomass 
burning and dust in East Asia: evidence from modeling and observation. Geophys Res 
Lett. (2019) 46:11490–9. doi: 10.1029/2019GL083894

 32. Huang K, Fu JS, Lin NH, Wang SH, Dong X, Wang G. Superposition of Gobi dust 
and southeast Asian biomass burning: the effect of multisource Long-range transport 
on aerosol optical properties and regional meteorology modification. J Geophys Res 
Atmos. (2019) 124:9464–83. doi: 10.1029/2018JD030241

 33. Tsai JH, Huang KL, Lin NH, Chen SJ, Lin TC, Chen SC, et al. Influence of an Asian 
dust storm and southeast Asian biomass burning on the characteristics of seashore 
atmospheric aerosols in southern Taiwan. Aerosol Air Qual Res. (2012) 12:1105–15. doi: 
10.4209/aaqr.2012.07.0201

 34. Kong SSK, Fu JS, Dong X, Chuang MT, Ooi MCG, Huang WS, et al. Sensitivity 
analysis of the dust emission treatment in CMAQv5.2.1 and its application to long-range 
transport over East Asia. Atmos Environ. (2021) 257:118441. doi: 
10.1016/j.atmosenv.2021.118441

 35. Serafin S, Adler B, Cuxart J, de Wekker S, Gohm A, Grisogono B, et al. Exchange 
processes in the atmospheric boundary layer over mountainous terrain. Atmos. (2018) 
9:102. doi: 10.3390/atmos9030102

https://doi.org/10.3389/fpubh.2025.1436838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.5194/acp-20-7393-2020
https://doi.org/10.3390/atmos12081044
https://doi.org/10.1021/acs.est.0c02923
https://doi.org/10.1109/eScience.2018.00047
https://doi.org/10.18178/ijesd.2018.9.1.1066
https://doi.org/10.1029/2018ms001351
https://doi.org/10.1016/j.atmosenv.2020.117909
https://doi.org/10.1088/1748-9326/ab76df
https://doi.org/10.3390/atmos8090161
https://doi.org/10.1016/j.apr.2021.101066
https://doi.org/10.1021/acs.est.1c05929
https://doi.org/10.1016/j.atmosenv.2021.118376
https://doi.org/10.1038/s41598-021-90446-6
https://doi.org/10.5194/acp-17-10315-2017
https://doi.org/10.1016/j.atmosenv.2005.12.055
https://doi.org/10.5194/acp-16-8157-2016
https://doi.org/10.1080/09603123.2015.1061113
https://doi.org/10.1016/j.envpol.2021.117266
https://doi.org/10.3389/fpubh.2023.1224338
https://doi.org/10.1016/j.scitotenv.2013.11.114
https://doi.org/10.1016/j.atmosenv.2020.117418
https://doi.org/10.1016/j.envint.2023.107969
https://doi.org/10.3389/fpubh.2023.1286755
https://doi.org/10.1007/s11356-021-14133-9
https://doi.org/10.1029/2019GL083894
https://doi.org/10.1029/2018JD030241
https://doi.org/10.4209/aaqr.2012.07.0201
https://doi.org/10.1016/j.atmosenv.2021.118441
https://doi.org/10.3390/atmos9030102

	Perspective improvement of regional air pollution burden of disease estimation by machine intelligence
	1 Introduction
	2 Methodology
	2.1 Dataset preparation
	2.2 ML-MMF framework
	2.3 Bias quantification
	2.4 Sensitivity analysis

	3 Results
	3.1 Improved modeling performance
	3.2 Bias quantification
	3.3 Further analysis of bias quantification

	4 Discussion
	4.1 Perspectives
	4.2 Limitations

	5 Conclusion

	References

