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Introduction: Conducting large-scale viral nucleic acid testing and isolating 
SARS-CoV-2-infections were crucial strategies in China, which played a key 
role in successfully controlling multiple waves of the Omicron epidemic. To 
thoroughly analyze the mechanisms and value of these measures, including 
testing and isolation, in epidemic prevention and control, and to provide a 
theoretical basis for scientific epidemic prevention and precise strategies in the 
face of potential future outbreaks of novel respiratory infectious diseases.

Methods: We developed an individual-based computational model of infectious 
disease dynamics. The model simulates regular large-scale nucleic acid testing for 
community residents during an epidemic. When individuals tested positive, they 
and their household members, as close contacts, are subjected to home isolation. 
During home isolation, the virus is assumed not to spread outside the household, but 
the potential for transmission within the household remained. Isolation measures 
can be lifted once the testing results turned negative. Finally, sensitivity analysis was 
conducted to verify the scientific validity and reliability of the model.

Results: The study found that the efficacy of testing and isolation in epidemic 
prevention is closely related to the speed of disease transmission. When the 
basic reproduction number (R0) is less than 3, these measures can significantly 
reduce the infection rate among the population and the speed of epidemic 
spread; otherwise, they fail to achieve the goal of controlling the epidemic.

Discussion: Reducing person-to-person contact is crucial for epidemic 
prevention and control. In addition to testing and isolation, comprehensive 
non-pharmaceutical interventions (NPIs) should also be implemented, such 
as increasing social distancing, restricting gatherings in public places, and 
promoting vaccination, to control the transmission of the epidemic.
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Introduction

Respiratory infectious diseases can emerge suddenly, exhibiting 
strong infectivity and producing a large number of infections within a 
short time span. This leads to a surge in severe cases and deaths, 
overburdening medical resources. During the COVID-19 pandemic, 
Mainland China employed strict measures for the nucleic acid testing of 
SARS-CoV-2 infected individuals at early stages, as well as for reporting, 
isolation, and treatment (1). During the 2022 Omicron variant outbreak, 
actively encouraging nucleic acid testing for residents in affected areas and 
the immediate isolation of identified cases and their close contacts—key 
strategies collectively referred to as “testing and isolation”—are essential 
measures for effective epidemic prevention and control. These strategies, 
in conjunction with other measures, successfully mitigated the impact of 
multiple waves of the epidemic.

RT-PCR, a rapid and accurate method for virus nucleic acid testing, 
has played a significant role in epidemic prevention and control (2–5). 
During the Omicron pandemic, the Chinese government regularly 
assessed the infection status of its population by encouraging residents to 
voluntarily undergo testing. After laboratory testing confirmed infections, 
local Centers for Disease Control and Prevention (CDC) would directly 
report relevant information through the disease control and prevention 
information system within specified time intervals (1). Simultaneously, 
asymptomatic infected individuals and cases would be transported to 
designated medical institutions or government-established shelter 
hospitals for isolation and treatment to prevent epidemic spread. 
Epidemiological investigations would then be conducted to identify close 
contacts. Due to their high risk of infection, a combination of centralized 
and home quarantine observation was adopted for these close contacts 
(1). Infected individuals and close contacts underwent regular testing 
during isolation. Once the infections were confirmed negative and close 
contacts were excluded from infection, they would be  released from 
isolation for treatment or observation.

The control of an epidemic necessitates the simultaneous 
implementation of comprehensive NPIs. Due to the enhanced 
transmissibility of the Omicron variant (6), the duration of these 
measures, such as increased social distancing and travel restrictions, 
has been extended, which undeniably has substantial negative impacts 
on economy and human interaction. The aim of this study is to search 
for a measure that has a relatively lower social cost, which can not only 
effectively suppress the virus transmission but also minimize the 
socioeconomic impact of NPIs. Drawing on China’s experience in 
controlling Omicron, we strive to further investigate the effectiveness 
of testing and isolation in containing the epidemic. Moreover, by 
establishing a model, we aim to demonstrate whether relying solely on 

this measure can effectively control the epidemic. Thus, it is essential to 
examine the relationship between the speed of epidemic transmission 
(typically measured by R0) and testing and isolation strategies.

Although numerous publications have explored mathematical 
models for analyzing NPIs, such as traffic restrictions, isolation measures, 
and immunization (7–12), there is a scarcity of studies addressing large-
scale testing and isolation in populations. Among them, Zhu WL 
developed a branching process model and a differential equation-based 
compartment model to simulate the transmission dynamics of COVID-
19, assessing the impact of extensive nucleic acid testing and isolation 
measures on the epidemic. It has been found that prompt serial nucleic 
acid testing may effectively contain an outbreak. Moreover, a decrease in 
the isolation period and effectiveness of comprehensive quarantine 
measures resulted in an increase in the cumulative number of cases and 
an extension of the epidemic duration (13, 14). Additionally, Kucharski 
AJ utilized a mathematical model to simulate the effect of a variety of 
testing, isolation, tracing, and physical distancing scenarios when R0 is 
2.6. The study found that if combined with moderate physical distancing 
measures, isolation and contact tracing strategies would reduce 
transmission to a greater extent than mass testing or self-isolation alone 
(15). These studies have demonstrated the impact of testing and isolation 
on the magnitude of an epidemic. However, it remains necessary to 
establish a model that is more aligned with China’s epidemic prevention 
policies to investigate this issue further and to explore whether this 
approach alone can contain the prevalence of rapidly spreading pathogen.

To address these scientific issues, we developed a computer model to 
simulate the spread of infectious diseases in a population after 
implementing testing and isolation measures, and quantitatively analyzed 
their impact on the epidemic trends. To verify the effectiveness of the 
strategy, our model not only included testing and isolation measures 
solely but also replaced the admission of asymptomatic and mild cases to 
designated hospitals or shelter hospitals with home isolation treatment. 
Furthermore, the definition of close contacts has been further narrowed 
(limited only to family members of the infected individuals), and the 
practice of centralized quarantine observation has been shifted to home 
quarantine observation.

The stochastic computer model, with individuals as the research 
unit, fully translates mathematical formulas into program code. It 
conducts computer simulations based on pathogen transmission 
through person-to-person contact in the real world, enabling the 
analysis of complex human activities and their relationships with 
infectious disease epidemic trends. We have employed this method 
multiple times to simulate the spread of respiratory infectious 
diseases, examining the dynamic relationships between behaviors 
such as population outflow, asymptomatic carrier screening, 
household gatherings, cross-city travel, elevator usage, and bus 
transportation, and the progression of the epidemic (16–21). 
Experience has demonstrated that, compared to traditional dynamic 
models that use differential equations as research methods, this 
approach can more effectively describe individual behaviors. This 
advantage allows us to gain deeper insights into the mechanisms 
through which complex human behavior and prevention measures 
affect epidemic spread.

Abbreviations: CDC, Centers for Disease Control and Prevention; NPIs, 

Non-pharmaceutical interventions; R0, Basic reproduction number; Rt, Effective 

reproduction number; M, immunized; S, susceptible; E, exposed; I, infectious; P, 

positive; Q, quarantined; H, hospitalized; N, negative; R, released; PRCC-LHS, 

Partial Rank Correlation Coefficients and Latin Hypercube Sampling; NAT, nucleic 

acid test.
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In the present study, we used this method to establish a stochastic 
compartment model to simulate the epidemic transmission process 
among households. Drawing on China’s experience and practices in 
addressing the Omicron variant, we conducted an in-depth analysis of the 
effectiveness of testing and isolation in epidemic prevention and control. 
Our research outcomes can provide a theoretical foundation for future 
scientific responses to emerging respiratory infectious diseases.

Materials and methods

Data and parameters

The parameters utilized in the model were primarily derived from 
published literature, encompassing the incubation period, the duration of 
positive testing, sensitivity of testing, and the population distribution of 
Chinese households. Furthermore, some parameters were based on the 
authors’ assumptions drawn from our fieldwork experience in COVID-19 
prevention and control efforts, as presented in Table 1.

Model preconditions

Population social activities and infectious disease prevalence are 
complex and uncertain. To eliminate unnecessary interference and 
maintain a focused, concise model, it is crucial to establish certain 
model assumptions. Building upon China’s practical experience, 
we refined the assumptions into the following points:

(1) A closed small town was selected as the epidemic outbreak 
location, consisting of 500 households and 1,230 residents. Due to the 
short epidemic period, population migration, birth, and natural death 
were not considered. Based on the fact that Omicron’s severity is 
significantly lower than that of Delta (22), the model did not take into 
account death cases. It was assumed that a proportion (q) of residents 

possessed innate immunity to SARS-CoV-2, while the remaining 
residents were susceptible.

(2) Compartments in the model could be divided into 9 categories: 
immunized (M, having innate immunity), susceptible (S), exposed (E, 
incubating and being not yet contagious), infectious (I, being 
contagious), positive (P, positive test result), quarantined (Q, home 
quarantine), hospitalized (H, being hospitalized), negative (N, test 
turning negative), released (R, released from quarantine). The 
transformation relationship between them was shown in Figure 1A.

(3) Patient zero was infected at time t = 0, selected at random from a 
cohort of 500 households. Numerous studies suggest that an infected 
individual may cause intra-household infections during the infectious 
period (23, 24), thus warranting a distinction between infections 
occurring inside and outside the household within our model. To evaluate 
the disease transmission capability of an infector, we defined parameter λt 
as the extra-household adequate contact rate, representing the daily 
number of effective contacts between an infector and residents of other 
households at time t. This parameter reflects the residents’ mobility, social 
environment, and the pathogen’s transmissibility. As the outbreak evolves 
and increasing numbers of people are isolated, the number of effective 
contacts will decrease in response to the rising count of isolated 
individuals. We posit that on day t, the number of individuals an infector 
contacts outside the household follows a Poisson distribution, with an 
average λ(1-r(t)), where λ indicates the initial stage extra-household 
adequate contact rate, and r(t) represents the proportion of the population 
that is isolated compared to the total population at time t.

(4) Considering that most residents venture out during the day for 
work or school and return home in the evening, the timing for extra-
household infections is designated as between 7:00 and 19:00 daily, 
occurring exclusively among non-isolated residents. Intra-household 
infections are set to take place from 19:00 until 7:00 the following day, 
while infections within isolated households can be initiated at any 
time. The association between the timing and the location of infection 
events is delineated in Figure 1B.

TABLE 1 Model parameters.

Description Distribution characteristics Numerical values Sources

Total number of homes Constant 500 Assumed

Incubation period (days) Lognormal distribution μ = 3.1

σ =2.6

(30)

Duration from testing positive to negative (from the first positive 

to the negative nucleic acid test result, in days)

Normal distribution μ = 8.4

σ = 4.8

(31)

Proportion of innate immune population, q Constant 0.1 Assumed

Proportion of people refusing testing, p Constants 0.1, 0.2, 0.3 Assumed

Period of testing, T (days) Constant 1, 2, 3 Assumed

Sensitivity of testing Constant 0.87 (32)

Specificity of testing Constant 1.00 (33)

Extra-household adequate contact rate, λ Constant 1, 2, 3 Assumed

Hospitalization rate Constant 0.02 (34)

Duration of hospitalization (days) Normal distribution μ = 6.35

σ = 2.5

(31)

Distribution of Chinese household sizes Constants Probabilities that the household 

size was 1, 2, 3, and 4 were 0.2, 

0.33, 0.28, and 0.19, respectively

(35)
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(5) To promptly identify infectors, the government organized a 
nucleic acid screening among town residents at intervals of T days. 
Since the sensitivity of testing is less than 1, infectors might require 
multiple tests to be detected, or they might not be detected until their 
test results turned negative. Although the majority of residents 
complied with the government’s recommendation for regular testing, 
a proportion (p) of residents refused testing when their households 
were not in quarantine for various reasons.

(6) Testing and the acquisition of test results occurred daily from 
8:00 to 17:00. Upon the first confirmation of a positive household 
member, the CDC would enforce home isolation treatment for the 
infected individual by 19:00 on the same day of detection. 
Concurrently, as close contacts, other household members would also 
be subject to home quarantine observation along with the infected 
individual. Susceptible individuals will inevitably become infected 
during home quarantine, since infectors and susceptible household 

FIGURE 1

The transmission process of the epidemic within a household. (A) There are five possible scenarios of infection state transition that may exist for the 
first infector in a household. If the infector tested positive after becoming I: (1) they will be placed under home quarantine; during the quarantine 
period, they may be hospitalized for treatment due to worsening of their condition; after turning negative, they will be released from quarantine (green 
arrow); (2) during home quarantine, they are not hospitalized for treatment, and are released from quarantine after turning negative (blue arrow). If the 
infector’s testing is negative or they refuse testing, they may not be quarantined temporarily but might be quarantined as close contacts due to other 
household members testing positive. It can be manifested in the subsequent three scenarios: (3) they may test positive after isolation and are released 
after turning negative (red arrow) or transferred to the hospital for treatment and discharged upon recovery; (4) no positive results are detected after 
quarantine, and quarantine is lifted after a maximum incubation period (yellow arrow); (5) both the infector and their household members refuse to 
be tested or do not test positive, and the household is not quarantined (pink arrow). (B) Transmission between and within households. (C) The 
chronological order of infection, testing, isolation, and release of isolation in a household. S, susceptible; M, immune; E, exposed; I, infectious; P, 
positive; H, hospitalized; Q, quarantined; N, negative; R, recovered; NAT, nucleic acid test.
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members share the same living space 24 h a day. The government 
guarantees the provision of daily essentials for quarantined homes; 
consequently, individuals do not need to leave their homes for 
shopping during the isolation period.

(7) After homes were isolated, the staff from the CDC would visit 
these homes every T days to collect nucleic acid samples from all 
isolated households (including infectors and close contacts) for 
laboratory testing starting from the second day of isolation, and also 
count the number of positive cases. In an effort to minimize the 
duration of the quarantine, once an infector’s test results turned 
negative, their quarantine would be  lifted. However, if any other 
household members were still infected, the quarantine would continue 
until they tested negative. Throughout the home quarantine period for 
infectors, a limited number of critically ill patients would 
be immediately transferred to hospitals for isolation and treatment. 
Owing to the strict personal protection measures implemented by 
medical staff, no epidemic spillover would occur in the hospital. 
Hospitalized patients who tested negative could be discharged from 
the hospital. The chronological sequence of these events is intuitively 
illustrated in Figure 1C.

Model design framework

In the model program, we first established the basic parameters, 
including incubation period, duration from testing positive to 
negative, and extra-household adequate contact rate, among others. 
Then, the member IDs of each household, the randomly generated IDs 
of immune individuals, and the IDs of individuals who refuse testing 
were stored in separate data frames, the code is detailed in 
Supplementary Appendix 1, lines 5–55. After that, we  proceed to 
simulate a complete transmission process of the epidemic, which is 
mainly divided into the following four steps.

Step 1: Set up the index case. Randomly select a non-immune 
infected individual who voluntarily undergoes testing as the index 
case (Patient 0). Store five elements: the location of infection (within 
or outside the household), the household ID, the source of infection 
(not applicable here), the infected individual’s ID, and the time of 
infection, in a dataframe named State_t. Initially, this dataframe 
contains only one column (Supplementary Appendix 1, lines 57–90).

After completing the above setup, begin the epidemic simulation 
based on the order of infection time. First, locate the column in State_t 
with the earliest infection time, extract the information from this 
column, and then remove it. If the infection occurs within the 
household, the infected individual’s ID can be directly retrieved from 
this column. If the infection occurs outside the household, randomly 
select a non-isolated resident from all exposed individuals. If this 
resident is susceptible, they become infected, and their information 
(including the source of infection, their own ID, their household’s ID, 
the location of infection, the time of infection, the time when they 
become infectious, the time when their test turns negative, etc.) is 
stored in another dataframe for statistical analysis of time distribution 
after the epidemic simulation concludes (Supplementary Appendix 1, 
lines 92–153).

To sustain the epidemic, identify the next generation of infected 
individuals using the current one as the source of infection. Therefore, 
we must determine the infection times for subsequent generations. 
Since these time points are related to the isolation time of the 

household where the source of infection resides, the isolation time 
must be determined first.

Step 2: Determine the household isolation time. If the infected 
individual is a resident who voluntarily undergoes testing, generate a 
random number based on a geometric distribution with the test 
sensitivity as the parameter. This random number represents the total 
number of tests until a positive result is obtained, and it is used to 
estimate the time of the positive test result, providing a basis for 
further determining the start of the isolation period. If the first 
infected individual in the household voluntarily undergoes testing, 
two scenarios may arise based on the test results: First, if no positive 
result is ever detected, the household isolation time is determined by 
the test results of other members. Second, if a positive result is 
detected, the household isolation time can be tentatively determined. 
However, if a positive test result for another member precedes the 
previously determined isolation time, the household isolation time 
needs to be adjusted accordingly to an earlier date. Since the model 
calculates each infected individual sequentially, this situation 
is possible.

Step 3: Determine the extra-household infectious period. When 
the isolation time is advanced, the extra-household infectious 
period for each member may also be correspondingly shortened, 
necessitating a comparison and update for each member. Here, it is 
necessary to separately analyze the infected household members 
who refuse testing and those who voluntarily undergo testing. 
Finally, since the shortening of the infectious period may lead to a 
reduction in the number of infections, the columns corresponding 
to these secondary infections need to be removed from the State_t. 
The code for Steps 2 and 3 can be found in Supplementary Appendix 1, 
lines 154–288.

The above two steps analyze the scenario where infected 
individuals voluntarily undergo testing. If they refuse, the calculation 
of hypothetical positive time and infectious period is similar, see 
Supplementary Appendix 1, lines 289–326 for details.

Step 4: Determine infection times. After determining the extra-
household infectious period, calculate the number and infection times 
of secondary infections both within and outside the household, and 
append this information to State_t (columns increase then decrease 
to zero, indicating epidemic end). Separate calculations are required 
due to differing infection time periods. Household secondary 
infections can be  directly assigned identifiers (Supplementary  
Appendix 1, lines 327–544), while outside infections require random 
selection from non-isolated residents as described in Step 1.

After the epidemic simulation concludes, the temporal 
distribution of the number of infected individuals, test-positive 
individuals, and isolated individuals is tallied (Supplementary  
Appendix 1, lines 545–630). The design framework for a single 
epidemic transmission is illustrated in Figure  2. Following the 
completion of 100 iterations of the main loop, the median and 
fluctuation range of these variables are calculated.

Sensitivity analysis

Since this study is theoretical in nature, it is challenging to obtain 
survey data in the real world that aligns with the model’s preconditions, 
rendering it impossible for us to fit and calibrate the model using 
actual data. To assess the reliability and rationality of the model, 
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sensitivity analyses were performed, focusing on seven important 
parameters of the model—the proportion of the population refusing 
testing (p), period of testing (T), extra-household adequate contact 
rate (λ), incubation period, duration from testing positive to negative, 
proportion of people with innate immunity (q), and sensitivity 
of testing.

We employed the Partial Rank Correlation Coefficients and 
Latin Hypercube Sampling (PRCC-LHS) method, an extensively 
used algorithm for sensitivity analysis. This method calculates 
correlations between a set of parameters and the model outputs 
after removing the linear effects of the target parameter (25). Each 
parameter interval was divided into N smaller and equal intervals, 
and one sample was randomly selected from each interval. These 
selected parameter samples were then incorporated into the model 
to calculate the outputs at each time point (25, 26). A series of 
standard coefficients representing the correlation between each 
parameter and the model output were computed. All analyses 
were performed using MATLAB R2019a software (MathWorks, 
Natick, MA, United States). Detailed information can be found in 
Supplementary Appendix 2.

Results

Transmission network

We established an infectious disease transmission network based 
on the epidemic’s transmission path, with homes and individuals 
serving as nodes and transmission relationships as links. Figures 3, 4 
depict the networks for homes and individuals, respectively. Different 
colors are used to indicate various infection states. In Figure 3, the 
number of homes entering the network gradually increases over time. 
A home is considered infected if any of its household members are 
infected. Non-isolated infected homes are indicated in yellow, while 
homes under isolation and those that have been released from 
isolation are represented in red and green, respectively. As can 
be intuitively observed from the figure, the color of a node changes 
from yellow to red when the home is placed under isolation, and then 
turns green when all infections in the household have been released 
from quarantine.

In Figure 4, infected individuals are categorized into E, I, and 
R. Additionally, E and I are further distinguished based on whether 

FIGURE 2

Schematic diagram of a design framework for an epidemic model. NAT, nucleic acid testing.
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the infected individuals are isolated on day t. The graph visually 
illustrates the infected individuals’ color progression from yellow (E 
and not isolated) and orange (E and isolated) during the incubation 
period to pink (I and not isolated) and red (I and isolated) during the 
infectious period, ultimately turning green (recovered). It is important 
to note that recovery is not synonymous with being released from 
isolation, as the latter requires a negative result from testing.

Impact of extra-household adequate 
contact rate on epidemic trends

λ, as a key indicator reflecting overall social activity, can 
significantly influence the speed of epidemic transmission. To conduct 
a quantitative study on this parameter, we compared the temporal 
distribution characteristics of the number of infected, test-positive, 
and isolated individuals and households when the parameter took 
different values, based on 100 simulations. This is illustrated in 
Figure 5.

As λ increases from 1 to 2, the growth rate of infections significantly 
accelerates, the time to reach the peak shifts earlier, the peak value 

rises, the fluctuation range diminishes, and the cumulative number of 
infections increases. However, as the rate continues to increase beyond 
this point, the effect on promoting disease transmission weakens. It can 
be inferred that further increases in the rate will not result in significant 
changes to the time distribution of infections. Similar trends are 
observed in the number of positive test results, individuals currently 
in isolation, and isolated homes. These results suggest that at lower 
rates, the speed of epidemic transmission rapidly increases with 
increasing contact rate, but the promotional effect diminishes as the 
rate continues to rise. The specific values of the time distribution for 
these variables are presented in Table 2. When the total population size 
increases, Supplementary Figure S1 demonstrates that the impact of 
this parameter on the epidemic trend remains constant.

The effect of test refusal rate and testing 
period on the epidemic trend

In the early stages of an epidemic, the government promotes 
widespread participation in testing and strives to shorten the testing 
period within the constraints of testing capacity, aiming to identify 

FIGURE 3

Home transmission networks at different time points. Nodes represent homes, and connections represent transmission relationships.
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infections as early and as comprehensively as possible. When the 
parameters p (representing the test refusal rate) and T (representing the 
testing period) are varied, we have analyzed the temporal distribution 
characteristics of new infections and new positive cases. As illustrated in 
Figure 6, when T is held constant, an increase in p does not significantly 
alter the temporal distribution of the population; the number of existing 
isolated households and residents decreases slightly. Conversely, when p 
is fixed, an increase in T leads to a slight acceleration in the growth rate 
of new infections, while the growth rate of new positive test results 
decelerates slightly; notably, the number of existing isolated households 
and residents remains largely unchanged. These findings indicate that the 
impact of increasing the coverage of nucleic acid testing and shortening 
the testing period on controlling epidemic spread is quite limited.

Other epidemic characteristics

We calculated the effective reproduction number Rt (i.e., the number 
of secondary infections transmitted by an infected individual during 

their infectious period at time t), the infectious period, and characterized 
the distribution of the adequate contact rate β(t) (the total number of 
secondary infections transmitted per day by an infected individual at 
time t) and the infection rate. As illustrated in Figure 7, a larger λ value 
correlates with a higher Rt in the early stages of the epidemic, but also 
with a more rapid decline; the infectious period remains relatively stable 
throughout the epidemic. The trend of β(t) is similar to that of Rt.

Based on the overall infection rate, the scale of the epidemic is 
classified into outbreaks (infection rate greater than 0.5) and sporadic 
cases (less than 0.5). A scatter plot is used in the fourth row of Figure 7 
to visually compare the differences in incidence and infection rate 
between the two. Each dot represents a simulation of an epidemic. 
After 100 simulations, it can be observed that when λ = 1, the number 
of outbreaks is slightly higher than that of sporadic cases, and the 
median infection rate for sporadic cases is below 0.5‰, indicating a 
high likelihood of effective control of the epidemic in the initial stage 
through the implementation of testing and isolation. As λ increases, 
the number of outbreaks and the infection rate are significantly higher 
than those of sporadic cases, indicating that when λ exceeds 2, i.e., R0 

FIGURE 4

Human population transmission networks at different time points. Nodes represent individuals, and connections represent transmission relationships.
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is greater than 3, it is difficult to fully contain the spread of the 
epidemic by relying solely on testing and isolation.

Sensitivity analysis

In this study, we  conducted sensitivity analyses on the model 
based on seven parameters and a continuous-time series for the total 

cumulative number of infections. We considered N = 50 samples from 
a uniform distribution for each parameter’s reasonable range. The 
PRCCs of these parameters range from-1 to 1. PRCCs close to 1 or-1 
indicate that the parameter has a more positive or negative effect on 
the output. In contrast, a value closer to 0 indicates that the output 
result is less affected by the parameter (Figure 8).

Among these parameters, extra-household adequate contact rate 
demonstrates the greatest positive influence, the next is testing period, 

FIGURE 5

Temporal distribution of infected individuals, positive cases, and currently isolated individuals and homes under the scenario where p = 0.1 and T = 2. 
The first, second, and third rows represent infected individuals, positive individuals, and currently isolated individuals and households, respectively. 
Columns 1–3 correspond to λ = 1, 2, and 3, respectively. Numbers of newly infected individuals and positive individuals are indicated by the left vertical 
axis, while the cumulative numbers for both are denoted by the right vertical axis. Solid and dashed lines depict the median values. Areas of different 
colors indicate fluctuation ranges from 25 to 75%.

TABLE 2 Median and interquartile ranges for infected individuals, positive cases, and currently isolated individuals and homes.

λ = 1 λ = 2 λ = 3

Epidemic-related 
statistics

Peak number 
of people

Time to 
peak (days)

Peak number 
of people

Time to 
peak (days)

Peak number 
of people

Time to 
peak (days)

Newly infected persons 39.5 (17–47) 29 101 (70–117) 17 145 (122–175) 12

Accumulative infected persons 956.5 (934–976) 50 1078.5 (1074–1,081) 24 1,081 (1078–1,084) 19

New positive persons 37.5 (22–47) 34 94.5 (59–116) 20 125.5 (112–137) 16

Accumulative positive persons 916 (889–937) 55 1,057 (1049–1,061) 30 1049.5 (1046–1,052) 24

Isolated persons 405 (240–468) 37 805.5 (690–853) 23 925 (871–936) 18

Isolated homes 210.5 (118–238) 38 401.5 (346–416) 24 437 (425–442) 19
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which is consistent with the results of Figures 5, 7. In addition, the 
PRCCs of test refusal rate, positive period, and sensitivity of testing 
fluctuate between −0.2 and 0.2, indicating that these three parameters 
have a relatively limited impact on the number of infectors. The 
impact of test refusal rate can be verified through Figure 6. In addition, 
because infectors are quickly isolated after testing positive, even if the 
positive period is extended, it will not lead to infection outside the 
household, hence, the influence of positive period is comparatively 
minor. In addition, the greater the sensitivity, the higher the accuracy 
of the detection, and the earlier the isolation of infectors will 
be  implemented, thereby suppressing the spread of the epidemic. 
Therefore, this parameter is negatively correlated with the number of 
infectors, but its impact is relatively weak. The longer the incubation 
period, the slower the spread of the epidemic, therefore this parameter 
exhibits a negative correlation. The proportion of residents possessed 
innate immunity exhibits the strongest negative correlation, as the 
more immune populations there are, the more difficult it is to spread 
the epidemic. When herd immunity is achieved, the spread of the 
epidemic will cease.

Discussion

Innovations

This study’s strengths are mainly reflected in the following 
three aspects. (1) The research perspective is targeted. We have 
extracted a prevention and control measure of testing and 
isolation based on China’s practical experience in dealing with 
Omicron. In addition, we  employed homes as a basic unit of 
epidemic transmission, distinguishing the locations where 
infections occur. (2) The research method has originality. 
We employed a computer model established entirely by code, with 
individuals as the research unit, to simulate the spread of the 
epidemic and the process of implementing human intervention. 
Through the precise design of individual behavior details, 
we clearly demonstrated the impact of complex prevention and 
control measures on the characteristics of the epidemic. (3) The 
model exhibits a higher level of detail. We have added numerous 
constraints to the model to realistically replicate the social status 

FIGURE 6

Temporal distribution of median values for newly infected individuals, positive individuals and the currently isolated individuals and homes when λ = 2. 
Infected individuals are denoted by blue, positive individuals by purple, while currently isolated individuals and homes are indicated by yellow and 
green, respectively.
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during the epidemic period. For instance, there are differences in 
infection locations between daytime and nighttime; moreover, 
meticulous specifications have been made regarding the timing of 
testing and isolation; additionally, a distinction has been drawn 
between the tested population and those who refuse testing. While 
these settings undoubtedly increase the complexity of the model 
design, they also improve the accuracy of analysis and prediction.

Model parameter selection

As our model distinguishes between within-household and 
outside-household transmission locations, we  determined the 

value of the extra-household adequate contact rate by referencing 
the R0 values of several SARS-CoV-2 strains. Specifically, the R0 
for the original strain is approximately 2.2, while the median R0 
for the Delta and Omicron variants are around 5.08 and 10, 
respectively. After model tuning, we set the rate to 1–3, and the 
corresponding Rt values are illustrated in Figure 7. Additionally, 
recent genetic studies have revealed that the innate immune 
system, influenced by both environmental and genetic factors, can 
result in heterogeneous outcomes regarding infectivity, viral 
spread, and the severity and outcome of COVID-19 (27, 28). To 
better reflect the variability in the population’s innate immunity, 
we incorporated a certain proportion of non-infective individuals 
into our model.

FIGURE 7

Temporal distribution of Rt, infectious period, β(t), and the infection rate of the population during the outbreak of the epidemic when p = 0.1 and T = 2. 
Scatters within the violin plot represent the infection rate of the population during an epidemic.
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Transmission network between homes and 
population

In contrast to the clear tree-like features displayed by the 
population transmission network in Figure 4, the home transmission 
network in Figure  3 exhibits a mix of tree-like and disordered 
characteristics, owing to the close correlation between the two 
networks. In the population transmission network, by merging several 
nodes within the same home, a single node in the home transmission 
network is created. After traversing all homes and completing the 
above operations, the home transmission network is obtained. 
Consequently, the home transmission network retains some 
characteristics of the population transmission network, but it also 
disrupts the network structure to a certain extent.

Although many individuals have recovered (nodes turning green) 
in the group transmission network after the 35th day, there are still 
numerous homes in isolation in the home network (nodes remain 
red). The reasons for this are twofold: firstly, residents must undergo 
testing after recovery, and they can only be released from quarantine 
when the test result turns negative; secondly, a home can be released 
from quarantine only when all its members test negative, resulting in 
a lag time before the entire home is released from quarantine.

The impact of extra-household adequate 
contact rate on the epidemic

The extra-household adequate contact rate is an indicator for 
measuring the speed of epidemic spread. Figure 5 and the sensitivity 
analysis results demonstrate that an increase in it can significantly 
elevate the speed and outbreak probability of the epidemic. Figure 6 
reflects that the population coverage and the interval of screening have 
a relatively minor impact on the trend of epidemic spread. Collectively, 
these analyses suggest that the focus of epidemic prevention and 
control should be  on effectively reducing the frequency of 
interpersonal contact, i.e., lowering the extra-household adequate 
contact rate, while relying solely on testing and isolation has limited 

effects in controlling the epidemic. The research results indicate that, 
in the early stages of an epidemic, measures should be promptly taken 
to reduce people’s contact, thereby effectively blocking transmission 
routes, with screening serving as a supplementary means for precise 
prevention and control.

Characteristics of the time distribution of 
effective reproduction number, infectious 
period, and transmission rate

The effective reproduction number (Rt) is high in the early stages 
of an epidemic and then rapidly declines. This is because, in the initial 
phase, a large number of infectors come into contact with susceptible 
individuals, and the infectious period is prolonged. As the epidemic 
progresses, the number of susceptible individuals decreases, and home 
isolation measures shorten the infectious period, thereby increasing the 
resistance to epidemic spread and consequently reducing the effective 
reproduction number. A higher extra-household adequate contact rate 
results in a shorter duration of the epidemic, as a faster spread of the 
epidemic leads to an increase in the number of positive detections, 
which in turn causes a rapid increase in the number of isolated 
households. Once households are isolated, transmission ceases. Rt 
exhibits similar changing characteristics to β(t), as Rt is equal to β(t) 
multiplied by the infectious period, which remains largely constant.

Impact of assumptions on generalizability 
of results

In this study, we  focused on exploring the association between 
testing, isolation, and the speed of disease transmission, and formulated 
seven assumptions based on the specific context of China. Although 
these assumptions simplify the model, they also exert a certain degree 
of influence on the generalizability of the results. The main impacts are 
as follows: Firstly, testing and isolation represent relatively stringent 
NPIs that are primarily suitable for controlling emerging infectious 

FIGURE 8

Sensitivity analysis. p, T, λ, and q denote the proportion of people who refuse testing, the testing period, the extra-household adequate contact rate, 
and the proportion of people with innate immunity, respectively.
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diseases with severe human harm during emergencies, such as COVID-
19. Since these measures can have negative impacts on economic 
development and social order, many countries adopt a cautious 
approach toward them. Secondly, we did not consider the testing and 
isolation of imported cases, which may have overestimated the 
effectiveness of these measures in disease control. Thirdly, the model did 
not account for outbreaks in crowded places, such as clustered epidemics 
in schools, which could also affect the estimation of epidemic trends.

The impact of other factors on the model

(1) Willingness to travel. In this model, we assume that individuals 
with a negative test result can move freely as long as their household is 
not in quarantine. However, in reality, as the epidemic spreads, people 
often choose to reduce outings to lower the risk of infection. Therefore, 
extra-household adequate contact rate would further decrease with 
increased social distancing. If this factor is taken into consideration, the 
model would underestimate the control effectiveness of testing and 
isolation. (2) NPIs. Following an outbreak, the government usually 
implements measures to limit social activities to decrease the likelihood 
of infection, which will also reduce extra-household adequate contact 
rate. Therefore, when other NPIs are combined with testing and isolation, 
they can have a better control effect on some more infectious strains. (3) 
Virus variants. The continuous mutation of the coronavirus will also 
produce a large number of strains with immune escape capability (29), 
which increases the risk of reinfection and the enhanced transmissibility. 
These factors will in turn change the parameter values in the model, such 
as extra-household adequate contact rate, the proportion of the 
population with innate immunity, and the hospitalization rate. These 
influential factors will cause changes in the output results of the model.

Limitations

The limitations of the study are mainly reflected in the following four 
aspects. (1) The model’s calculations were completed using a personal 
computer, which is limited by computing power. Although the research 
conclusions remain constant when the population size increases, the 
relatively small population number may still weaken the persuasiveness 
of the conclusions to some extent. (2) The model was validated through 
sensitivity analysis; however, it was not calibrated utilizing actual survey 
data obtained from the epidemic. This is because there is a significant 
difference between the actual epidemic situation in China and the model 
design scheme. For example, when positive individuals were found, they 
and their close contacts were often isolated separately in government-
designated locations rather than at home. (3) The design difficulty of 
computer models is higher than that of differential equation models. The 
more constraints there are, the more complex the temporal relationship 
of events, leading to a sharp increase in programming difficulty. 
Additionally, the computation speed of computer models is much slower 
than that of differential equation models. Personal computers may 
struggle when dealing with the population size of a city. (4) The study’s 
conclusion shows that when R0 is less than 3, the implementation of 
testing and isolation has a more effective impact on epidemic prevention 
and control than when R0 is greater than 3. However, due to the 
extremely complex system affecting the spread of infectious diseases in 
reality, and considering that the model is just an idealized virtual world, 
its research results are only applicable to the model itself. Therefore, in 

response to emerging infectious diseases, it is still necessary to carry out 
comprehensive analysis based on actual situations, and the exclusive use 
of this scheme needs to be  particularly cautious. Furthermore, the 
selected measure is designed based on China’s experience and may not 
be applicable to some other countries.

Conclusion

We have developed an individual-based computational model to 
simulate the spread of COVID-19 in a small town, and quantitatively 
evaluated the efficacy of population-wide testing, isolation and 
treatment for infected individuals, as well as home quarantine for 
close contacts. The model results indicate that this strategy can 
significantly decrease the infection rate and slow down the 
transmission speed when the disease spreads at a lower rate. However, 
even with increased coverage of testing and shortened testing 
intervals, the epidemic cannot be fully contained, and a substantial 
number of households would still be subject to quarantine. Therefore, 
the emphasis of epidemic prevention and control should be  on 
effectively minimizing person-to-person contact and boosting the 
population’s immune level. To this end, in addition to screening and 
isolation, it is also imperative to restrict the number of individuals in 
public places, promote remote working or teaching, enhance personal 
protective measures and environmental disinfection, and undertake 
comprehensive strategies such as large-scale population immunization.
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