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1 Introduction

Simpson’s Paradox is a statistical phenomenon where trends observed in subgroups

contradict those seen in the overall dataset (1). When data is segmented for analysis,

the direction of relationships can reverse, highlighting the complexities of interpreting

subgroup-level patterns (2). This paradox underscores the importance of rigorous analysis

in complex datasets, as it may obscure causal relationships or lead to erroneous conclusions

(1, 3). Its implications extend to various probability-dependent disciplines, including

decision theory, causal inference, and evolutionary biology (4, 5).

While not intentionally sought, the COVID-19 pandemic has indeed brought about

academic prosperity in the fields of medicine and statistics (6–8). Within these studies,

there is no shortage of discoveries related to Simpson’s Paradox, emphasizing the crucial

importance of understanding this paradox for drawing accurate conclusions from data (9).

Similarly, Rasool et al. (10), Hong et al. (11), and Han et al. (12) highlight the utility of

advanced correlation methods and data-driven approaches in analyzing public sentiment,

financial responses, and content recommendation during crises.

During the COVID-19 pandemic, instances of Simpson’s Paradox, while not

widespread, were observed in several studies, often highlighting challenges in interpreting

complex datasets. For example, Sy (13) confirmed the presence of Simpson’s Paradox

in correlations between excess mortality and COVID-19 injections, suggesting potential

unreliability in such findings. Shaki (14) identified similar issues in the World Health

Organization’s (WHO) early mortality rate predictions, where statistical methods exhibited

Simpson’s Paradox, leading to initially overestimated fatality rates that later proved lower.

These cases underscore the importance of careful statistical analysis in high-stakes public

health contexts.

Further illustrating this phenomenon, Raoult (15) demonstrated how mixing patient

data with varying stages of illness, treatment dosages, and durations in studies

on hydroxychloroquine efficacy produced erroneous results attributable to Simpson’s

Paradox. Similarly, Lu (16) emphasized the need for caution in revealing causal

relationships in COVID-19 case statistics, using the paradox as a framework to critique

oversimplified data interpretations. These examples collectively highlight how Simpson’s

Paradox can obscure critical insights, particularly during crises where decisions hinge on

accurate data analysis.

During the COVID-19 pandemic, the study of public psychology and opinion

dynamics has gained significant attention. While Simpson’s Paradox has been extensively

discussed in medical research and statistical case studies (17, 18), its application to public

opinion remains largely unexplored. This study bridges that gap by extending the concept
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of Simpson’s Paradox to analyze public sentiment, highlighting

how aggregated data can obscure subgroup-specific trends in

emotional responses to crises. By focusing on lagged correlations

between epidemic intensity and news volume, our approach

captures the temporal complexities of public opinion that static

analyses overlook. This research not only deepens understanding of

individual and societal psychological responses but also introduces

a novel perspective on the dynamic interplay between public

sentiment and external stimuli during crises significance (6, 19, 20).

TABLE 1 Statistics of followers and news.

Lag 2020 2021 2022 Years 2020–2022

New
cases

New
deaths

New
cases

New
deaths

New
cases

New
deaths

New
cases

New
deaths

0 0.0081 0.1692 0.1603 0.1508 0.0081 0.0636 −0.0959 −0.1045∗

1 0.0229 0.2268∗ 0.1273 0.1211 0.0229 0.0127 −0.0815 −0.1072∗

2 0.0764 0.1225 0.1032 0.1027 0.0764 0.1846 −0.0767 −0.1312∗

3 0.1352 0.2686∗∗ 0.0676 0.0899 0.1352 0.0033 −0.0779 −0.0982

4 0.2018∗ 0.2099∗ 0.0404 0.1138 0.2018∗ 0.0231 −0.0919 −0.0948

5 0.2661∗∗ 0.1658 0.2249∗ 0.2169∗ 0.2661∗∗ 0.0753 −0.1192∗ −0.1037∗

6 0.2364∗ 0.3364∗∗∗ 0.245∗∗ 0.2123∗ 0.2364∗ 0.0002 −0.1699∗∗ −0.0425

7 0.3031∗∗∗ 0.3057∗∗∗ 0.2275∗ 0.2039∗ 0.3031∗∗∗ 0.0009 −0.2396∗∗∗∗∗ −0.0477

8 0.3152∗∗∗ 0.3805∗∗∗∗∗ 0.2303∗ 0.1706 0.3152∗∗∗ 0.0000 −0.236∗∗∗∗∗ −0.0259

9 0.3899∗∗∗∗∗ 0.3168∗∗∗ 0.21∗ 0.1587 0.3899∗∗∗∗∗ 0.0007 −0.2235∗∗∗∗∗ −0.0410

10 0.4099∗∗∗∗∗ 0.3572∗∗∗∗ 0.2375∗ 0.2513∗ 0.4099∗∗∗∗∗ 0.0001 −0.2319∗∗∗∗∗ −0.0448

11 0.5118∗∗∗∗∗ 0.3417∗∗∗ 0.25∗ 0.2102 0.5118∗∗∗∗∗ 0.0003 −0.2189∗∗∗∗∗ −0.0363

12 0.5090∗∗∗∗∗ 0.3546∗∗∗ 0.3052∗ 0.2449∗ 0.509∗∗∗∗∗ 0.0002 −0.2183∗∗∗∗∗ −0.0433

13 0.5127∗∗∗∗∗ 0.3262∗∗∗ 0.3548∗∗ 0.1793 0.5127∗∗∗∗∗ 0.0006 −0.2112∗∗∗∗ −0.0388

14 0.5578∗∗∗∗∗ 0.3306∗∗∗ 0.4109∗∗∗ 0.1138 0.5578∗∗∗∗∗ 0.0005 −0.2065∗∗∗∗ −0.0411

15 0.4939∗∗∗∗∗ 0.3389∗∗∗ 0.3735∗∗ 0.0851 0.4939∗∗∗∗∗ 0.0004 −0.2092∗∗∗∗ −0.0320

16 0.5595∗∗∗∗∗ 0.3084∗∗ 0.3615∗∗ 0.0464 0.5595∗∗∗∗∗ 0.0014 −0.1936∗∗∗ −0.0354

17 0.4578∗∗∗∗∗ 0.3899∗∗∗∗∗ 0.311∗ 0.0247 0.4578∗∗∗∗∗ 0.0000 −0.201∗∗∗ −0.0132

18 0.5081∗∗∗∗∗ 0.3266∗∗∗ 0.0244 0.1138 0.5081∗∗∗∗∗ 0.0008 −0.1896∗∗∗ −0.0244

19 0.4771∗∗∗∗∗ 0.3296∗∗∗ 0.0227 0.1187 0.4771∗∗∗∗∗ 0.0007 −0.1937∗∗∗ −0.0305

20 0.434∗∗∗∗∗ 0.3002∗∗ 0.1138 0.1144 0.434∗∗∗∗∗ 0.0023 −0.1922∗∗∗ −0.0232

21 0.4268∗∗∗∗∗ 0.2028∗ 0.0104 0.1258 0.4268∗∗∗∗∗ 0.0430 −0.1847∗∗∗ −0.0545

22 0.3734∗∗∗∗ 0.2000∗ 0.0193 0.1145 0.3734∗∗∗∗ 0.0471 −0.1899∗∗∗ −0.0471

23 0.3480∗∗∗ 0.0852 0.0339 0.0963 0.348∗∗∗ 0.4045 −0.1754∗∗ −0.0784

24 0.2295∗ 0.1856 0.0476 0.0791 0.2295∗ 0.0687 −0.1862∗∗∗ −0.0498

25 0.2528∗ 0.1324 0.0876 0.0046 0.2528∗ 0.1984 −0.1754∗∗ −0.0612

26 0.1636 0.1085 0.0832 −0.0628 0.1636 0.2953 −0.1769∗∗ −0.0810

27 0.0865 0.1574 0.0749 −0.0945 0.0865 0.1298 −0.1765∗∗ −0.0682

28 0.1849 0.1235 0.0695 −0.1758 0.1849 0.2383 −0.1686∗∗ −0.0842

29 0.1055 0.1390 0.0238 −0.2524∗ 0.1055 0.1863 −0.1774∗∗ −0.0827

30 0.1408 −0.0004 −0.0638 −0.3168∗∗ 0.1408 0.9966 −0.1625∗∗ −0.1136∗

P-values indicate the statistical significance of Pearson correlation coefficients. When p > 0.05, the correlation is considered non-significant. The symbols ∗ , ∗∗ , ∗∗∗ , ∗∗∗∗ , and ∗∗∗∗∗ correspond

to significance levels of 0.05, 0.01, 0.001, 0.0001, and 0.00001, respectively.

2 The paradox of COVID-19 intensity
and news volume correlation

2.1 Data description

The extensive transmission of COVID-19 in China

commenced in January 2020 (21). The formal reclassification

of COVID-19 by the Chinese National Health Commission

from a “Class B, Level A” to a “Class B, Level B” on 8
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January 2023,1 may be construed as signifying the conclusion

of COVID-19 in China. In a recent scholarly survey, we

examined whether fluctuations in COVID-19 intensity

during the COVID-19 pandemic in China affect changes in

news volume.

For this study, we used COVID-19 new cases and new

deaths data from the World Health Organization’s data center2 as

indicators of COVID-19 intensity. To analyze online sentiments,

we collected news and comment data from Weitoutiao,3 a self-

media platform under the banner of “Today’s Headlines.” Given the

impracticality of collecting all available news texts, we focused on

aggregating content from opinion leaders—news media and self-

media accounts with an average following exceeding six million—

as proxies for public opinion. The data covered the period from

1 January 2020, to 31 December 2022, with statistical intervals

spanning 3 days to balance granularity and noise reduction.

Although our study primarily relies on data from a single

platform, Weitoutiao, the issue of platform-specific limitations has

been significantly mitigated in the era of social media. Opinion

leaders and news organizations frequently disseminate their

content simultaneously across multiple platforms, such as Sina

Weibo, Twitter, and Facebook, to maximize reach and influence.

By focusing on opinion leaders with significant influence, our

dataset captures trends that extend beyond Weitoutiao, reflecting

an interconnected ecosystem of platforms.

The COVID-19 intensity data from 2020 to 2022 can be

represented as:

CI =
{(

nci, ndi
)
∣

∣ i = 1, 2, · · · , 1096}, (1)

where
(

nci, ndi
)

represents the daily new cases and new deaths

on the i-th day. The set of daily news volumes from 2020 to 2022

can be described as:

N = {ni| i = 1, 2, · · · , 1096}, (2)

where ni denotes the news volume on the i-th day.

To address the issue of data discreteness, we reorganized the

above data into statistical intervals of 3 days each. At this point:

CI3 =











t∗3
∑

k=(t−1)∗3+1

nck,

t∗3
∑

k=(t−1)∗3+1

ndk





∣

∣

∣

∣

∣

∣

t = 1, 2, · · · , 365}(3)

and

N3 =







t∗3
∑

k=(t−1)∗3+1

nk

∣

∣

∣

∣

∣

∣

t = 1, 2, · · · , 365}. (4)

The selected 3-day interval also aligns with temporal patterns

observed in public opinion studies, where short-term fluctuations

tend to stabilize over a few days, allowing for clearer analysis of

trends without losing responsiveness to dynamic changes.

1 https://m.gmw.cn/baijia/2022-12/27/1303236220.html

2 https://data.who.int/dashboards/covid19/cases

3 https://mp.toutiao.com/docs/mp/2286/16816

2.2 Simpson’s paradox of correlation

Table 1 illustrates the correlation statistics between the intensity

of COVID-19 and the amount of news text in the statistical interval.

The correlation between COVID-19 intensity in different years and

news volume at different lags can be observed.

The complex table data drowns out the statistical laws. In order

to observe the statistical laws of the data more clearly, we plotted

Figure 1 based on the data in Table 1. In Figure 1, the x-axis denotes

the lag of news, where, for a given x, we computed the correlation

between CI 3 ( i ∈ [0 :−x] ) and N3 ( i ∈ [x : 365] ). The color

depth of the scatter points indicates the significance of the p-

value, with darker colors denoting higher levels of significance, as

indicated in the figure’s legend. The y-axis in Figure 1 represents

the correlation coefficients, while the origin and triangles signify

the significance of new cases and new deaths in relation to news

volume, respectively.

Figure 1 illustrates the Simpson’s Paradox observed in the

correlation between COVID-19 intensity and news volume. In

subplots A, B, and C of Figure 1, there is a notable positive

correlation between COVID-19 new cases in 2020–2022, and the

volume of texts lagged from 5 to 17 periods. This implies that

stronger instances of COVID-19 lead to greater publication of

news texts. However, as shown in subplot D for the entire 3-year

period from 2020 to 2022, there is a significant negative correlation

between COVID-19 new cases and lagged text volume from 5 to

17 periods. We treat the data for 2020–2022 as subpopulations

and the entire dataset as a whole. The initially observed positive

correlation between COVID-19 intensity and news volume during

the subperiods undergoes a reversal in the comprehensive analysis.

In sociological research, the volume of news itself is considered

a manifestation of emotion (22). The correlation between COVID-

19 and news volume reflects people’s sentiment toward COVID-19.

In our case, the reasons for the emergence of Simpson’s Paradox

may be multifaceted, such as changes in external conditions

during different time periods. From amathematical and probability

perspective, there is no issue with the cases demonstrating this

paradox, but the conclusions still leave us surprised.

3 Concluding remarks

In this article, we present the Simpson’s Paradox observed

in the correlation between COVID-19 intensity and news

volume during the COVID-19 period in China, both in

segmented and holistic analyses. This discovery supplements

existing research on Simpson’s Paradox related to COVID-

19, simultaneously illustrating the complexity of public

emotional responses to COVID-19 intensity. Our findings

align entirely with the typical Simpson’s Paradox mentioned by

Sprenger and Weinberger (9), emphasizing that two variables

may exhibit a negative correlation in the overall dataset

but can be independent or even positively correlated within

all subgroups.

The Simpson’s Paradox, originally introduced by Simpson (23)

and later known as Simpson’s Paradox (3), reversal paradox (24),

and amalgamation paradox (25), continues to pose challenges

to our assessments of causality and our understanding of data,
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FIGURE 1

Significant plots of correlation between COVID-19 intensity and news text volume in China. The dashed horizontal line (y = 0) provides a reference

for distinguishing positive and negative correlations. The figure was created using consistent styling across subplots to highlight key lag ranges and

correlation trends. Subplots (A–C) reveal strong positive correlations (lags 5–17) in individual years, while subplot (D) illustrates a reversal in the

aggregated dataset, showcasing Simpson’s Paradox.
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even in the era of artificial intelligence and big data (26, 27). As

a statistical phenomenon, Simpson’s Paradox emphasizes certain

challenges in statistical inference. Accurately comprehending the

overall trends in data and the relationships between subgroups

is crucial for formulating policies and making well-informed

decisions (4, 5).

All fields relying on probability are susceptible to Simpson’s

Paradox (4, 5). During the COVID-19 period, research mentioning

the Simpson’s Paradox has primarily been in the domains of

medicine and case statistics (13, 16, 28). This study proposes

the existence of a Simpson paradox between public opinion

and epidemic intensity during the COVID-19 pandemic. This

finding not only offers a new perspective for understanding

the complexity of opinion formation but also underscores

the intricacy of public psychology. However, the analysis was

limited to data from the COVID-19 pandemic due to the lack

of sufficient long-term public opinion data from other global

crises, such as H1N1 or SARS, making broader validation

a challenge.

Although this study does not delve into the specific reasons

behind the Simpson paradox phenomenon, our findings provide

new insights for opinion research and social psychology. Behind the

paradoxes we mention, there may be complex emotional dynamics

at play, suggesting that exploring the underlying causes could

be an intriguing new research topic. Moreover, understanding

these paradoxes offers practical value for managing public opinion

on social media platforms. By identifying how public sentiment

evolves during crises, this research could inform strategies

to mitigate misinformation and foster accurate information

dissemination, contributing tomore effective crisis communication

and public sentiment management.
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