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Background: Preterm birth (PTB) is a leading cause of neonatal mortality

and under-five mortality worldwide, with long-term health impacts. While

micronutrient supplementation shows promise in preventing PTB, its

e�ectiveness remains controversial due to confounding factors. This study

aims to elucidate the association between micronutrient supplementation and

PTB risk by analyzing a large-scale children survey and employing Mendelian

Randomization (MR) to address confounding factors.

Methods: This study recruited 66,728 mother-child dyads in Longhua District,

Shenzhen, China in 2021. Participants provided information on micronutrient

supplementation (multinutrient, folic acid, calcium, and iron) through a

structured questionnaire. Logistic regression assessed the association between

micronutrient supplementation and PTB in crude, adjusted, and full-inclusion

models. MR analysis used summary-level GWAS data from the UK Biobank

and FinnGen consortiums. The main MR analyses employed inverse variance

weighting (IVW), with sensitivity analyses including MR Egger regression,

weighted median, weighted mode, simple mode, and MR-PRESSO.

Results: Observational analysis indicated folic acid (OR = 0.80, 95%CI: 0.72–

0.89), calcium (OR = 0.88, 95%CI: 0.80–0.96), and iron (OR = 0.92, 95%CI:

0.86–0.98) as protective factors against PTB, especially in co-supplementation,

while multinutrient supplementation showed no significant e�ect. MR analysis

indicating a consistent protective e�ect of calcium (ORIVW = 0.04, 95% CI:

0.004–0.42, p < 0.01, pFDR < 0.05). Sensitivity analyses supported these findings,

detecting no bias or pleiotropy.

Conclusion: Combining observational data with genetic causal inference, our

study confirms the protective roles of folic acid, calcium, and iron against PTB,

with MR particularly highlighting calcium’s causal association with reduced PTB

risk. These findings provide a comprehensive understanding and underscore the

importance of targeted nutritional interventions, especially calcium, in prenatal
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care for PTB prevention. However, given the limitations of the self-reported

data and the lack of information on doses used in our study, future prospective

studies with more detailed micronutrient information are needed to provide

more comprehensive evidence.

KEYWORDS

preterm birth, micronutrient supplementation, folic acid, iron, calcium, multinutrient,

Mendelian randomization

1 Introduction

Preterm birth (PTB), defined as infants born before 37 weeks
of gestation, is a leading cause of neonatal mortality (1). The
World Health Organization reports that in 2020, approximately
9.9% of global births (13.4 million) and 6.1% of births in China
(752.9 thousand) were preterm (2). Complications from PTB
represent the primary cause of death in children under 5 years
old, accounting for nearly 0.94 million deaths worldwide in
2019 and serving as the second leading cause of mortality in
this age group in China, with 30,900 deaths in 2015 (3, 4).
PTB is also associated with immediate, short-term and long-
term physical, neurodevelopmental, and socioeconomic effects,
such as growth retardation, psychiatric disorders, and increased
risks of chronic diseases, including cardiovascular, respiratory, and
endocrine/metabolic disorders in early to mid-adulthood (5–7).

Evidence suggests that most PTBs can be mitigated through
cost-effective interventions, particularly those aimed at improving
the nutritional status of pregnant women and fetuses (8).
Micronutrients, most of which can only be acquired exogenously,
support nearly all metabolic activities, thereby facilitating fetal
development and maturation into a healthy neonate (9). However,
deficiencies in micronutrients like iron, vitamin A, zinc, vitamin
B12, and folic acid are prevalent among pregnant women
worldwide (10–15). In China, the prevalence of vitamin D
deficiency among pregnant women increased from 25.52% in 2012
to 41.96% in 2017 (16). Furthermore, low intake levels of iron,
iodine, calcium, and folic acid have also been reported (17–20).
Therefore, in the fact of micronutrients remains suboptimal among
pregnant women, micronutrient supplementation plays important
roles in maintaining nutritional status.

Although there have been studies on the association and
mechanisms between micronutrient supplementation and PTB,
most of them have been observational, and the results have not
always been uniform. A meta-analysis of 91,425 participants from
18 trials showed little significant difference between multiple-
micronutrient supplementation and PTB, with the confidence
interval just crossing the line of no effect (21). However, a cluster
randomized, double-blind trial in Bangladesh demonstrated that
multiple-micronutrient supplementation reduced the risk of PTB
(22). Despite the fact that prenatal iron and folic acid improved
low birthweight, trials did not report significant reduction in
PTB (23, 24). The association between vitamin D and PTB
also presented inconsistent results across different studies (25–
29). These inconsistencies may stem from small sample sizes,
uncertain causal time sequences, and confounding biases (9, 26,
30). Consequently, there is a need for well-designed studies with

large samples controlling for potential confounders to address
these disparities.

Mendelian Randomization (MR) offers a novel approach to
establish causality by leveraging genetic variants that are randomly
allocated at conception, thereby minimizing confounding and
reverse causation in observational studies (31). Previous MR
research has focused mostly on adulthood and less on early life.
Recent genome-wide association studies (GWAS) on perinatal
lifestyle phenotypes and PTB provide an opportunity to investigate
these associations without bias. There is a relevant MR study,
but only for a single nutrient (32), so the relationship between
additional nutrients and PTB remains to be explored by MR.

Our study aims to assess the association between micronutrient
supplementation and PTB using a large dataset of mother-child
dyads with detailed profiles, and to complement the findings with
causal inference via MR analysis.

2 Methods

2.1 Observational study

2.1.1 Participants
Participants were recruited from the 2021 children survey,

which included 69,638 mother-child dyads from 235 kindergartens
in Longhua District, Shenzhen, China. Exclusions were made for
cases with no identity record (N = 1,605), missing gestational
age (N = 1,303), and unreported maternal micronutrient
supplementation (N = 2), resulting in a final sample of 66,728
dyads, see Figure 1. This study received approval from the
Ethics Committee of the School of Public Health, Sun Yat-sen
University. Informed consent was obtained from all children’s
primary guardians.

2.1.2 Data acquirement
Data were collected using an online structured questionnaire,

which was completed under the supervision of health practitioners
and kindergarten teachers. The questionnaire was administered
during the children’s kindergarten years (typically 3–7 years
after birth), and covered demographic details, maternal condition
during pregnancy (the medical history, pregnancy complications,
behavior and habits, environmental exposure during pregnancy,
etc.), and child birth characteristics (gestational age, birth weight,
delivery mode, etc.).

Micronutrient supplementation during pregnancy
(multinutrient, folic acid, calcium, and iron) was assessed
through maternal self-reporting using four separate questions “Did
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FIGURE 1

Study profile. GWAS, genome-wide association studies; MAF, minor allele frequency; MR, Mendelian Randomization; QC, Quality Control; SNPs,

Single nucleotide polymorphisms.

you take multinutrient (supplements containing three or more
vitamins with or without minerals)/folic acid/calcium/iron during
your pregnancy?” (Answer was “NO” or “YES”). Mothers who
reported “YES” were defined as exposure group, respectively, while
those who reported “NO” were defined as the reference group. PTB
was determined based on the mother’s response to the question
“What was the gestational age of your child at birth?” A gestational
age of <37 weeks was classified as PTB.

Covariates were collected according to studies and the
univariate analysis of our research (29, 33–39), including child’s
information (sex, birth season), maternal characteristic (age of
conception, education, marital status, household income, pre-
pregnancy BMI, weight gain during pregnancy, parity, andmultiple
pregnancy), maternal disease (polycystic ovarian syndrome,
pregnancy-induced hypertension, pre-eclampsia, gestational
diabetes mellitus, and perinatal depression), and behaviors and
lifestyle during pregnancy (employment, prenatal care visit).
Multiple imputation (MI) was employed for missing covariate data
(40), with details and coding provided in Supplementary Table S1.

2.2 Mendelian randomization

For each micronutrient supplement as exposure, Summary-
level GWAS data for micronutrient supplement were collected
from the United Kingdom Biobank (UKB) cohort with European
ancestry from MRC-IEU consortium, including multinutrient
(Treatment/medication code: multinutrient; dataset ukb-b-10284,

N = 462,933), folic acid (Vitamin and mineral supplements:
Folic acid or Folate; dataset ukb-b-3563, N = 460,351), Calcium
(Mineral and other dietary supplements: Calcium; dataset ukb-a-
495, N = 336,314), and iron product (Mineral and other dietary
supplements: Iron; dataset ukb-b-14863, N = 461,384). For PTB
outcome, summary-level GWAS data with sample size of 5,480
cases and 98,626 controls of European descent was obtained from
the FinnGen (https://r5.finngen.fi/pheno/O15_PRETERM).

Instrumental variables (IVs) were chosen based on strict
criteria to support causal inference, including Single nucleotide
polymorphisms (SNPs) selection guidelines to ensure validity and
minimize confounding (41). SNPs with a significant threshold (p
< 1 × 10−5) were considered as potential instrumental variables.
Besides, each SNP was selected based on the following rules: (1)
with a minor allele frequency (MAF) more than 0.01; (2) not
possibly being in linkage disequilibrium (r2 > 0.001, distance =

10,000 kb); (3) adequate strength of IV evaluated by F-statistics (F
> 10); (4) without an exorbitant association with outcome (p >

0.01); (5) avoid reverse causal effect using MR Steiger Filtering. We
replaced the SNPs absent in the outcome data with their available
corresponding proxy SNPs (r2 > 0.8) through LDlink (https://
ldlink.nci.nih.gov/).

2.3 Statistical analysis

In the observational study, associations between micronutrient
supplementation during pregnancy and PTB were analyzed using
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univariate andmultivariate logistic regression, under three different
models: the crude model, without adjustment for confounders; the
adjusted model, adjusted for selected confounders; and the full-
inclusion model, included all micronutrients in the model and
adjusted for all confounders to address the confounding effects
of co-supplementation.

In the MR process, the effect size estimates the association
of the SNP with the specific phenotype expressed as β (i.e., ln
OR). The Wald ratio was obtained by dividing the β-outcome
by the β-exposure. Since there are more than one SNP was
available, the inverse variance weighting (IVW) was considered an
optimum approach for meta-analysis after vindicating the absence
of horizontal pleiotropy and heterogeneity (42). For multiple
comparison, the false discovery rate (FDR) correction was utilized
to adjust the p-values. Sensitivity analysis includes MR Egger
regression (43), weighted median (44), weighted mode (45), simple
mode, and MR-PRESSO (46). MR Egger intercepts and Cochran Q
statistics were conducted to evaluate heterogeneity and pleiotropy.

Statistical analyses above were performed via R version 4.2.3,
with the “TwoSampleMR” v0.5.6 and “MR PRESSO” v1.0 packages.
P-value of <0.05 was deemed statistically significant.

3 Results

3.1 Evidence from observational study

Table 1 presents the characteristics of the children survey
sample. The mean age of mothers at conception was 29.12 years,
with a mean pre-pregnancy BMI was 20.75 Kg/m2. Among the
66,728 mothers analyzed, 85.1% had attained at least a high
school education, 97.4% were married, 38.3% gained <10 kg
during pregnancy, 45.0% were multiparous, approximately half of
the households earned <RMB 20,000 every month, 93.5% had
prenatal care visit and 66.2% were employed during pregnancy.
Pregnancy complications varied, with perinatal depression at 0.3%
and gestational diabetes mellitus at 7.4%. Over half of the children
were male, 2.5% were from multiple pregnancies, and births were
evenly distributed across seasons. Micronutrient supplementation
rates were 41.3% for multinutrient, 92.8% for folic acid, 86.9% for
calcium, and 40.1% for iron. The prevalence of PTB was 8.0%.

The results of covariates selection are available in
Supplementary Table S2. In the crude model, all four
micronutrients were protective factors for PTB. In the adjusted
model, compared to the reference group, supplementation with
multinutrient (OR = 0.91, 95%CI: 0.85–0.96), folic acid (OR =

0.73, 95%CI: 0.66–0.80), calcium (OR = 0.79, 95%CI: 0.73–0.86)
and iron (OR = 0.88, 95%CI: 0.82–0.93) were all inversely
associated with PTB (Table 2).

Multivariate logistic regression analyses, controlling for other
micronutrients, confirmed folic acid (OR = 0.80, 95%CI: 0.72–
0.89), calcium (OR = 0.88, 95%CI: 0.80–0.96), and iron (OR
= 0.92, 95%CI: 0.86–0.98) as protective against PTB. However,
the protective effects were reduced, and multinutrient showed
no significant effect (Table 3).These associations across crude,
adjusted, and full-inclusion model analyses were illustrated in
Figure 2.

TABLE 1 Characteristics of the study participants from 2021 children

survey (N = 66,728).

Variables Description

Mean ± SD

Maternal age of conception (years) 29.12± 4.40

Pre-pregnancy BMI (Kg/m2) 20.75± 2.83

N (%)

Maternal education (high school and greater than high
school)

55,607 (85.1)

Marital status (married) 65,013 (97.4)

Household income (<RMB 20,000) 33,239 (49.8)

Household income (RMB 20,000–39,999) 22,295 (33.4)

Maternal weight gain (≤10 kg) 25,544 (38.3)

Parity (multiparous) 29,952 (45.0)

Multiple pregnancy (yes) 1,698 (2.5)

Polycystic ovarian syndrome (yes) 1,842 (2.8)

Pregnancy-induced hypertension (yes) 1,297 (2.0)

Pre-eclampsia (yes) 210 (0.3)

Gestational diabetes mellitus (yes) 4,878 (7.4)

Perinatal depression (yes) 175 (0.3)

Employment (yes) 44,174 (66.2)

Prenatal care visit (yes) 55,643 (93.5)

Child’s sex (male) 35,573 (53.3)

Birth season (spring) 15,615 (23.4)

Birth season (summer) 16,259 (24.4)

Birth season (autumn) 18,280 (27.4)

Multinutrient (yes) 27,585 (41.3)

Folic acid (yes) 61,897 (92.8)

Calcium (yes) 57,999 (86.9)

Iron (yes) 26,762 (40.1)

Preterm birth (yes) 5,328 (8.0)

To further explore the variation in the protective effect
of multinutrient, the co-supplementation characteristics of
different micronutrients are presented in Supplementary Table S3.
A stratified analysis of the association between multinutrient
supplementation and PTB under the other three micronutrient
supplementation scenarios revealed a marginal statistical
difference between the two folic acid subgroups, suggesting
a potential interaction between multinutrient and folic acid
(Supplementary Table S4).

3.2 Mendelian randomization and
sensitivity analyses

MR analyses revealed a significant causal relationship between
calcium intake and reduced PTB risk, with ORIVW of 0.04 (95%CI:
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TABLE 2 Associations between micronutrient supplementation during

pregnancy and preterm birth in crude and adjusted model (N = 66,728).

Variables Preterm birth

N (%) Crude Adjusteda

OR (95%CI) OR (95%CI)

Multinutrient

No 3,210 (8.2) 1.00 1.00

Yes 2,118 (7.7) 0.93 (0.88, 0.99)∗ 0.91 (0.85, 0.96)∗∗

Folic acid

No 548 (11.3) 1.00 1.00

Yes 4,780 (7.7) 0.65 (0.60, 0.72)∗∗∗ 0.73 (0.66, 0.80)∗∗∗

Calcium

No 873 (10.0) 1.00 1.00

Yes 4,455 (7.7) 0.75 (0.69, 0.81)∗∗∗ 0.79 (0.73, 0.86)∗∗∗

Iron

No 3,388 (8.5) 1.00 1.00

Yes 1,940 (7.2) 0.84 (0.80, 0.89)∗∗∗ 0.88 (0.82, 0.93)∗∗∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
aWe adjusted for child’s information, maternal characteristic, maternal disease, and behaviors

and lifestyle during pregnancy.

TABLE 3 Associations between micronutrient supplementation during

pregnancy and preterm birth in full-inclusion model (N = 66,728)a.

Variables OR (95%CI)

Multinutrient (yes)b 0.96 (0.90, 1.03)

Folic acid (yes)b 0.80 (0.72, 0.89)∗∗∗

Calcium (yes)b 0.88 (0.80, 0.96)∗∗

Iron (yes)b 0.92 (0.86, 0.98)∗∗

∗∗p < 0.01, ∗∗∗p < 0.001.
aWe put all micronutrient supplementation, child’s information, maternal characteristic,

maternal disease, and behaviors and lifestyle during pregnancy in a model.
bAnswer “No” as reference.

0.004–0.42, p < 0.01, Table 4). After the FDR correction, calcium
still significantly associated with lower risk of PTB (pFDR < 0.05).
For other micronutrients, results were less conclusive. Folic acid
and iron supplementation displayed considerable uncertainty in
their associations with PTB (ORIVW = 13.14, 95% CI: 0.02–
8,436.32 for folic acid; ORIVW = 2.13, 95% CI: 0.01–248.88 for
iron), and multinutrients also showed no significant correlation,
albeit with marginal significance (ORIVW = 0.01, 95% CI:
0.001–1.26, p = 0.061). Detailed information about the genetic
instrumental variables used for MR analysis is presented in
Supplementary Table S5.

Sensitivity analysis results, highly consistent with the IVW
method, are documented in Supplementary Table S6 and illustrated
in Figure 3 and Supplementary Figure S1, showcasing a uniform
trend across various MR methods. Forest plots and leave-one-out
analyses for each SNP indicated no significant bias from outlier
SNPs in the association between micronutrient supplementation
and PTB (Supplementary Figures S2, S3). Funnel plots and the MR
Egger intercept test found no evidence of directional pleiotropy or

significant heterogeneity across all micronutrient supplementation
analyses (Supplementary Figure S4). According to the Q-test, there
is no conspicuous evidence supporting heterogeneity in the results
of all micronutrient supplementations. There is also no suggestion
of pleiotropy detected by the MR Egger intercept test among
exposures. No horizontal pleiotropy was addressed in either the
preliminary study or validation of the MR-PRESSO global test
(Supplementary Tables S7–S9).

3.3 Integrated observational and MR
findings

Combining observational and MR findings, calcium
supplementation demonstrated a significant protective effect
against PTB in both analytical approaches. In contrast, folic acid
and iron were significant only in observational analyses, while
multinutrient supplementation showed no significant association
in either analytical approach, as illustrated in Figure 4.

4 Discussion

In our study based on the 2021 children survey, folic
acid, calcium, and iron supplementation were associated with
a reduced risk of PTB, particularly in co-supplementation. MR
analysis further supported a potential causal relationship between
calcium supplementation and lower PTB risk, as indicated by
maternal genetic instruments. No significant association was
observed between multinutrient supplementation and PTB in
either observational or MR analysis.

Similar to our findings, studies have found that not only did
multinutrient supplementation fail to significantly reduce the risk
of PTB (47–49), but supplementation with individual vitamins,
such as vitamins A, B12, and D, also showed no significant
association (27–29, 50–52). One possible explanation for these non-
significant findings is the heterogeneity among studies and the
low doses of vitamins used (53). Interestingly, when measuring
the levels of these vitamins in the body, such as 25OHD levels,
an association with PTB is often observed (33, 51, 54–56).
This discrepancy may stem from the fact that the associations
between oral vitamin supplementation and PTB are influenced
by confounding factors, whereas vitamin levels measured in
the blood are less affected by environmental variables (57, 58).
Notably, while crude and adjusted models in our study showed an
association between multinutrient supplementation and PTB, this
association disappeared after controlling for other micronutrients.
This observation aligns with other studies, suggesting that
interactions between multinutrient and other micronutrients may
drive the observed significant association rather than indicating
an independent effect of multinutrient (59). Further high-quality
research is needed to better understand these complex interactions
in the future.

Folic acid, a water-soluble vitamin B that cannot be synthesized
by the body, is significant in neural tube development and is the
only perinatal supplement recommended to prevent fetal neural
tube defects (60, 61). Observational studies showed that folic acid
supplementation reduces the risk of PTB (62), while randomized
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FIGURE 2

Forest plot of observation study. Across crude, adjusted, and full-inclusion model, folic acid, calcium, and iron acted as protective factors against

PTB, while multinutrient supplementation showed no significant e�ect in full-inclusion model. CI, confidence interval; OR, odds ratio.

TABLE 4 Associations between micronutrient supplementation during

pregnancy and preterm birth using IVWmethods in MR analysis (N =

66,728).

Variables OR (95%CI)

Multinutrient (yes)a 0.01 (0.001, 1.26)

Folic acid (yes)a 13.14 (0.02, 8,436.32)

Calcium (yes)a 0.04 (0.004, 0.42)∗∗

Iron (yes)a 2.13 (0.01, 248.88)

∗∗p < 0.01.
aAnswer “No” as reference.

controlled trials reported no statistically significant effects (63), as
did our study. Iron is critical for the delivery of blood oxygen to the
fetus, and nearly 40% of pregnant women worldwide suffer from
anemia, primarily due to iron deficiency (64, 65). Several meta-
analyses included randomized controlled trials showed little or no
association between iron supplementation and PTB, as the CI for
the pooled effect for PTB just crossed the line of no effect (23, 24).
However, other researchers have found that either iron deficiency
or excess in pregnant women can lead to PTB, presenting a U-
shaped curve for risk associated with iron supplementation (66–
68). These results indicate that more prospective controlled trials,
as well as more detailed dosage data, are still needed before any firm
conclusions can be drawn for these micronutrients.

Calcium is involved in the formation of fetal bones and teeth,
as well as in physiological processes such as nerve conduction
and muscle contraction. Calcium supplementation may reduce

hypertension as well as excessive uterine muscle contractions,
as calcium is known to suppress the renin-angiotensin system
and decrease the contraction of vascular smooth muscle cells
(69–71). Results similar to our results were also seen in cross-
sectional and prospective cohort studies (72, 73). Notably, after
controlling for other micronutrients, the protective effect of
calcium was reduced, suggesting a potential synergistic effect
of co-supplementation. However, studies have revealed that
simultaneous supplementation of vitamin D and calcium may
increase the risk of PTB (53, 59). These contradictory findings
warrant careful consideration for pregnant women receiving both
vitamin D and calcium supplementation.

MR employs genetic variants as IVs to deduce causal
relationships from observational datasets, contingent upon certain
prerequisites. These prerequisites include: (1) a robust association
of IVs (SNPs) with the targeted exposures; (2) IVs’ independence
from confounders; and (3) IVs influencing the outcome solely
via the exposures (74). MR has the potential to surmount typical
observational study challenges, including confounding, reverse
causation, and measurement errors (75). Nonetheless, MR findings
necessitate prudent interpretation due to possible impacts from
heterogeneity, pleiotropy, and GWAS quality. Further research
conducted two-sample MR incorporating multiple sensitivity
analyses to mitigate these biases (76).

Previous MR study suggested a lack of evidence for a
causal relationship between Vitamin D deficiency and PTB, as
indicated by an OR (95% CI) of 1.01 (0.93–1.10) (32). This
finding is partially corroborated by our MR results concerning
multinutrient use. Our MR study further confirmed that calcium
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FIGURE 3

Forest plot of Mendelian randomization. The IVW and weighted median methods indicate a significant reduction in PTB risk with increased calcium

intake, but no significant associations were found for multinutrient, folic acid, or iron supplements. CI, confidence interval; FDR, false discovery rate;

OR, odds ratio; SNP, single nucleotide polymorphisms.

FIGURE 4

Results of combining observational study and Mendelian randomization. Calcium supplementation showed a significant protective e�ect against PTB

in both analyses, whereas folic acid and iron were significant only in observational analyses, and multinutrient were not significant in either. MR,

Mendelian Randomization. Created in BioRender. Ding, R. (2025) https://BioRender.com/itsfbzv.
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intake had a significant causal effect on decreased risk of PTB,
as indicated by the negative and significant ORIVW. The results
remained stable across various sensitivity analyses, indicating no
heterogeneity or pleiotropy. Therefore, in addition to folic acid
and iron, which are recommended by the WHO’s essential drug
list for pregnant women (77, 78), our study also suggests that
calcium supplementationmay be a potential customized preventive
approach for PTB.

There are potential limitations to this study. Firstly, the
2021 children survey utilized a structured questionnaire to
collect data retrospectively, which may have introduced recall
bias. Micronutrient supplementation was defined using binary
self-reported questions by mothers, without collecting detailed
information on the doses of specific micronutrients, potentially
missing certain dose-response relationships, and information
on the components of multinutrient and their interactions.
Additionally, the types of micronutrients collected in the survey
were limited, which constrained the comprehensiveness of the
findings. Future research should include more detailed information
such as dosage, specific components, and a wider variety
of micronutrients, to provide more comprehensive evidence.
Second, the observational study predominantly involved an
Asian population, whereas the MR analysis was based on
a European population. This potential discrepancy in the
population demographics may influence the generalizability of
the causal inferences drawn. Third, despite adhering to stringent
selection criteria for instrumental variables to confirm the genetic
instruments’ quality, the current dearth of comprehensive GWAS
on PTB limits our findings. Further studies, therefore, should aim
for independent validation utilizing GWAS on larger prospective
PTB studies to strengthen causal interpretations.

5 Conclusion

In conclusion, our findings indicate that folic acid, calcium,
and iron are protective factors against PTB, with MR analysis
supporting calcium’s causal association with reduced PTB risk.
Neither observational nor MR analyses showed a significant
effect of multinutrient supplementation on PTB. These results
provide a comprehensive understanding of the association
between micronutrient supplementation during pregnancy and
PTB, and underscore the importance of calcium supplementation
in preventing PTB, thereby informing more comprehensive
guidelines for pregnant women. Future prospective studies with
more detailed information on micronutrients are crucial to draw
definitive conclusions about micronutrient prevention of PTB.
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