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Background: Recent studies suggest that the metabolic score for insulin 
resistance (MetS-IR) is an effective indicator of metabolic disorders. However, 
evidence on the relationship between MetS-IR and metabolic syndrome (MetS) 
among the Chinese middle-aged and older adult population is limited.

Objective: This cohort study aims to assess the associations of MetS-IR levels 
with MetS risk and its components.

Methods: Data used in this study from the National Basic Public Health Service 
Project Management System (2020–2023). Multivariable Cox proportional 
hazards model and restricted cubic spline (RCS) were employed to evaluate 
the associations of baseline MetS-IR levels with MetS risk and its components, 
receiver operating characteristic (ROC) curves were further utilized to assess the 
efficacy of MetS-IR in predicting the risk of MetS and its component.

Results: Of 1,498 subjects without MetS at baseline, 392 incident MetS cases 
were observed during a median of 27.70 months of follow-up. The adjusted 
multivariable Cox regression analysis indicated an elevated 15% risk of developing 
MetS for 1-SD increment of MetS-IR [hazard ratios (HRs) and 95% confidence 
intervals: 1.16 (1.13–1.18)]. Compared to the first tertile of MetS-IR, the HRs of 
the third tertile and second tertile were 6.31 (95% CI 4.55–8.76) and 2.72 (95% 
CI 1.92–3.85), respectively. Consistent findings were further detected across 
subgroups. Moreover, nonlinear associations were observed between MetS-IR 
and the risk of MetS, abdominal obesity, and reduced high-density lipoprotein 
concentration (HDL-C) (Pnonlinear < 0.01), with the cutoff of MetS-IR was 32.89. 
The area under the curve for MetS-IR in predicting MetS was 0.740 (95% CI 
0.713–0.768), which was better than those of other indicators.

Conclusion: Our cohort study indicates a positive nonlinear association 
between MetS-IR with incident MetS, abdominal obesity, and reduced HDL-C, 
but positive linear associations of MetS-IR and elevated blood pressure (BP), 
elevated fasting blood glucose (FBG), elevated triglycerides (TG) in middle-aged 
and older adult people, more studies are warranted to verify our findings.
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Introduction

MetS is a comprehensive state of systemic metabolic disruption 
and is commonly characterized as central obesity, insulin resistance, 
hypertension, dyslipidemia, and hyperglycemia (1). As China’s 
population rapidly aging, disability due to age-related diseases has 
become a substantial socio-economic burden (2, 3). MetS is one of the 
most prevalent chronic diseases in the older adult population, which 
directly increases the risk of cardiovascular disease, type 2 diabetes, 
and all-cause mortality (4, 5). In China, the prevalence of MetS was 
estimated to be 36.96% among the older adult population, which is 
significantly higher than the general population (6, 7) However, the 
definition and diagnostic criteria of MetS has been a controversial 
issue since the initial conceptualization raised in 1923 (8). Additionally, 
existing definitions are binary variables that insufficiently identify 
individuals at critical risk. Hence, our efforts are focused on 
discovering an efficient continuous biomarker to comprehensively 
evaluate the overall disease status. This initiative aims to ensure precise 
assessment of individual risks and widespread applicability.

Insulin resistance (IR) is considered the most plausible hypothesis 
for MetS pathophysiology (9, 10). Currently, the hyperinsulinemic-
euglycemic clamp is commonly used in clinical practice to assess insulin 
resistance (11). However, this technique has several limitations due to 
cost and technical complexity (11, 12). The metabolic score for insulin 
resistance (MetS-IR) is an indicator that has been used widely as an 
indirect method for estimating insulin resistance. The calculation 
typically involves in the following parameters: fasting blood glucose 
(FBG), triglycerides (TG), body mass index (BMI), and high-density 
lipoprotein concentration (HDL-C) (13). Cumulative evidence has 
proved the role of MetS-IR on hypertension, type 2 diabetes mellitus and 
adverse cardiovascular events (14–17). The study in children found that 
MetS-IR correlates with MetS (18). A Thai study found that MetS-IR 
may be a valuable tool in predicting MetS in younger police personnel 
(19). These findings suggest that MetS-IR is not only associated with the 
presence of MetS but also may predict its onset. However, to date, only 
a few studies have assessed the potential role of MetS-IR in anticipating 
and managing MetS among middle-aged and older adult populations.

Herein, our study focuses on the middle-aged and older adult 
population to explore the relationships between MetS-IR with MetS and 
its components and further to assess the diagnostic efficacy of MetS-IR 
in identifying MetS using the ROC curve. Our study contributes to the 
early screening of MetS in middle-aged and older adult populations and 
provides a scientific reference for auxiliary clinical diagnosis.

Methods

Study design and population

The data used in this study was obtained from the public health 
service (BPHS) management system. BPHS aims to provide primary 
health care services to the target population, including disease control, 
management of chronic disease, health promotion and education (20). 

The older adult people aged (65+) are eligible to receive complimentary 
healthcare services, including health management, health check-ups, and 
health guidance services. Participants under management have 
consented to the potential use of their health record data for scientific 
research purposes. These participants have annual follow-up assessments. 
We derived health record data between 2020 and 2022 from Wuliqiao 
Community Health Service Center of the First People’s Hospital of Yulin 
City, Guangxi. The inclusion criteria of the participants are as follows: (1) 
age ≥ 45 years old; (2) having physical examination data ≥2 times; (3) 
MetS has not been diagnosed at the first visit. We further excluded the 
participants with no baseline data available for FBG, TG, and those 
suffering from malignant tumors, autoimmune diseases, mental diseases. 
Finally, we included 1,498 subjects without MetS in the cohort study 
from 2020 to 2022. The flowchart for this study is shown in Figure 1.

Measurement of baseline characteristics

Information on demographic characteristics [age, gender, ethnicity, 
waist circumference (WC), weight, height, etc.], exercise frequency 
(every day, more than once a week, occasionally, no exercise), smoking 
(yes, no), drinking (yes, no), disease history, and medication history 
were collected and updated annually by a face-to-face interview. BMI is 
calculated as weight (kg) divided by height squared (m2), a WHtR is for 
WC/height. Blood pressure was evaluated twice on the participant’s right 
arm using a validated electric BP monitor after at least 15 min of rest. 
The average of two measurements was documented as the individual’s BP.

Fasting blood samples were collected at the baseline visit to test 
serum white blood cells, FBG, TC, TG and HDL- C, low-density 
lipoprotein cholesterol (LDL-C) by local hospital.

Definition of main variables

MetS-IR was calculated using the formula: (Ln (2*FBG + TG) 
*BMI)/(Ln (HDL–C)) (13). MetS were determined using the Chinese 
Diabetes Branch of the Chinese Medical Association (CDS2013) criteria. 
MetS was defined as the presence of no less than three risk factors as 
follows: (1) abdominal obesity: WC ≥ 90 cm (men), WC ≥ 85 cm 
(female), (2) Elevated BP: BP ≥ 130/85 mmHg and/or those who have 
been diagnosed and treated for hypertension, (3) Elevated fasting 
glucose: FBG ≥ 6.1 mmol/L or 2hPG ≥ 7.8 mmol/L and/or have been 
Diagnosis of diabetes and treatment, (4) Elevated triglycerides: 
TG ≥ 1.7 mmol/L, (5) Reduced HDL-C: HDL-C < 1.04 mmol/L.

Statistical

Person time of follow-up was determined from the time at the 
baseline visit until the time at diagnose of MetS or the end of the study 
(December 2023). The baseline characteristics were described as 
frequencies and proportion for categorical variables, mean and 
standard deviation (SD) for continuous variables with normal 
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distribution otherwise median and interquartile ranges for continuous 
variables with skewed distribution. To assess group differences, the 
Mann–Whitney U test was utilized for skewed distributed continuous 
variables, ANOVA for normally distributed continuous variables, and 
Chi-square tests for categorical variables. For the variable white blood 
cell count (WBC), which was missing for 196 participants (13.08%), 
we employed the multiple imputation method using the mice package 
in R, utilizing chained equations to handle the missing values.

The study first divided the MetS-IR variable into three groups 
according to tertile cut-points, then employed the Kaplan–Meier 
method to construct cumulative incidence rate survival curves for MetS 
events over time (months) across the three groups. The log-rank test 
was used to compare differences in the survival curves between the 
MetS-IR groups. Subsequently, multivariable-adjusted Cox proportional 
hazards model was performed to estimate the relationships between 
MetS-IR and MetS and associated components, adjustment covariates 
included gender, age, Exercise Frequency, Smoking, Alcohol use, WBC, 
antihypertensive medication, and antidiabetic medication. Further RCS 
was employed to explore potential nonlinear relationships between 
exposure and outcome. Additionally, we also conducted the interaction 
and subgroup analyses according to gender (male, female), age (≤65, 

>65), WHtR (≤0.5, >0.5), hypertension (yes, no), diabetes (yes, no), to 
assess the associations between MetS-IR and MetS. A sensitivity 
analysis was performed by excluding individuals with imputed data to 
reassess the relationship between MetS-IR and metabolic syndrome. 
Finally, ROC curve analysis was applied to evaluate the predictive 
performance of MetS-IR, SBP, DBP, BMI, TG, and FBG for MetS risk.

All analyses were performed using R statistical software version 
4.3.0 and SPSS version 27.0 for Windows, and two-sided p-values 
< 0.05 were considered statistical significance.

Results

Baseline characteristics of the subjects 
according to MetS-IR categories

As shown in Tables 1, a total of 1,498 subjects without MetS at 
baseline from 2020 to 2022 were included in this cohort study, with a 
mean age of 69.76 ± 8.23 years. Most of them were mainly female 
(60.08%), non-smokers (96.53%), non-drinker (95.66%), and having 
exercise every day (89.95%). We finally observed 392 incident MetS 

FIGURE 1

Study flowchart of subject selection. MetS–IR, metabolic score for insulin resistance; Mets, metabolic syndrome.
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cases during 3211.05 person-years of follow-up (27.70 months), and 
the incidence rate of Mets was 12.21 cases per 100 person-years for all 
subjects. Statistically significant differences were also observed in 
gender, age, DBP, WHtR, BMI, FBG, TC, TG, LDL-C, HDL-C, WBC, 
hypertension, diabetes, and antihypertensive medication across 
MetS-IR groups (p < 0.05).

Association of MetS-IR and MetS risk

Compared to the subjects in the non-MetS group, higher MetS-IR 
was significantly detected in those in the MetS group (p < 0.001), and 

this trend remained consistent when MetS-IR was divided into three 
categories (Figure  2A). Our findings revealed that elevated BP 
accounted for the largest component of MetS, followed by central 
obesity; while the common combinations co-occurrences were the 
combinations of elevated BP, abdominal obesity and elevated TG 
(Figure  2B). Furthermore, Kaplan–Meier survival curve analysis 
demonstrated that the cumulative incidence of MetS increased with 
each higher MetS-IR tertile (Plog-rank < 0.001, Figure 3A); Consistent 
trends were also observed in each component of MetS (Figures 3B–F) 
and in two or more MetS components (Supplementary Figure S1). As 
depicted in Table 2, multivariable-adjusted Cox proportional hazards 
regression analysis indicated that 1-SD increment of MetS-IR resulted 

TABLE 1 Characteristics of the cohort study subjects grouped by MetS-IR tertiles at baseline.

Variable Overall
(N = 1,498)

MetS-IR p-value

Tertile 
I (18.57–30.64)

Tertile II 
(30.64–34.82)

Tertile III 
(34.82–50.82)

Gender (%) <0.001

  Male 598 (39.92) 164 (32.73) 201 (40.28) 233 (46.79)

  Female 900 (60.08) 337 (67.27) 298 (59.72) 265 (53.21)

Age (yeas) 69.76 ± 8.23 71.06 ± 8.22 69.49 ± 8.19 68.73 ± 8.12 <0.001

SBP (mmHg) 130.95 ± 12.86 130.91 ± 11.66 131.58 ± 12.57 130.37 ± 14.21 0.572

DBP (mmHg) 79.62 ± 7.60 78.85 ± 7.59 80.01 ± 6.98 79.99 ± 8.14 0.002

Height (cm) 157.86 ± 8.06 156.51 ± 8.03 157.88 ± 7.88 159.20 ± 8.08 <0.001

Weight (cm) 57.86 ± 9.74 50.03 ± 6.84 57.77 ± 6.55 65.83 ± 8.39 <0.001

WC (cm) 84.74 ± 8.37 79.24 ± 7.05 84.58 ± 6.41 90.45 ± 7.51 <0.001

WHtR 0.53 (0.50 0.57) 0.50 (0.48 0.54) 0.53 (0.51 0.56) 0.56 (0.53 0.60) <0.001

MetS-IR 32.75 ± 5.23 27.07 ± 2.70 32.80 ± 1.20 38.42 ± 3.00 <0.001

BMI (kg/m2) 23.14 ± 2.98 20.37 ± 1.88 23.13 ± 1.44 25.94 ± 2.35 <0.001

Exercise frequency (N,%) 0.732

  Every day 1,346 (89.85) 451 (90.02) 455 (91.18) 440 (88.35)

  More than once a week 30 (2.00) 9 (1.80) 8 (1.60) 13 (2.61)

  Occasionally 8 (0.53) 4 (0.80) 2 (0.40) 2 (0.40)

  No exercise 114 (7.61) 37 (7.39) 34 (6.81) 43 (8.63)

Smoking (%) 56 (3.74) 24 (4.79) 19 (3.81) 13 (2.61) 0.191

Alcohol use (%) 65 (4.34) 22 (4.39) 22 (4.41) 21 (4.22) 0.987

FBG (mg/dL) 90.71 ± 24.46 85.33 ± 20.02 92.27 ± 24.40 94.55 ± 27.49 <0.001

TC (mg/dL) 191.46 ± 38.91 194.01 ± 37.58 193.13 ± 39.80 187.21 ± 39.05 0.024

TG (mg/dL) 99.34 (76.28128.62) 81.60 (63.86106.44) 99.34 (79.83127.73) 116.20 (92.25141.92) <0.001

LDL-C (mg/dL) 121.04 (97.84145.01) 116.40 (93.58142.31) 123.36 (100.93147.53) 123.17 (99.38145.40) 0.007

HDL-C (mg/dL) 54.14 (46.79 62.65) 63.03 (54.91 73.47) 53.36 (47.76 60.33) 47.56 (42.54 54.81) 0.049

WBC (×10^9/L) 6.31 ± 1.63 6.02 ± 1.54 6.46 ± 1.81 6.45 ± 1.47 <0.001

Hypertension (%) 624.00 (41.66) 181.00 (36.13) 221.00 (44.29) 222.00 (44.58) 0.009

Diabetes (%) 134.00 (8.95) 34.00 (6.79) 56.00 (11.22) 44.00 (8.84) 0.049

Antihypertensive medication (%) 528 (35) 148 (30) 184 (37) 196 (39) 0.003

Antidiabetic medication (%) 106 (7.1) 27 (5.4) 44 (8.8) 35 (7.0) 0.107

Mean ± SD for continuous variables with normal distribution, otherwise median (quartiles): the p-value was calculated by ANOVA (analysis of variance) or rank-sum test. N(%) for categorical 
variables: the p-value was calculated by the chi-square test. SBP, systolic blood pressure; DBP, diastolic blood pressure; WHtR, waist-height ratio; BMI, body mass index; FBG, fasting blood 
glucose; TC, total cholesterol; TG, total triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; WBC, white blood cell counts; MetS –IR, 
metabolic score for insulin resistance.
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FIGURE 2

Differences in the levels of MetS–IR between the MetS and non- MetS groups and the categories of MetS. (A) Histograms of MetS –IR levels between 
Non-MetS and MetS groups under different strata, with Student’s t-tests used to compare the differences between the two groups. *p < 0.05, 
**p < 0.01, ***p < 0.001. (B) Upset plot shows the counts of participants with one or multiple target metabolic syndrome components. Matrix layout for 
all intersections of five metabolic syndrome components, sorted by intersection size. Dark circles in the matrix indicate sets that are part of the 
intersection. (This matrix layout shows the intersections of the five metabolic syndrome components, arranged by intersection size. Sets included in 
each intersection are indicated by dark circles in the matrix).

FIGURE 3

Kaplan–Meier survival curves of the cumulative incidence of MetS and its components according to the baseline MetS–IR categories. (A) MetS, (B) Abdominal 
Obesity, (C) Elevated BP, (D) Elevated FBG, (E) Elevated TG, (F) Reduced HDL-C. The log-rank test was used for comparisons between groups. MetS–IR, 
metabolic score for insulin resistance; BP, blood pressure; FBG, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol.
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TABLE 2 Univariable and multivariable Cox proportional hazards model for MetS and its components.

Outcome Case/
total

Incidence 
rate

Continuous Tertiles I Tertiles II Tertiles III P for 
trend

HRs 
(95%CI)

P-
value

HRs 
(95%CI)

HRs 
(95%CI)

P-
value

HRs 
(95%CI)

P-
value

Model 1

  MetS
392/1498 12.21

1.16 (1.13, 

1.18) <0.001 Reference

2.93 (2.08, 

4.14) <0.001

6.76 (4.89, 

9.34) <0.001 <0.001

MetS components

  Abdominal 

Obesity 270/933 14.16

1.14(1.11, 

1.17) <0.001 Reference

2.39(1.77, 

3.24) <0.001

4.17(3.04, 

5.73) <0.001 0.001

  Elevated BP
251/390 42.33

1.04(1.02, 

1.07) <0.001 Reference

1.33(0.97, 

1.83) 0.074

1.72(1.26, 

2.35) 0.001 0.001

  Elevated FBG
120/1282 4.09

1.09(1.05, 

1.13) <0.001 Reference

1.16(0.69, 

1.98) 0.572

2.72(1.72, 

4.29) <0.001 <0.001

  Elevated TG
276/1248 10.26

1.08(1.06, 

1.11) <0.001 Reference

1.48(1.07, 

2.04) 0.018

2.46(1.82, 

3.33) <0.001 <0.001

  Reduced 

HDL-C 175/1357 5.71

1.1(1.07, 

1.14) <0.001 Reference

1.44(0.92, 

2.26) 0.107

3.61(2.43, 

5.36) <0.001 <0.001

Number of MetS components

  1 vs. 0 522/659 33.96 1.02(1, 1.04) 0.077 Reference

1.03(0.85, 

1.25) 0.733

1.25(0.97, 

1.1.61) 0.086 0.133

  2 vs. 0 447/584 33.31

1.06(1.04, 

1.09) <0.001 Reference

1.57(1.22, 

2.02) <0.001

2.04(1.59, 

2.62) <0.001 <0.001

  3 vs. 0 336/473 40.00

1.11(1.09, 

1.13) <0.001 Reference

2.92(2.04, 

4.18) <0.001

4.84(3.44, 

6.81) <0.001 <0.001

   ≥ 4 vs. 0 56/193 14.41

1.29(1.22, 

1.36) <0.001 Reference

6.13(1.23, 

30.43) 0.027

58.06(14.05, 

239.86) <0.001 <0.001

Model2

 MetS
392/1498 12.21

1.15 (1.13, 

1.18) <0.001 Reference

2.72 (1.92, 

3.85) <0.001

6.31 (4.55, 

8.76) <0.001 <0.001

MetS components

  Abdominal 

Obesity 270/933 14.16

1.16(1.13, 

1.19) <0.001 Reference

2.87(2.1, 

3.94) <0.001

5.27(3.75, 

7.41) <0.001 <0.001

  Elevated BP
251/390 42.33

1.04(1.02, 

1.07) <0.001 Reference

1.41(1.02, 

1.95) 0.039

1.7(1.23, 

2.35) 0.001 0.001

  Elevated FBG
120/1282 4.09

1.09(1.05, 

1.13) <0.001 Reference

1.15(0.67, 

1.97) 0.622

2.79(1.75, 

4.47) <0.001 <0.001

  Elevated TG
276/1248 10.26

1.07(1.05, 

1.1) <0.001 Reference 1.39(1, 1.93) 0.049

2.24(1.64, 

3.04) <0.001 <0.001

  Reduced 

HDL-C 175/1357 5.71

1.1(1.06, 

1.13) <0.001 Reference

1.32(0.84, 

2.07) 0.233

3.19(2.12, 

4.78) <0.001 <0.001

Number of MetS components

  1 vs. 0 522/659 33.96

1.01(0.99, 

1.03) 0.236 Reference

0.99(0.81, 

1.2) 0.883

1.16(0.88, 

1.51) 0.288 0.433

  2 vs. 0 447/584 33.31

1.06(1.04, 

1.09) <0.001 Reference

1.52(1.16, 

1.98) 0.002

2.01(1.55, 

2.61) <0.001 <0.001

  3 vs. 0 336/473 40.00

1.11(1.08, 

1.13) <0.001 Reference

2.61(1.81, 

3.77) <0.001

4.34(3.02, 

6.24) 0 <0.001

   ≥ 4 vs. 0 56/193 14.41

1.31(1.22, 

1.4) <0.001 Reference

5.47(1.07, 

28.04) 0.042

63.17(14.19, 

281.13) <0.001 <0.001

Model 1: Crude model, no covariates were adjusted. Model 2: Adjusted model, age, sex, smoking, alcohol use, exercise frequency, WBC, antihypertensive medication, and antidiabetic 
medication were adjusted. 95%CI, 95% confidence interval; HR, hazard ratio. incidence rate: per 100 person-years.
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in 1.15-fold higher risk of developing MetS (95% CI 1.13–1.18). 
Compared with the subjects in the first tertile of MetS-IR, the HRs of 
those in the second and the third tertile of MetS-IR were 2.72 (95% CI 
1.92–3.85), 6.31 (95% CI 4.55–8.76), respectively; and the trend test 
was statistically significant (Ptrend < 0.05). When further analysis of the 
associations between MetS-IR with the single risk factor and the 
number of MetS components, the increased risk of developing 
abdominal obesity, elevated BP, elevated FBG, elevated TG and 
elevated HDL-C for 1-SD increment of MetS-IR was 1.16 (95% CI 
1.13–1.19), 1.04 (95% CI 1.02–1.07), 1.09 (95% CI 1.05–1.13), 1.07 
(95% CI 1.05–1.10), 1.10 (95% CI 1.06–1.13), respectively. Besides, in 
participants with two or more MetS components, an association with 
MetS-IR was found in both the unadjusted and adjusted models. The 
adjusted HRs of the association between the MetS-IR (analyzed as 
continuous variables) and the cluster of MetS components (presence 
of two or more symptoms) were 1.06(95%CI 1.04, 1.09), 1.11(95%CI 
1.08, 1.13) and 1.31(95%CI 1.22, 1.4), respectively.

Dose–response relationship between 
MetS-IR and MetS

Furthermore, the RCS analysis demonstrated a nonlinear dose–
response relationship between MetS-IR and MetS risk (Poverall ≤ 0.001, 
Pnonlinear = 0.009), and the HRs of MetS increased rapidly when 
MetS-IR was greater than 32.89 (Figure 4A). Nevertheless, we found 
positive linear associations of MetS-IR with elevated BP (Poverall ≤ 0.001, 
Pnonlinear = 0.339), elevated FBG (Poverall ≤ 0.001, Pnonlinear = 0.658), and 
elevated TG (Poverall ≤ 0.001, Pnonlinear = 161) (Figures  4B–F); 
Interestingly, when analyzing the number of MetS components as 
outcomes, we found that MetS-IR was positively correlated with the 
presence of 2, 3, and ≥ 4 MetS components. However, a nonlinear 
relationship was only observed in participants with 3 or more MetS 

components (Supplementary Figure S2). Two-segment Cox regression 
analysis showed that a 1-SD increment in MetS–IR was associated 
with a 1.21-fold increase in the risk of higher MetS status (HR = 1.209, 
95% CI: 1.109–1.319, p < 0.001) when MetS–IR levels were below 
32.89. Similarly, a 1-SD increment in MetS–IR was associated with a 
1.12-fold increase in the risk of higher MetS status (HR = 1.124, 95% 
CI: 1.089–1.161, p < 0.001) when MetS–IR levels were greater than or 
equal to 32.89 (Supplementary Table S1).

Subgroup analyses and sensitivity analysis

Further subgroup analysis was performed to explore the 
robustness and reliability of the relationships between MetS-IR and 
MetS (Figure 5). A significant positive relationship between MetS-IR 
and MetS was observed across different demographic settings, 
consistent with previous analyses of the whole population. Interaction 
tests revealed significant interaction effects between MetS-IR and 
gender, diabetes, indicating that these factors may influence the 
positive correlation between MetS-IR and MetS (P for interaction 
<0.05). Additionally, a sensitivity analysis was conducted, revealing 
that each standard deviation increase in MetS-IR was associated with 
a 16% higher risk of MetS in Model 2 (Supplementary Table S2).

ROC analysis for predicting the incidence 
of MetS development

ROC curves were conducted to identify the optimal predictive 
indicator for MetS and its associated components by MetS-IR, SBP, 
DBP, BMI, TC, and FBG (Figure 6). The results showed that the AUC 
of MetS-IR, SBP, DBP, BMI, TC and FBG for MetS were 0.713 (0.74, 
0.768), 0.518 (0.485, 0.552), 0.534 (0.501, 0.567), 0.662 (0.632, 0.693), 

FIGURE 4

The nonlinear associations between MetS–IR and the hazard ratios of MetS and its components were analyzed using restricted cubic splines (A–F). 
RCS with four knots were used, and the models were adjusted for age and gender. 95% CI, 95% confidence interval; HR, hazard ratio; p-overall, p-
value for model tests; p-nonlinear, p-value for nonlinear tests.
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FIGURE 6

ROC curves for different indicators predicting incident MetS and its components. (A) MetS, (B) Abdominal Obesity, (C) Elevated BP, (D) Elevated FBG, 
(E) Elevated TG, (F) Reduced HDL-C. Footnotes are area under the curve and 95% confidence intervals. SBP, systolic blood pressure; DBP, diastolic 
blood pressure; BMI, body mass index; TC, total cholesterol; FBG, fasting blood glucose; MetS-IR, metabolic score for insulin resistance; TG, 
triglycerides; HDL-C, high-density lipoprotein cholesterol.

FIGURE 5

Subgroup analysis for the association between MetS-IR and MetS. The model adjust for age, sex, smoking, alcohol use, exercise frequency, WBC, 
antihypertensive medication, and antidiabetic medication. In the subgroup analysis stratified by gender and age, the model is not adjusted for gender 
and age, respectively. Adjusted p-values were calculated using the Benjamini post-hoc test. “Count” represents the total number of participants in each 
subgroup, while “Events” indicates the number of cases observed in each subgroup. The p-values for interaction assess the heterogeneity of 
associations across subgroups. WHtR, waist-to-height ratio; 95% CI, 95% confidence interval; HR, hazard ratio.
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0.522 (0.488, 0.555) and 0.616 (0.583, 0.650), respectively. More 
importantly, the ROC curve of MetS-IR was significantly different 
from those of the other indicators (p < 0.001), suggesting a superior 
predictive performance for MetS. The optimal cut-off value for 
MetS-IR was determined to be 32.7, with the HRs being 3.92(95%CI, 
3.09–4.98). As for the MetS components, MetS-IR also had the highest 
predictive power for elevated TG and reduced HDL-C, and exhibited 
significant differences with other indicators. Additionally, we found 
that MetS-IR had the highest AUCs in predicting the occurrence of 2, 
3, and > 4 MetS components, with the values of 0.794, 0.857, and 
0.931, respectively (Supplementary Figure S3).

Discussion

In this cohort study, our results supported a positive association 
between MetS-IR and incident MetS and its components in the 
middle-aged and older adult Chinese population. This relationship 
exhibited a non-linear dose–response relationship between MetS-IR 
with incident MetS, abdominal obesity, and reduced HDL-C. A 
MetS-IR index exceeding 32.89 is suggestive of an elevated risk for 
MetS diseases. Compared with other metrics, MetS demonstrates the 
highest AUC, suggesting that MetS serves as a superior predictor for 
MetS. These findings indicate that maintaining lower MetS-IR levels 
might alleviate the onset of MetS among middle-aged and 
older adults.

MetS is widely acknowledged as a significant predictor of 
cardiovascular disease and cognitive impairment in the older adult 
population (21, 22). In our study cohort, the incidence rate of MetS 
was 12.21 cases per 100 person-years. Relevant studies have reported 
a positive association between MetS in the older adult and an 
increased incidence and progression of mild cognitive impairment to 
dementia (23). MetS is associated with various risk factors and several 
proposed pathophysiological mechanisms, such as insulin resistance 
(IR), chronic low-grade inflammation, and oxidative stress, with IR 
possibly being the primary cause (24–26). IR is a critical biomarker 
for MetS, with several key indicators including insulin (27), C-peptide 
(28), and the Homeostatic Model Assessment of Insulin Resistance 
(HOMA-IR) (29). Despite their importance, these biomarkers have 
notable drawbacks. Insulin and C-peptide levels lack consistent 
reference ranges and require specific laboratory conditions for 
measurement (30–32). HOMA-IR, although widely used, suffers from 
variable reference values and the need for precise fasting plasma 
insulin and glucose data, making its standardization and practical 
application challenging (33).

MetS-IR, a novel alternative indicator for IR, has emerged as a 
widely applied and promising metric, primarily utilized for 
cardiovascular health assessment and IR screening (13). Extensive 
epidemiological evidence has demonstrated that MetS-IR can 
be utilized to predict and assess the risk of various MetS components, 
including obesity (34), T2DM (35), hypertension (14), and 
dyslipidemia (36). Given these diverse applications, MetS-IR promises 
to become an important comprehensive indicator in clinical practice. 
The mechanisms through which IR impacts metabolic health further 
underscore the utility of MetS-IR as an effective measure. First, IR 
leads to reduced cellular uptake of glucose in the bloodstream, 
resulting in elevated blood glucose levels. A cohort study in China 
found that increased MetS-IR elevated the incidence of T2DM in the 

rural population (37). Second, the metabolic effects of IR, through 
increased sympathetic nervous system (SNS) activity and renal 
sodium retention, contribute to the development of hypertension (38). 
A retrospective study in Japan involving 15,453 participants showed 
that a one-unit increase in MetS-IR was associated with a 0.95-fold 
and 1.12-fold increase in pre-hypertension and hypertension, 
respectively (39). Furthermore, the body experiences elevated insulin 
levels under insulin-resistant conditions, exposing the liver to relative 
hyperinsulinemia. Insulin can inhibit the breakdown of fat in adipose 
tissue under catecholamine stimulation and stimulate the uptake of 
glucose in adipocytes for storage as fat, thereby promoting lipogenesis, 
leading to increased VLDL and reduced HDL particle production, 
manifesting as elevated plasma triglycerides, decreased HDL 
cholesterol, and abdominal obesity (40–42). Chinese researchers have 
found that MetS-IR can influence the risk of stroke through its impact 
on LDL-C levels (36). In summary, The various metabolic disturbances 
observed in MetS, including dyslipidemia, hypertension, and altered 
glucose metabolism, can be attributed to the abnormal physiological 
responses driven by elevated insulin concentrations in the insulin-
resistant state.

The multivariable Cox regression and RCS analysis confirmed an 
overall correlation between MetS-IR and MetS. However, the RCS 
analysis revealed a more nuanced, non-linear relationship between 
these variables. Specifically, the data indicated the existence of an 
effect starting point, when MetS–IR < 32.89, the HR curve remains 
relatively stable, whereas when MetS–IR > 32.89, the HR increases 
significantly, indicating that 32.89 is a critical turning point for risk 
changes. Individuals with MetS–IR levels above this threshold are 
likely part of a high-risk population, necessitating closer monitoring 
and potential intervention. For instance, research in a Chinese 
population demonstrated a significant non-linear relationship 
between MetS-IR and the risk of prediabetes, with a clear quantitative 
saturation point (43). Similarly, a 10-year longitudinal study reported 
an early J-shaped dose–response relationship between MetS-IR and 
the risk of total stroke (44). Taken together, these non-linear analyses 
provide important insights into the complex associations between 
MetS-IR and various disease outcomes. By identifying critical 
thresholds, this approach can help elucidate the mechanistic 
underpinnings of MetS-IR-related pathologies. Accordingly, future 
research should continue to explore the non-linear relationships 
between MetS-IR and other health conditions, with the aim of 
informing more precise, evidence-based clinical decision-making.

The different effects of MetS on different gender populations can 
be attributed to several factors. Firstly, lifestyle-related disparities play 
a significant role. Males generally exhibit higher rates of smoking and 
alcohol consumption, as well as lower levels of physical activity, 
compared to females. These unhealthy lifestyle habits contribute to the 
accumulation of abdominal fat, which is a key component of 
MetS. Numerous studies have demonstrated the detrimental effects of 
smoking (45), alcohol consumption (46), and excessive adiposity (1) 
on glucose metabolism, leading to the development of IR and, 
consequently, an increased risk of MetS (47). Secondly, the age-related 
decline in testosterone levels observed in older adult men may also 
contribute to the gender-specific differences in MetS susceptibility. 
Testosterone deficiency has been linked to the development of IR and 
abnormal glucose metabolism, both of which are important risk 
factors for MetS (48–50). The decline in estrogen levels and the 
concurrent increase in bioavailable testosterone in postmenopausal 
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women are key drivers of visceral adipose tissue accumulation, insulin 
resistance, and dyslipidemia, collectively heightening the risk of MetS 
(51–53). Thirdly, Significant sex-specific differences in body 
composition, particularly in fat and muscle distribution, play a critical 
role in the pathophysiology and development of MetS (54). It is 
important to note that the relatively small sample sizes of participants 
with a WHtR≤0.5 and non-diabetic individuals in the study may have 
introduced a certain degree of randomness and error in the estimation 
of hazard ratios (55). This potential limitation could have obscured 
any meaningful differences in the effect sizes observed between these 
two subgroups. Our study suggested that intervention in males may 
contribute to reducing incidence.

Although the AUC value of 0.740 is considered moderate, it has 
been regarded in the fields of epidemiology and public health as 
sufficient for screening high-risk populations and aiding in early risk 
stratification (56). For example, a study conducted in the United States 
reported an AUC of 0.616 for METS-IR in predicting the risk of heart 
failure in adults (57). Similarly, in middle-aged and older adult 
populations, METS-IR achieved an AUC of 0.631 for predicting 
hyperuricemia (58). Additionally, in a 10-year longitudinal study, the 
AUC of METS-IR for predicting coronary artery disease ranged 
between 0.53 and 0.61 (59). While these findings suggest that 
METS-IR has certain limitations in its predictive performance, they 
also highlight its potential and practical utility in assessing the risk of 
metabolic diseases. Furthermore, the AUC value of 0.740 observed in 
our study is relatively higher compared to similar studies, which may 
indicate its applicability in risk assessment. As older adult individuals 
age, the progressive decline in muscle mass is accompanied by an 
increase in fat proportion, despite stable overall body weight, 
rendering BMI an inadequate measure of metabolic risk (60, 61). 
Height can be significantly reduced due to spinal shortening caused 
by degenerative bone diseases or kyphosis, introducing additional 
inaccuracies into BMI calculations for older adult individuals. 
Although BMI is generally effective in evaluating overall obesity, its 
predictive capacity for central obesity and metabolic risk remains 
relatively limited (62–64). In contrast, METS-IR is comprised of 
parameters that span multiple dimensions of lipid metabolism, 
glucose metabolism, and body composition, thereby exhibiting a more 
robust association with metabolic diseases.

Several specific strengths emerged in our study. First, to our 
knowledge, this is the first cohort study to examine the exploration of 
the relationship between MetS -IR and MetS in middle-aged and older 
adults. This study adopts a cohort design utilizing real-world data, 
which provides a robust framework for establishing the causal 
relationship between MetS-IR and MetS. Moreover, the analytical 
approach accounted for a comprehensive set of potential confounding 
factors, thereby mitigating the risk of biased estimates. However, certain 
limitations are also present. Firstly, as a retrospective cohort study, this 
research inevitably encountered instances of missing data. To address 
this issue, multiple chained imputation methods were employed, 
revealing no significant differences in the baseline characteristics of the 
population before and after imputation. Furthermore, analyses 
performed after excluding individuals with missing data yielded results 
consistent with those derived from the complete dataset, thereby 
minimizing the potential bias associated with missing data. Secondly, 
although this study adjusted for various factors such as demographic 
characteristics, lifestyle, and medication use, residual confounding 
factors, including socioeconomic status, dietary habits, and diabetes 

duration, were not accounted for. Given that the study population was 
sourced from a single region, the variability in dietary patterns is likely 
minimal. Future research should incorporate more comprehensive data 
on lifestyle and socioeconomic variables to enhance the control of 
potential confounding biases. Thirdly, the relatively limited follow-up 
duration precluded the observation of cardiovascular events associated 
with metabolic syndrome. As this cohort forms part of a long-term 
public health initiative, future extended follow-up, coupled with a more 
comprehensive examination of contextual factors, has the potential to 
yield more robust evidence elucidating the relationship between 
MetS-IR and the risk of metabolic syndrome onset, while simultaneously 
offering critical insights into the progression of adverse cardiovascular 
outcomes. Finally, this study was conducted within an older adult 
population in Guangxi, China, where dietary patterns, genetic 
background, lifestyle factors, and metabolic risk profiles may differ from 
those observed in other populations. As a result, the generalizability of 
the findings might be constrained. To further enhance the universality 
of the conclusions, validation using multicenter data or more diverse 
populations is warranted in future research.

Conclusion

In summary, our findings indicate a nonlinear dose–response 
relationship between MetS-IR and incident MetS, abdominal obesity, 
and reduced HDL-C in the middle-aged older adult population but 
linear associations of MetS-IR and elevated BP, elevated FBG, elevated 
TG. These observations underscore the potential clinical utility of 
minimizing MetS-IR as an important and effective measure to 
prevent MetS. The insights gained from this research provide valuable 
evidence to inform the development of targeted prevention strategies 
for MetS in middle-aged and older adult population.
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