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Objective: Childhood morbidities are crucial for improving long-term public

health outcomes. This study aimed to examine the existence of child-specific

and regional variation in childhood morbidity based on the cross-cutting study

of the Performance Monitoring for Action Ethiopia community survey (PMA-ET),

and its relationship to socioeconomic and demographic variables in families.

Methods: We enrolled 2,581 children su�ering from di�erent illnesses from

six regions of the country of the survey at 6 weeks postpartum. Generalized

linear mixed models (GLMMs) with maximum likelihood estimation were used

to assess children’s comorbidity status, and the DHARMa package in R to

provide readily interpretable scaled residuals and test functions for typical model

misspecification problems for the fitted GLMMs.

Results: GLMMs with two random intercept models show the presence of child

morbidity variations. Cough, fever, and diarrhea were found to be the most

frequent types of children’s illnesses among themain illness categories that were

recorded. Cooking fuel, wealth quartiles, mothers’ marital status, mother age,

parity, residence, mother’s education status, and availability of electricity were

significantly associated with children’s morbidity.

Conclusions: These data show that variations in children’s comorbidity were

associated with both regional and child-specific characteristics. Thus, general

principles for designing policies and interventions are required to reduce

child comorbidity.

KEYWORDS

AIC, children comorbidity, DHARMa, GLMMs, Laplace approximation, random e�ect

1 Introduction

Child morbidity the perception of being unwell as a result of specific conditions or
illnesses. This term pertains to the prevalence of health issues that affect the wellbeing of
children. Infectious diseases, such as pneumonia, diarrhea, and malaria, are the leading
causes of global under-five child deaths (1, 2). Alarming statistics reveal that two-thirds
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of global child mortality occurs in underdeveloped countries. As a
result, in order to reduce global child mortality, the urgent need
to address child morbidity in low and middle income countries
is evident, particularly as these region are struggling to meet
the Sustainable Development Goal (SDG) target related to child
mortality reduction (target 3.2), which aims to bring child deaths
per thousand live birth down to 25 by the year 2023 (3, 4).

While there has been a notable decline in global under-five child
mortality in recent decades, the progress in developing and under-
developed regions, such as Africa and Bangladesh, has not been
satisfactory (4, 5). Reports from the World Health Organization
indicate that the Sub-Saharan Africa and the South Asia bear
the burden of ∼80% of all child deaths worldwide (6). A recent
study conducted in Tanzania stated that, 63 child deaths per
thousand live births occurred in the 2016 estimate in Tanzania,
though it was declined by 42%. A separated study conducted in
Tanzanian, drawing data from 35 hospitals, identified respiratory
distress as the primary cause of early neonatal death, accounting for
approximately 21% of cases (4, 7, 8). Despite the fact that Ethiopia’s
infant mortality rate fell from 34.010 deaths per 1,000 live births
in 2020 to 29.524 deaths per 1,000 live births in 2023 (9), child
morbidity was still significant, particularly among children under
the age of one (10).

Therefore, to successfully design a national program for
childhood morbidity intervention, it is necessary to identify
determinants in a local context. Hence, several earlier studies
suggested that environmental, socioeconomic, demographic, and
health-associated factors lead to childhood morbidity globally
(11–18). For instance, mother’s age, mother’s education, family
wealth, handwashing, sanitation, child’s gender, child’s anemia level,
husband’s education level, mother’s job status, mother’s marital
status, breastfeeding status, and exposure to morbidity information
have been found to have an effect on child morbidity (10, 12, 13,
15, 19–28). Two-parent families have more stable family structures
and stronger social support networks for their children’s to improve
their child health (29–31). Likewise, the rate of children’s illness also
differs across geographical regions, their residence, high-parity-
births, and the availability of electricity (11, 15, 32–35). Obstructive
sleep apnea (OSA) can also cause serious morbidity in middle-age
women and even it may lead to an increased risk of high blood
pressure, high cholesterol, prediabetes, and other heart and blood
vessel conditions in children (36, 37), compared to older children,
infants with OSA have different comorbidities (38).

Furthermore, previous studies in Ethiopia have identified
a wide range of risk factors, including socioeconomic,
environmental, demographic, and other elements that influence
childhood morbidity (35, 39–43). However, most of these studies
focus on predicting factors associated with a single health
condition, even though children in Ethiopia suffer from multiple
health problems due to limited access to health services and
poor household socioeconomic environments in the country.

Abbreviations: AIC, Akaike Information criteria; BIC, Bayesian Information

criteria; DHARMa, Diagnostics for HierArchical Regression models; KS,

Kolmogorov-Smirnov test (KS test); ML, maximum likelihood; PMA-ET,

Performance Monitoring for Action-Ethiopia; SNNP, South Nation and

Nationalities People.

Furthermore, understanding the cause and expected outcome of
morbidity in children will be insufficient if the focus is on specific
diseases or categories of illnesses (44, 45). Besides, previous studies
also did not account for potential variation among clusters of
individuals or groups and none of them deals with insights to
unravel the intricate relationship between child health and cluster
context in Ethiopia. Thus, to account for this source of variability,
we propose a generalized linear mixed models (GLMMs) that can
be used to analyze data that is collected from multiple subjects
within different clusters or clustered data, and handle random
effects that used to model the variability in the response variable
due to the grouping structure of the data (46). GLMMs can model
both common and individual behaviors, containmore information,
have more variability, and are more efficient than pure time series
or cross-sectional data (47).

Therefore, in this paper, we specifically focus on studying
within-subject variation and between-subject effects in GLMMs
to understand how child comorbidity varies within and between
subjects by considering the child’s id and region as random effects
and to identify the factors associated with this heterogeneity. Our
model incorporates diverse potential predictors for comorbidity
sourced from the 2019 Performance Monitoring for Action
Ethiopia (PMA-ET) community survey datasets. These datasets
systematically gather information on child health and household
characteristics, drawing from a nationally representative sample of
households. It’s worth noting that this dataset captures valuable
information that is presently underutilized by other extensive
surveys, such as demographic and health surveys like DHS (48).

In terms of parameter estimation, a likelihood-based approach
is often recommended, with Akaike’s information criteria serving
as a tool for model selection in likelihood-based estimation (49).
Furthermore, we use a simulation-based approach of the DHARMa
package in R to create readily interpretable scaled (quintile)
residuals for fitted GLMMs (50). Our analysis of advanced current
methodological approaches with a recent data set of interest will
provide robust information for the best possible planning of
health services as well as a better understanding of the state of
children’s health.

2 Materials and methods

PMA Ethiopia generates timely cross-sectional and
longitudinal data on reproductive, maternal, and new-born
health indicators. We use the data from a nationally representative
longitudinal study (cohort one study) conducted from October
2019 to August 2021 which collects details on mothers’
characteristics and child health from a nationally representative
sample of households.

2.1 Sampling and study design settings

PMA Ethiopia used a sampling method called multistage
stratified cluster sampling to select households for their study.
They selected households from specific clusters or enumeration
areas (EAs), with the areas being chosen based on their size within
different groups. In some regions, the strata were determined by the
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FIGURE 1

Data extraction for 6 week postpartum follow-up interview flowchart.

region and whether it was urban or rural, while in other regions, the
strata were just based on the regions themselves.Within the regions
that were part of the study, a census was conducted to identify
all households and women between the ages of 15–49 who were
regular members of the household.

All women who were aged 15–49 were screened, and those who
reported being pregnant or having given birth in the past 6 weeks
were eligible for the survey. Explicit inclusion criteria consisted
of women aged 15–49 years who had recent births, as defined by
the PMA-ET survey design. No additional exclusion criteria were
applied due to limitations inherent in the original dataset, which
did not provide further exclusion-related information. From this
group, consenting eligible women were enrolled in the study and
completed a baseline interview and were then reinter viewed at 6
weeks, 6 months, and 1 year postpartum by a trained interviewer.
This study employs a cross-sectional analysis using data collected
from baseline and six-week postpartum interviews. Specifically,
we analyzed child morbidity variation and its association with
socio-demographic, maternal, and child health-related factors at
the six-week postpartum period. The baseline interview collected
information about women’s socio-demographic characteristics.
PMA-ET was able to interview the minimum number of women
per EA and achieve a sample that was representative on both

national and regional levels. During the interview, women were
asked about the socioeconomic characteristics of their households
and the health status of their children. Among the 2,871 women
contacted for the panel baseline interview, 2,855 enrolled pregnant
or recently post-partum women in our survey, 2,664 completed
six-week postpartum interviews (conducted at baseline and 6
weeks postpartum), 2,581 women with live births used for the
analysis (71 women with miscarriage or abortion excluded; see
Figure 1). Confounding variables were selected based on consistent
associations reported in previous studies on child morbidity in
similar settings; the validity and reliability of the data collection
instruments were established by the original PMA-ET study
team (48).

2.2 The variables

Our study includes a range of potential predictors for child
comorbidity from the PMA-ET dataset (see Table 1), including
the mother’s age, mother’s education, mother’s parity, region,
residence, types of cooking fuel, sanitary classification, availability
of electricity, and wealth. The outcome variable considered is
binary, taking a value of one if a child developed at least
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TABLE 1 Sociodemographic covariates and their labeling for child

comorbidity study.

Variables Variable description and/or classification
and labeling

Cooking fuel Electricity=1, kerosene= 2, charcoal= 3, and wood= 4

Wealth Household wealth quantiles: lower quartiles= 1, middle
quartiles=2 and higher quartiles= 3

Sanitation
classification

Improved, not shared facility=1, shared facility= 2,
non-improved facility=3, and Open defecation= 4

Residence Urban=1, and rural= 2

Education Never attended= 0, primary education=1, secondary
education= 2, above secondary education=3

Marital Married or with partner= 1, widowed or divorced= 2, and
never married=3

Age Age between 15–24= 1, Age between 25–34= 2 and Age
above 34= 3

Parity Zero parity= 0, parity between 1 and 2=1, parity between 3
and 4= 2, and parity above 4= 3

Electricity
availability

No= 1 and yes= 2

Region Tigray, Afar, Amhara, Oromia, SNNP, and Addis Ababa

one complication (namely cough, fever, diarrheal, vomiting, eye
infection, skin rash, poor feeding, difficulty breathing, etc.) in the
postpartum interview.

Notational

y =

{

1, if the child suffers from at least one of major complication

0, otherwise

Considering the random effects data utilized in this study, we
used the child’s id to visualize an interclass correlation while the six
regions represent the intraclass correlation to capture the variation
in child comorbidity of our study. Thus, samples were grouped by
six different regions of the country, namely Afar, Amhara, Oromia,
Tigray SNNP, and Addis Ababa. Analyzing categorical variables
in GLMMs, one of the categories is used as a reference category,
and the other categories are then measured against the reference
category in analyzing categorical variables in GLMMs (46). Besides,
region and child’s ID are uniquely labeled; we can specify random
effects as (1|region) and (1|child_ID).

The categorization of sociodemographic variables (Table 1)
was based on commonly used groupings in existing literature
related to child morbidity and public health research in similar
settings (11, 13). Age groups, education levels, wealth indices, and
residence status were categorized following standard demographic
health survey (DHS) practices to maintain comparability across
studies. Missing data were assessed prior to analysis; the PMA-
ET dataset underwent a rigorous quality control process, and
minimal missingness was detected. During our data cleaning phase,
we verified the completeness of key variables using frequency
distributions and summary statistics, confirming that there were no
significant missing values in the final analytic sample. Sensitivity
analysis was not performed, as the minimal level of missing data
and the robust sample size were deemed sufficient to support the
stability of the primary findings.

2.3 Methods

2.3.1 Generalized linear mixed model
Generalized LinearMixedModels (GLMMs) were developed to

address the need for analyzing non-normally distributed responses
that exhibit correlation or clustering. GLMMs account for variation
in cluster data by incorporating random effects into the model to
capture the heterogeneity of observation within clusters (51–53).
GLMMs are used for fully parametric subject-specific inference for
clustered or repeated measurement responses in the exponential
family (54). It is particularly useful in biomedical studies as it
can account for the correlation between observations that arise
from the hierarchical structure of the data and in recent years,
the use of GLMMs in Biomedical study has increased, and now
it is considered one of the most powerful and challenging tools
in the field (55, 56). The link function had been used to account
for the correlation between the data within each cluster and to
model non-normal outcome variables. In GLMMs, the logit link
function maximizes the likelihood of the data under the model,
maps the probability of a binary outcome to a linear predictor, and
has straightforward interpretations in terms of the odds ratio (53,
57, 58).

2.3.2 Model specification of GLMMs
Let yij be the binary response measured for ith cluster, for i =

1, 2,. . . ,N, j = 1,2,. . . , ni, and xij is the ith row of the matrix for the
fixed effects and yi is the ni-dimension vectors of all measurements
available for ith child, conditional on the random vector bi with
q dimensions, and which is assumed to be drawn independently
from a distribution belong to exponential family. Furthermore, bi
captures the unobserved factors specific to each cluster that affect
the child comorbidity and is assumed to be drawn independently
from the normal distribution with mean zero and variance σb

2 i.e.
bi ∼ N(0, σb

2), where σb
2 refers to the variation in the population

distribution and, consequently, the degree of subject heterogeneity.
Thus, the probability density function of the response yij, which is
independent of the distribution of yi is given by (46, 59, 60).

fi(yij/bi , β, φ) = exp {
yij(θij)− ψ(θij)

φ
+ c (yij, φ)} (1)

Here θij isthe linear predictor (θij = xij
′
β + zij

′
bi), ψ (θij)

is the link function, φ is the dispersion parameter and c (yij, φ)
normalizing constant.

The function g (µij) is the inverse of the link function ψ (θij).
The relationship between g (µij) and fi(yij/bi , β,φ) is given by the
following equation:

g (µij) =

∫

fi(yij/bi , β, φ) dyij (2)

By using Laplace approximation, Equation 2 approximates to
the function;

g (µij) = g [ǫ(yit|bi)] = xij
′

β + zij
′

bi (3)
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The function g(.) is a known link function that belongs to the
GLMM framework that is used to map the expected values of the
response variable to the linear predictor, xij is the ith row of the
matrix for the fixed effects, zij is the ith row of the matrix for
the random effects associated with bi, β is the parameter vector
of unknown fixed effects and ψ is scall parameter or cumulant
generating function.

Under this GLMMs settings, the logit function is commonly
chosen as the link function g(µij) is defined as

g (µij) = logit (µij) = log (
µij

1− µij
) = ηij = xij

′

β + zij
′

bi (4)

Here the conditional expectation equals to the conditional
probability of a response given the random effects and covariance
values, i.e., µij = ǫ(yij|bi, xij)= P (yij|bi, xij).

This model can also write as

P (yij|bi, xij, zij) = g−1(ηiz) = g−1(xit
′

β + zit
′

bi) (5)

Where the inverse link functions g−1(ηij) is the logistic
cumulative distribution function (CDF), which is used to quantify
the binary response, namely:

g−1(ηij) = [1+ exp
(

ηij
)

]
−1

(6)

In GLMMs, the logistic distribution can facilitate the process
of estimating the distribution’s parameters by maximum likelihood
estimation or other techniques and has the advantage of making a
straightforward parameter estimation (61).

2.3.3 Estimation
Likelihood-based approaches rely on the likelihood function

to estimate the parameters in GLMMs. With this model, the joint
distribution of both the vectors of response and the vectors of
random effects are fully specified and we might use the same
methods to estimate these models (62). Given the above model
specification for the GLMMs based on the assumption that the
binary responses yij (conditioned on the random effects bi) are
conditionally independent, the joint probability of the response
vector yi and the random effect vector bi for f (bi) distribution of
the ith random effect can be explained as follows:

f (yi, bi)= f (yij|bi)f (bi)= f (yi1|bi)f (yi2|bi). . . .f (yini |bi)f (bi) (7)

Then the likelihood function of the parameters β and σb
2 is

given by:

L (β , σb
2) =

∏n

i=1
f (yi) =

∏n

i=1

∫

f (yi, bi)dbi

=
∏n

i=1

∫

f (yi|bi) f (bi)dbi

=
∏n

i=1

∫

∏n

i=1
f (yit|bi) f (bi)dbi

(8)

Since yij is a binary response, has a value of 0 or 1,
The conditional mean of yij is related to the linear predictor
by a logit link function. Thus, zij = 1 for all i= 1,2. . .

2,581 and j= 1,2. . . ni, the linear predictor of Equation 4 was
equivalent to:

ηij = xij
′

β + zij
′

bi = xij
′

β + bi (9)

Thus, Equation 8 can be put in the simplified form as:

L (β , σb
2) =

∏n

i=1

∫

{exp
(

β
∑ni

i=1
yijxij

′

+ yibi

)

}

{
∏ni

j=1

1

1+ exp(xij
′
β + bi)

}

{1/
√

2πσb2exp(−
1

2σb2
) bi

2dbi} (10)

The values of β and σb
2 that maximize this likelihood

function are the ML estimates of β and σb
2. However, from

Equation 10, it is not possible to use the entire likelihood
function since there are no closed-form solutions. Thus, it
is necessary to employ estimates of the probability function
to find a solution for this problem. Laplace’s approximation
approach serves as the foundation for all likelihood-based
techniques and the GLMM’s parameters are estimated using the
glmer function in the lme4 package of R for this likelihood
approximation (63, 64).

2.3.4 Laplace’s approximation
The Laplace approximation is a quadrature method for

estimating integrals of this kind was developed by Laplace and
published in 1774,

∫ b

a
f(t)eλg(t)dt (11)

Where both g(t) and f(t) are continuous smooth functions, f(t)
is nonzero at t0, and g(t) is a twice-differentiable function on (a; b)

with a maximum in the interval (a; b). The underlying principle
of Laplace’s approach is that, for large λ, the integral’s bulk will
come from the integral’s contribution around a certain point, t0.
That resulting integral may be proven to represent the kernel of a
normal distribution, which can then be integrated, using second-
order Taylor series expansions for g(t) and f(t). The integrand in
the function is comparable to the likelihood of a GLMMs, which
contains exponential functions from the exponential family of
probability distributions, as can be seen by examining the form
above (63, 64).

2.3.5 Akaike’s information criterion
Akaike’s information criterion (AIC), is a popular model

selection criterion based on likelihood, with the optimal model
being the one that minimizes AIC. It frequently works in
tandem with the Deviance Information Criterion (DIC) and the
Bayesian Information Criterion (BIC) (49). For data set D =
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{(yi,xij
′
)}, where yi is the outcome vector and xij

′
is a set of

fixed effects and for maximum likelihood estimator β̂ under
computing model.

For p dimension of β , AIC can be formulated as:

AIC = −2L(β̂ ,D) + 2p (12)

2.3.6 The likelihood ratio test for variance
components in GLMMs

GLMM’s are used to describe responses from exponential
families with a combination of fixed and random effects, and
variance components in GLMMs come from random effects (65).
This is equivalent to testing that the variance component equals
zero and the hypothesis of interest is:

HO : σb
2 = 0 Vs H1 : σb

2 > 0

For the maximized log-likelihood under the null hypothesis
l1 and the variance component estimated lo, the test statistics for
variance components of the likelihood ratio test are given by:

G2 = 2(l1 − l0) (13)

Here G2 follows chi-square distribution with 1 degree
of freedom.

3 Results

3.1 Explanatory data analysis

Exploratory analysis of clustered data intends to identify
characteristics of random variation that distinguish individual
children as well as patterns of systematic variation across groups
of children. Among the main illness categories that were recorded
(see Table 2), cough, fever, and diarrheal were found to be the most
frequent types of children’s illnesses, with percentages of 25.67,
18.52, and 14.08, respectively. Moreover, fast birthing, no stool,
difficulty in birth, and swelling occurred at all lower rates under
1 year of age. A total of 2,322 episodes of any illness were noted
among the children who were considered in the PMA 2019 survey.

The density of residuals and distribution of responses give
insight into how the responses and predictors are related to one
another (66, 67). As shown in Figure 1, the bottom left of it depicts
the density of residuals (see left plot of Figure 2), in which the
residuals are obviously bimodal (not normal), and the bottom right
side of the plot is the distribution of responses (see right plot
of Figure 2). With these distributions, non-normally distributed
responses are possible accommodated, including non-linear links
between the mean of the child morbidity and the predictors, as well
as some form of correlation in the data. Thus, GLMMs with logit
link functions are an ideal method of detecting child morbidity for
the given datasets.

A Pearson’s chi-square test of a bivariate analysis has been
carried out to look at the relationship between a few chosen
variables (68). The following table (see Table 3) represents the
contingency table analysis of the morbidity status of children,

along with Pearson’s chi-square value to determine if a particular
regression coefficient is significant. Mother’s age is the only variable
that is not significantly (P-value= 0.632) related to child morbidity
among all the factors that were taken into consideration at the 5%
significance level. Furthermore, morbidity is predominant among
children whose mothers use charcoal for fuel (37.16%), never
attended education (30.20%), live in rural areas (47.77%), and have
lower quartiles of wealth (32.70%).

3.2 Generalized linear mixed model analysis

3.2.1 Type-III tests of fixed e�ects
In GLMMs, Type-III tests are applied to evaluate each term’s

significance while taking into consideration the effect of every other
term (69). Table 4 of the Type III analysis of the likelihood ratio test
of all the fixed effects (except sanitation class) significantly affects
child morbidity.

The following table (see Table 5) presents the estimates, odds
ratio, significance level, and confidence intervals of the estimates
of the fixed effects based on the likelihood ratio chi-square test
result using the glmer function of the lme4 package in R (70). The
estimates tell us the amount of increase in the predicted log odds
of comorbidity equals one, which would be predicted by a one-
unit increase (going from one category to another category) in the
predictor, holding other predictors constant. Based on the results,
wealth status significantly affects the child morbidity status, and it
is observed that children from middle quartiles (OR = 0.47, P =

0.002; 95% CI: −0.766, −0.167) and higher quartiles (OR = 0.62,
P = 0.001; 95% CI: −1.05, −0.415) are less likely to suffer illness
than children from lower quartiles. Our study also demonstrated
that children from a mother with primary, secondary, and higher
education are 41%, 52%, and 51% respectively, less likely to be ill
than mothers who never attended school.

Similarly, children who lived in rural areas (OR = 1.66, P
= 0.004; 95% CI: 0.158, 0.858) are 1.66 times more likely to get
affected by morbidity than children who lived in urban areas,
and using wood as a fuel is 1.14 times more likely than using
electricity to get child morbidity. Likewise, the absence of electricity
(OR = 1.49; P = 0.014; 95% CI: 0.079, 0.718) is more likely
for children’s illness as compared to children who can access
electricity. This study’s findings also suggest that a woman with a
parity of 3–4 and 5+, never married, and divorced or widowed
mothers’ marriage statuses aremore likely to have comorbidity than
their counterparts.

3.2.2 Interaction e�ects
The interaction between a mother’s education (never attending

primary education, secondary education, or higher education) and
a mother’s age (age between 15 and 24, age between 25 and 34,
and age above 35) is presented in Table 6. As the result indicated,
children from mothers above 35 years of age are less likely to be ill
compared to children whose mother’s age is<34 for secondary and
higher mother education groups (OR = 2.3, OR = 1.67, P-value =
0.022, P-value= 0.015, respectively).
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TABLE 2 Distribution of the broad categories of illness among children, PMA-ET 2019 survey.

Broad illness category Total number of episodes Percentage of episode Mean Episodes/child
SD

Any illness 2,322 1.148 0.036

Cold/cough 596 25.67 0.43 0.136

Fever 430 18.52 0.322 0.109

Diarrhea 327 14.08 0.244 0.082

Vomiting 195 8.4 0.139 0.043

Difficulties feeding/unable to suck 178 7.67 0.131 0.043

Skin rash/skin lesion 170 7.32 0.122 0.038

Red eye/passage of pus from eyes 153 6.57 0.121 0.045

Sore throat/tonsillitis 68 2.93 0.046 0.013

Fast birthing 42 1.81 0.033 0.012

No stool 40 1.72 0.032 0.012

Unconscious 32 1.38 0.005 0.02

Difficulty in birth 31 1.34 0.02 0.005

Reduced alertness (lethargy) 29 1.25 0.025 0.01

Convulsion 11 0.47 0.009 0.004

Abdominal/body swelling 9 0.39 0.007 0.003

Other 11 0.47 0.008 0.003

FIGURE 2

Predicted distribution of residuals and response for child comorbidity study.

3.2.3 Model comparison and diagnosis
Comparing the models is an important step in the modeling

process to see which ones best fit the data (71, 72). Akaike’s

information criterion (AIC) is a widely used model selection
criteria based on the maximum likelihood estimator (49). Results
of the AIC, log-likelihood ratio test (LRT), BIC and other useful
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TABLE 3 Characteristics of the study participants by morbidity and their mother’s sociodemographic status, PMA-ET 2019 survey (n = 2,581).

Background
characteristics

Weighted frequency
n (%)

Morbidity status Pearson’s X2 value/p-value

No, n (%) Yes, n (%)

Cooking fuel

Electricity 435 (16.85) 203 (7.87) 232 (8.99) chi2 (3)= 104.06, Pr< 0.001

Kerosene 10 (0.39) 1 (0.04) 9 (0.35)

Charcoal 1,764 (68.35) 408 (15.81) 1,356 (52.544)

Wood 372 (14.41) 130 (5.04) 242 (9.38)

Mothers’ marital status

Married or with partner 442 (17.13) 155 (6.01) 287 (11.1) chi2 (2)= 10.36, Pr= 0.006

Widowed or divorced 810 (31.38) 217 (8.41) 593 (22.9)

Never married 1,329 (5,149) 370 (14.34) 959 (37.16)

Mothers’ age

15–24 877 (33.98) 264 (10.23) 613 (23.75) chi2 (2)= 1.19, Pr= 0.632

25–34 1,312 (50.03) 369 (14.30) 943 (36.54)

35+ 392 (1,519) 109 (4.22) 283 (10.96)

Mothers’ education

Never attend 986 (38.20) 205 (7.94) 781 (30.20) chi2 (3)= 83.80, Pr< 0.001

Primary 924 (35.8) 258 (10) 666 (25.8)

Secondary 393 (15.23) 158 (6.12) 235 (9.10)

Higher or TVET 278 (10.78) 121 (4.69) 157 (6.08)

Residence

Urban 1,001 (38.78) 395 (15.30) 606 (23.48) chi2 (1)= 90.22, Pr< 0.001

Rural 1,580 (61.22) 347 (13.44) 1,233 (47.77)

Wealth quartiles

Lower quartile 842 (32.62) 148 (5.73) 844 (32.70) chi2 (2)= 101.79, Pr< 0.001

Middel quartile 400 (15.50) 99 (3.84) 694 (26.89)

Higher Quartile 1,339 (51.88) 495 (19.18) 301 (11.66)

Parity

0 518 (20.17) 192 (7.44) 326 (12.63) chi2 (3)= 49.08, Pr< 0.001

1–2 1,031 (39.95) 326 (12.63) 705 (27.31)

3–4 566 (21.93) 132 (5.11) 434 (16.82)

5+ 466 (18.06) 92 (3.56) 374 (14.49)

Sanitation classification

Improved, not shared facility 119 (4.61) 52 (2.01) 67 (2.60) chi2 (3)= 70.64, Pr= 0.006

Shared facility 416 (116.12) 180 (6.97) 236 (9.14)

Non-improved facility 1,170 (45.33) 311 (12,.05) 859 (33.28)

Open defecation 876 (33.94) 199 (7.71) 876 (33.94)

Electricity availability

No 1,386 (53.70) 310 (12.01) 1,076 (41.69) chi2 (1)= 59.53, Pr= 0.012

Yes 1,195 (46.30) 432 (16.74) 763 (29.56)

(Continued)
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TABLE 3 (Continued)

Background
characteristics

Weighted frequency
n (%)

Morbidity status Pearson’s X2 value/p-value

No, n (%) Yes, n (%)

Region

Addis Ababa 258 (10)

Afar 222 (8.60)

Amhara 445 (17.24)

Oromia 638 (24.72)

SNNP 587 (22.74)

Tigray 431 (16.70)

TABLE 4 Type III tests of fixed e�ects from GLMMs of child morbidity,

PMA-ET 2019 survey (n = 2,581).

Fixed e�ects DF F-values Pr (>F)

Cooking fuel 3 18.8098 0.0005∗∗∗

Wealth 2 19.3282 0.0003 ∗∗∗

Sanitation class 3 0.6979 0.812

Residence 1 4.8428 0.0044 ∗∗

Mother education 3 6.9747 0.0016∗∗

Marital status 2 4.4209 0.0119 ∗

Mother’s age 2 1.9634 0.018 ∗

Parity 3 2.7513 0.044∗

Electricity availability 1 6.0684 0.014 ∗

Mother education: mother’s age 6 1.4051 0.209

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p ≥ 0.1.

information on the fit of the model are presented in Table 7.
Accordingly, the model with two random intercepts (the random
intercept of region and Child’s id) has a lower AIC (AIC= 2,929.9)
and is statistically significant (P < 0.001) in comparison to one
random intercept model (AIC = 2,942.6). It is also supported in
the loglikelihood ratio test (LRT) with a significance P-value (P
< 0.001). This suggests that two random intercept models from
GLMMs permit data correlation and provide more effective overall
performance compared to one random intercept model.

In GLMMs, random intercept plots are employed to illustrate
the distribution of random effects (51, 77). Figures 3A, B displays
the diagnostic plots for random intercepts corresponding to two
random effects, providing a visual representation of the variability
in child morbidity. These plots inform us about the existence of
variability at the cluster level for child morbidity. The estimated
variance in the intercept, specific to both region and children, is
found to be very close to zero. Hence, the inclusion of random
effects is a prudent modeling decision, given the considerable
variation observed in estimations of both regional and children-
specific effects.

3.2.4 Residuals diagnosis in GLMMs
Residuals in GLMMs have a coarse structure due to random

effects and grouping of data. As a result, these models should

not use techniques like QQ plots or Shapiro–Wilk tests to
verify residual normality as standard linear models (73–75).
Therefore, we use the “Diagnostics for HierArchical Regression
models (DHARMa)’ package to create readily interpretable scaled
(quantile) residuals for fitted GLMMs (50) and binned residual
plots in dividing the data into bins based on fitted value (53).

Figure 4 displays the plots of residuals vs. fitted values for fitted
GLMMs (binned residuals). From the plot, most of the residuals
fall within the error bound (indicated in blue points), and fewer
residuals are outside of the error boundaries (indicated in red
points). Thus, most of the binned residual fell within the 95%
confidence interval of error bounds, which indicates that the model
is a good fit for the data.

Furthermore, in the DHARMa package in R, the QQ plot
compares the observed residual to the expected under the
assumptions of normality, and the points in the QQ plot fall along
a straight line for normally distributed residuals (50, 53). The plot
also displays the Kolmogorov-Smirnov test (KS test), dispersion
test, and outlier test (76). From Figure 4, the points on the QQ
plot fall along a straight line which indicates that the model can
account for the variation in child morbidity and the model is not
systematically overestimating or underestimating child morbidity
(see the left of Figure 5). Moreover, the insignificant values of the
KS test, dispersion test, and outlier test (P = 0.6764, P = 0.88, P
= 0.82485, respectively) suggest that the residuals of the model are
normally distributed, homoscedasticity variance, and no influential
observations in the data. Similarly, the right of Figure 5 depicts a
plot of the residual against the predicted values. The red solid line
at y = 0.5 represents the median of the residual, while a dashed
red line represents the theoretical median of the residual under
the assumption of uniform distribution (78). Therefore, the two
lines are close together at y = 0.5 indicating that the residuals are
uniformly distributed.

4 Discussion and conclusion

4.1 Discussion

We tried to check the presence of variability in child morbidity
and determine major predictive factors for child morbidity using
the GLMMs. We used PMA datasets in STATA-17 and the 4.3.0
version of R for our data analysis. Based on AIC and the likelihood
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TABLE 5 Estimates of fixed e�ects from GLMMs for children’s comorbidity, PMA-ET 2019 survey (n = 2,581).

Covariates Coef. SE Z P > |Z| OR 95% CI (Coef.)

(Intercept) 0.79 0.33 2.4 0.016 ∗ 2.21 (0.146, 1.44)

Cooking fuel (ref.= electricity)

Kerosene 1.62 1.11 1.46 0.144 5.02 (−0.556, 3.78)

Charcoal 0.14 0.20 0.68 0.499 1.14 (−0.258, 0.528)

Wood 0.40 0.16 2.5 0.013 ∗ 1.48 (0.081, 0.712)

Wealth (ref = lower quartile)

Middle quartile −0.47 0.15 −3.1 0.002 ∗∗ 0.62 (−0.766,−0.167)

Higher quartile −0.74 0.16 −4.5 0.001 ∗∗∗ 0.47 (−1.05,−0.415)

Sanitation classification (ref. = improved, not shared facility)

Shared facility −0.11 0.22 −0.53 0.603 0.89 (−0.548, 0.318)

Non-improved facility 0.06 0.15 0.40 0.693 1.06 (−0.234, 0.351)

Open defecation −0.03 0.19 −0.14 0.891 0.97 (−0.380, 0.338)

Residence (rural) 0.51 0.18 2.8 0.004 ∗∗ 1.66 (0.158, 0.858)

Mother education (ref = never attended)

Primary education −0.52 0.22 2.9 0.001∗∗ 0.59 (−0.946,−0.085)

Secondary education −0.71 0.25 −2.4 0.018 ∗ 0.48 (−1.21,−0.218)

Higher education −0.69 0.32 −2.2 0.033∗ 0.49 (−1.34,−0.055)

Marital (ref. = married/partner)

Widowed or divorced 0.38 0.14 2.8 0.004 ∗∗ 1.46 (0.120, 0.648)

Never married 0.32 0.13 2.6 0.010 ∗ 1.37 (0.073, 0.559)

Mother’s age (ref.= 15–24)

25–34 −0.27 0.23 −1.2 0.243 0.76 (−0.719, 0.183)

35+ −0.72 0.27 −2.5 0.010 ∗ 0.49 (−1.26,−0.169)

Parity (Ref. = 0)

1–2 0.10 0.13 0.80 0.426 1.10 (−0.146, 0.344)

3–4 0.39 0.17 2.3 0.023 ∗ 1.48 (0.055, 0.733)

5+ 0.53 0.24 2.5 0.013 ∗ 1.70 (0.111, 0.954)

Electricity availability (NO) 0.40 0.17 2.5 0.014 ∗ 1.49 (0.079, 0.718)

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p ≥ 0.1.

OR, odds ratio; CI, confidence interval; SE, standard error; SD, standard deviation and the model is fitted by maximum likelihood estimation.

ratio test values, a two-random intercept model was found to
be more favorable in illustrating the presence of child morbidity
variability between children and within regions. From our study
using GLMMs, based on the likelihood chi-square and Type III
test, we found that the factors that significantly affect the children’s
comorbidity were cooking fuel, wealth quartiles, mothers’ marital
status, mother age, parity, residence mother’s education status, and
availability of electric city. However, sanitation classification is not
influential for the presence of children comorbidity in Ethiopia.

Children from divorced and never-married families are at high
risk of suffering illness and experiencing more health problems
than children from two-partner families. Like studies carried out
(29–31), our result suggests that a lack of a stable family structure
and the absence of one of her or his family members contribute
to the negative effects on children’s health. Similarly, our findings

demonstrated that children with high parity had a higher risk
of morbidity than children with low parity, based on PMA-ET
datasets. The study found that increased parity is associated with
higher odds of child morbidity, and our result is in accordance
with (24, 26) that higher child morbidity is associated with
high parity.

Furthermore, the results showed that children who live in
rural locations and lack electricity are more likely than their
counterparts to experience morbidity difficulty. It demonstrates
that living in rural areas and not having access to electricity
are positively connected with child morbidity and this result
is in accordance with (11, 15, 34). Moreover, the household
wealth index has a negative correlation with morbidity in children
and it is a significant socioeconomic determinant influencing
children’s health in Ethiopia. The lower quartile families had bad
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TABLE 6 Estimates of the two-way interaction e�ects and the variance parameter of the random e�ect models from GLMMs for child morbidity, PMA-ET

2019 survey (n = 2,581).

Covariates Coef. SE Z P > |Z| OR 95% CI of Coef.

Education and age (ref = never attended: age between 15–24)

Primary education: age between 25–34 0.39 0.28 1.5 0.149 1.47 (−0.142, 0.923)

Secondary education: age above 25–34 0.24 0.32 0.76 0.449 1.27 (−0.379, 0.854)

Higher education: age between 25–34 0.03 0.36 0.08 0.935 1.03 (−0.692, 0.751)

Primary education: age above 35+ 0.24 0.35 0.67 0.501 1.27 (−0.453, 0.926)

Secondary education: age above 35+ 1.26 0.55 2.3 0.022 ∗ 3.53 (0.176, 2.34)

Higher education: age above 35+ 0.43 0.65 1.67 0.015∗ 1.65 (0.831, 1.69)

Random e�ects Variance SD

Region 5.318e−02 0.231

Child_ID 4.598e−07 0.006

Residual 0.123 1.045

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p ≥ 0.1.

OR, odds ratio; CI, confidence interval; SE, standard error; SD, standard deviation; Coef., coefficients.

TABLE 7 The Likelihood-Ratio-Test (LRT) and Akaike information criteria for random intercept models comparison from GLMMS of child morbidity

(n = 2,581).

Models Akaike information criteria for model comparison Likelihood-ratio-test (LRT) for model
comparison (ML-estimator)

AIC BIC logLik Deviance Pr
(>Chisq)

df Chi2 Pr
(>Chisq)

ONE RIM 2,942.6 3,106.6 −1,443.3 2,886.6 28

TWO RIM 2,929.9 3,099.7 −1,435.9 2,871.9 0.001249 ∗∗∗ 29 14.72 <0.001∗∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1, p ≥ 0.1.

ONE RIM, one random intercept model; TWO RIM, Two random intercept model.

nutrition, limited education, poor cleanliness, and poor hygiene.
This suggests that compared to children from middle and high
quartiles, children from lower households are more likely to
experience children’s illness. The findings align with those reported
by Chalasani and Rutstein (20), Hong et al. (23), and Takele et al.
(27), indicating that an increase in household income is associated
with a reduction in the incidence of illness among children.

The results we found also showed a negative correlation
between childhood morbidity and the age of the mother. This
suggests that children whose mothers were younger than 24 have
a higher rate of illness. Our findings support the findings of Hviid
et al. (79), who noticed that children of mothers 35 years of age
and older had lower rates of child morbidity than children of
younger mothers. However, our results also contradict those of
Nourkami-Tutdibi et al. (80), who found that children of mothers
35 years of age and older had higher rates of child morbidity
than children of younger mothers. Another significant risk factor
for children’s comorbidity is the mother’s academic achievement.
The risk of morbidity is higher in children whose mothers have
not received any education compared to children whose mothers
have completed at least primary education. It implies that educated
mothers are also more likely to have an income and better access
to child health care and have access to information about the

health, eating habits, and development of their children, which
can enhance the health of their children. These results confirm the
results obtained from previous studies (21, 22, 25).

This study has several limitations that should be considered
when interpreting the findings. The sampling design of the
PMA-ET survey may have introduced selection bias, potentially
leading to an overrepresentation of mothers with better access
to health services, higher education, and urban residence.
This could have affected both internal and external validity,
likely underestimating child morbidity among disadvantaged
and hard-to-reach populations. Furthermore, child morbidity
was assessed through maternal self-reports without objective
clinical verification, introducing the possibility of information
bias. Symptoms may have been underreported due to recall or
social desirability bias, or alternatively overreported by more
health-conscious mothers, resulting in potential underestimation
or overestimation of true morbidity rates. Additionally, some
important confounders, such as water quality, sanitation practices,
and access to prenatal care, were not directly measured or
controlled, raising the risk of residual confounding that could bias
associations in either direction.

The cross-sectional nature of the data further limits the ability
to establish clear causal relationships, raising concerns about
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FIGURE 3

Random intercept plots for the random e�ect region (A) and random e�ect Child_ID (B) of the child comorbidity study.

FIGURE 4

Binned residual plot for the children’s comorbidity study.

reverse causality. For instance, while poor household conditions
might increase child morbidity, it is also plausible that caring for a
sick child could lead to economic strain and worsening household
circumstances. Moreover, although missing data were minimal,
we evaluated their presence through frequency checks and data
summaries to ensure the completeness of key variables. No formal
sensitivity analysis was conducted, as themissingness was negligible
and unlikely to influence the robustness of the findings. Future
studies should prioritize longitudinal designs, include objective
clinical validation of child health outcomes, and capture a wider
range of confounding factors to better clarify causal pathways and
improve the generalizability of results.

4.2 Conclusion

According to our result, GLMMs are better suited to handle
complex data structures like hierarchical data. This model also
offers more precise estimates of random effects on this child
comorbidity study to capture heterogeneity and look at how
it relates to different variables like socioeconomic status, use
of health services, and health outcomes. Cooking fuel, wealth
quartiles, mothers’ marital status, mother age, parity, residence
mother’s education status, and availability of electric city were
significantly associated with children’s morbidity. Improving the
socio-economic standings of mothers through socio economic and
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FIGURE 5

Quartile residuals for children comorbidity study in GLMMs.

education reduces the prevalence of child morbidity under the age
of one.
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