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Introduction

Many cultures throughout history have pursued the quest to improve longevity

(1). Scientific advances, implementation in public health, and the use of vaccines and

antibiotics have enhanced life expectancy over the last century (2). These interventions

have reduced mortality but may have led to a concomitant rise in age-related

multimorbidities (MM). Therefore, intervention initiatives need to incorporate the

expanded goals of preventing age-related decline and extending healthspan—the period

of life spent in good health and free from chronic diseases and disabilities (3). At its

most essential, aging can be considered to result from impaired regulation of homeostasis,

with a diminished ability to repair damage to critical molecular-cellular systems, a

gradual decline in physiological functions, and accumulation of dysregulated and senescent

cells over time. As people age, their immune systems become less resilient, leading to

increased vulnerability to diseases and potentially contributing to the aging process.

Resilience—the capacity to resist, adapt, recover, or grow in response to challenges—is

believed to decrease with age and the development of age-related conditions (4). This

definition of resilience for living systems adopted by the trans-NIH Resilience Working

Group is relevant across multiple domains including environmental, community, and

individual dimensions including genetic, molecular, cellular, physiological, psychological,

and behavioral components. Immune resilience, the ability to maintain or regain optimal
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health during and after an infection can be indicative of an

individual’s overall health and aging trajectory. Those who can

maintain or quickly return to this optimal state are likely to

have a more favorable aging process (5). Behavioral and social

factors can also impede or support the adoption of preventive

strategies that increase resilience. An enhanced understanding of

aging processes and resilience factors could facilitate strategies

focused on improving early detection and intervention with the

aim to delay the onset of age-related conditions, mitigating their

severity, decreasing morbidity and frailty, and fostering healthier

aging trajectories (6, 7).

Aging is linked to increased vulnerability to challenges

contributing to aging-associated chronic diseases, such as cancer,

cardiovascular diseases (CVD), neurodegenerative disorders,

pulmonary conditions, and frailty. Preventing these or delaying

their onset would improve the quality of life of our increasingly

aging population. Identifying factors that promote healthy aging

and preserve functional abilities and well-being has become

a priority as the world’s population ages. Understanding the

commonalities and differences of the biological pathways involved

in natural aging and age-related diseases is critical to influencing

resilience outcomes, promoting health, and effective disease

management or prevention (8).

This manuscript summarizes knowledge gaps and current

barriers emerging from an NIH workshop organized on the topic

of: “Health and Aging Trajectories: Shared and Competing Risks

and Resiliencies for Chronic Diseases Associated with Aging” (9).

It also discusses novel research opportunities, ongoing efforts to

address these gaps, and strategies for future research (Figure 1). We

highlight the need for multi-disciplinary, collaborative efforts to

develop interventions that enhance resilience and prevent chronic

diseases, extend the healthy lifespan, and improve quality of life.

The intricacies of competing and
shared risks in aging trajectories

Unlike chronological aging, evenly measured in all individuals,

biological aging varies among and within individuals leading to

different aging trajectories. A complex interplay between inherent

genetic factors and a range of external and lifestyle factors impact

the course of biological aging and the onset of age-related chronic

diseases (8). As we age, we encounter shared and competing

risks that lead to multiple aging trajectories and influence

health outcomes (10–12). These risks include genetics and the

exposome—the lifetime exposure to internal factors and external

environmental influences such as pollution. Critical psychosocial

and lifestyle factors include diet, exercise, sleep patterns, and stress

levels. Different groups of individuals have different pathways of

age-associated molecular changes. Additionally, many age-related

conditions share risk factors that often coexist as MM, requiring

simultaneous management in individuals (13). MM prevalence

presents differently in the general population (14). The COVID-19

pandemic highlighted the variable risk for cognitive impairments

in older adults with MM (15). Furthermore, some groups

exhibit a higher incidence of neurodegenerative diseases (16, 17).

Despite adverse exposures, some people maintain healthier aging

trajectories, providing complexity to the role of lifestyle and genetic

factors against cognitive decline and age-related diseases. Other

factors include sedentarism, unhealthy diets high in processed

foods and saturated fats, smoking, excessive alcohol consumption,

and chronic stress, which significantly increase the likelihood of

developing age-related diseases. Older adults with limited social

networks are more likely to experience poor health outcomes,

including accelerated cognitive decline and higher mortality rates.

Strategies to promote social connectivity, such as community

engagement programs and digital tools, are increasingly recognized

as important components of healthy aging. It is essential to ensure

representation of older adults in clinical trials to better understand

diverse healthspan pathways. These findings highlight the complex

interplay of genetic predispositions on early onset of disease in

susceptible populations (11). The circumstances mentioned create

distinct aging patterns identified as “ageotypes”, that can contribute

to our ability to measure and monitor variable aging trajectories

(18). Understanding mechanisms and trajectories will allow us

to identify novel approaches that can help slow or even reverse

genetic, molecular and cellular hallmarks of aging and extend

healthspan and longevity (7, 10–12, 19).

To develop a better understanding of diverse healthspan

pathways, it is essential that longitudinal clinical trials strive

for population-based recruitment and enrollment. The Baltimore

Longitudinal Study of Aging, the longest running study of aging

in the United States, has contributed to our knowledge of normal

aging processes by looking at multiple phenotypic parameters

uncovering a complex, heterogeneous pattern of aging trajectories

(20, 21). The Danish Disease Trajectory Browser (22) provides a

new perspective on disease progression patterns that can reveal

associations between complex multimorbidities and potentially

identify preventive strategies for chronic diseases (23). To promote

interdisciplinary research on determinants and dynamics of within-

person aging-related changes in cognitive and physical capabilities,

health, personality, and well-being, the Integrative Analysis of

Longitudinal Studies of Aging and Dementia (IALSA) research

network provides access to meta-data from over 100 studies (24,

25).

Biological processes promoting
divergent aging trajectories

Several biological processes—briefly listed below—have been

shown to contribute to aging trajectories and are inextricably linked

to the emergence of age-related chronic diseases (7). Some of these

processes affect cells and tissues across the whole body; others are

specific to particular tissues and physiological functions.

Cellular senescence

Cellular senescence is a fundamental aspect of aging in which a

growing number of cells with increasingly anti-apoptotic mutations

continue to exist within the tissue ecosystem but cease to divide

(26, 27). Senescent cells accumulate within all tissues impairing

cellular functions through production of various proinflammatory

molecules (termed senescence-associated secretory phenotype).

Senescent cells contribute to a range of age-related conditions that
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FIGURE 1

Factors that contribute to aging trajectories and possible research opportunity areas to address age-related diseases. (a) The interaction of complex

factors such as genetics and lifestyle influences converge to drive an organism toward healthy aging or to the development of age-related diseases.

(b) Research opportunity areas identified during the workshop. Increased understanding and collaborations across various expertise areas are needed

to enhance health span and prevent or moderate the development of age-related disorders.

result from disruptions in normal cell functions across various

bodily systems (28). Within the central nervous system, senescent

cells contribute to structural brain changes and cognitive decline

(29). They can also tilt the scale toward the development of

cancer (30–32). Cellular senescence is also associated with reduced

resilience and a shortened lifespan, and represents a potential

therapeutic target to reduce severity and morbidity in COVID-

19 infections (33). Consequently, there is a burgeoning interest

in the development of senolytics, a category of drugs aimed

at targeting and eliminating senescent cells. This therapeutic

strategy holds the potential to mitigate age-related chronic diseases,

thereby enhancing resilience and extending healthspan (34–38).

The exploration of senolytics has yielded promising results, though

it remains premature to draw definitive conclusions (39, 40).

Enhancing the specificity of these compounds and optimizing

treatment protocols, including dosage, is critical to mitigate

adverse effects. Interestingly, senolytics have been identified in

natural compounds, indicating future potential approaches for

nutraceuticals in managing aging-related diseases (41).

Malignancy

The transformation from normal to malignant cells, as

outlined by the somatic evolution theory, establishes a connection

between aging and the development of cancer (42). As we

age, our DNA repair mechanisms become less efficient, leading

to an accumulation of mutations. These mutations, combined

with changes in the immune system, can contribute to the

onset of cancer, atherosclerosis, and other chronic diseases.

Aging and cancer share several key features, including genomic

instability, alterations in metabolism, changes in telomeres, and cell

senescence, all of which present potential targets for therapeutic

intervention (43–45).

Hematopoietic dysregulation and immune
system dysfunction

Disruptions of generation and function in both innate and

adaptive immune cells, coincides with the manifestation of aging-

associated morbidities. At the generation step, hematopoiesis is

shifted toward myelopoiesis at the expense of lymphopoiesis

in the bone marrow, reducing the output of lymphocytes (46–

48). Together with thymic involution and a life-long antigen

exposure, naïve B cells and T cells are reduced, and antigen-

experienced memory B cells and T cell subsets are increased in

the periphery (49–52), thereby limiting responses to infections,

tissue impairments, and cancer. Aging-associated B cells (53, 54)

inhibit survival of pro-B cells in the bone marrow (55) and
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cause polarization of peripheral Th17 and Th1 cells (56), while

aging-activated innate B1 B cells promote insulin resistance in

older adults (57) and induce potentially autoimmune CD8+ T

cells (58). Myeloid cells, such as monocytes and macrophages,

show impaired phagocytosis, thus inefficiently clearing apoptotic

cells and pathogens in aging (59, 60). The dysregulation as well

as decline in immune function (termed immune senescence)

increases in advanced age, contributing to the increased incidence

of CVD, cancer, and degenerative conditions (61). Additionally,

clonal hematopoiesis, which is characterized by the accumulation

of somatic mutations in hematopoietic stem cells, has also been

implicated in the onset of various age-related diseases (62–65).

Endothelial dysfunction

Endothelial dysfunction, a key aspect of aging-relatedmetabolic

shifts, leads to impaired vascular tone, pro-thrombotic and pro-

inflammatory states, contributing to widespread vascular and

organ decline (66). This dysfunction underpins the progression of

CVD, cancer, and degenerative conditions like vascular dementia

(67–71). Age-driven vascular changes in the brain, which are

more frequently observed in women, can diminish cognitive

function and brain volume, potentially marking early signs of brain

aging (72).

Dysbiosis

Accumulating evidence demonstrates the gut microbiome’s

role in age-related changes in metabolism, digestion, immunity,

mood, and cognition, influencing individuals’ health. Aging

can shift the microbiome toward pro-inflammatory bacteria,

affecting metabolism, weakening intestinal integrity, and leading

to low-grade inflammation (73). This microbiome evolution,

linked to brain health via the gut-brain axis, may contribute

to neurodegenerative diseases (74). Given its sensitivity to diet,

medication, and environment, influencing the microbiome offers

a potential strategy for preventing and treating age-related

conditions (75–78).

Immune dysregulation

Both innate and adaptive immune cell compartments,

impairing their function and increasing chronic low-levels of

harmful inflammation is defined as inflammaging (47, 48, 79). As

such, directly or by contributing to inflammaging, the dysregulated

immune cells in turn further age-related pathologies and diseases.

Dysbiosis and activation of myeloid cells inhibit lymphopoiesis in

the bone marrow, while accumulation of potentially pathogenic B

cells contributes to increased insulin resistance in aging (57) and

neurodegeneration (80).

Neuropathology

Alzheimer’s Disease and related dementias (ADRD) are

characterized by changes in neuronal and perineuronal

protein structure and function. The most notable and

long-studied neuropathology includes amyloid plaques and

hyperphosphorylated tau in neurofibrillary tangles. Implementing

interventions earlier in ADRD progression, such as in those with

mild cognitive impairment (MCI), could potentially reduce or

prevent the progression of cognitive decline and dementia (81, 82).

Utilizing biomarkers like plasma amyloid and tau alongside

neuroimaging can reveal the neurocognitive impacts of aging,

concomitant with the contribution of various risk factors such as

hypertension, genetics, and lifestyle on health outcomes (83, 84).

Psychogenic aging

Psychological factors—including responses to stress and

resilience—contribute to healthspan and lifespan. For example,

childhood experiences can have an impact on chronic diseases

and early mortality. Brain-body circuits play a pivotal role in

mediating interactions between environment, lifestyle, and aging.

The body’s cellular responses to stress begin in the nervous

system, with the release of neurotransmitters and the stimulation

of neuroendocrine pathways (e.g. the hypothalamic-pituitary-

adrenal axis) which have the potential to influence various

biological aging processes. Stress-related chemokines can trigger

the mobilization of immune cells from the bone marrow and can

lead to neuroinflammation (85). The identification of biomarkers

associated with the psychogenic aging could reveal the profound

effects of depression and loneliness on age-related morbidity,

enhancing our comprehension of psychosocial resilience and its

contribution to longevity and healthspan.

Discussion: shared and competing
risks to improve aging trajectories

A pressing research priority in the field of aging is the

identification, stratification, and management of shared and

distinct disease risks. Understanding how these risks interplay

and how they can be mitigated is critical to extend healthspan.

Regular physical activity, a Mediterranean-style diet rich in fruits,

vegetables, whole grains, and omega-3 fatty acids, cognitive

engagement, and stress management have shown promise in

delaying or preventing cognitive decline, reducing cardiovascular

risk, and improving overall health. Pleiotropic interventions—

those producing multiple positive effects on health—represent an

efficient path to improve health outcomes (86–89). For example,

weight loss has shown wide-ranging benefits, improving health

outcomes in patients with anxiety, depression, rheumatoid arthritis,

diabetes, hypertension, and cancer (90, 91). Importantly, applying

weight reduction strategies early in childhood and adolescence

can potentially delay the onset of multiple chronic conditions

later in life, highlighting the importance of timing for optimal

intervention (92, 93). Exercise similarly demonstrates strong

evidence for both slowing disease progression and preventing

chronic conditions (93).

Mental stimulation and physical activity have also been

shown to reduce the risk of MCI (82), while improved sleep

duration is linked to reduction in inflammatory cytokines, mental

health issues, and other outcomes crucial for healthy aging (94).
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Additional factors such as access to health care, social support,

adherence to medications, reducing environmental pollution, and

practices like mindfulness meditation have proven effective in

improving risk factors and long-term health outcomes (95–

100). Combining multiple effective interventions, and identifying

critical life stages for testing and intervention hold immense

promise for advancing preventive strategies and promoting better

aging trajectories.

The evaluation of individual health and disease status

requires detailed, longitudinal measurements. Technological

advancements in artificial intelligence (AI) such as machine

learning (ML) and large language models (LLMs) offer

transformative opportunities for personalized care, early disease

detection, and targeted interventions (101). Wearable devices,

which provide continuous health monitoring, enable a deeper

understanding of the interplay between genetics, environment,

and lifestyle. These tools facilitate the development of personalized

preventive and treatment strategies for age-related chronic

diseases (102).

Aging has been considered as either a disease or a normal

biological process. This classification has driven strategies such as

testing drugs intended for age-related diseases as an indirect means

of addressing aging. Alternative strategies need to be carefully

evaluated to avoid potential health risks. There is an urgent need for

a standardized definition of normal aging vs. age-related chronic

diseases, along with associated biomarkers, and the creation of

innovative models for studying biological aging. These measures

are crucial for establishing reliable and effective intervention

strategies (1). The field of geroscience seeks to understand how

factors impacting common cellular and molecular processes lead to

physiological dysfunction and chronic diseases. It aims to identify

novel approaches to help slow down or even reverse genetic,

molecular, and cellular hallmarks of aging and extend healthspan

and longevity (10, 21, 103–105).

A forward-looking research agenda must integrate

multidisciplinary approaches, incorporating advanced knowledge

of genomics, other omics, and the exposome. Environmental

exposures can interfere with gene expression pathways,

biochemical traits, and physiological functions. Individual

psychological traits, cognitive processes, and emotional responses

also influence the ability to cope with challenges and adopt

healthy behaviors (21, 104, 105). Closing the gap between lifespan

and healthspan requires the creation of innovative strategies to

make age-related diseases more predictable, preventable, and

manageable. Gaining insights into the essential elements that

maintain balance throughout life and the factors that disrupt

this balance could lead to the identification of novel diagnostic

markers and treatment targets (106, 107). Clinical longitudinal

studies will help identify critical periods for effective interventions.

Furthermore, compiling comprehensive and diverse datasets

through cutting-edge technologies will accelerate discoveries

and their clinical applications. Achieving the ambitious research

goals set forth in this workshop demands interdisciplinary

collaborations to address the complexities of aging and improve

early disease detection. It is equally critical to prioritize the

perspectives of patients in all phases of research. Finally,

translating research findings from the laboratory into clinical

practice will be pivotal in delivering tangible benefits to the

aging population.
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