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Background: Exposure to heavy metals has been implicated in adverse auditory 
health outcomes, yet the precise relationships between heavy metal biomarkers 
and hearing status remain underexplored. This study leverages a machine 
learning framework to investigate these associations, offering a novel approach 
to understanding the interplay between environmental exposures and hearing 
loss.

Methods: We conducted a retrospective cross-sectional analysis using data 
from the 2012–2018 National Health and Nutrition Examination Survey 
(NHANES), encompassing 2,772 participants after applying exclusion criteria. 
Demographic, clinical, and heavy metal biomarker data (e.g., blood lead and 
cadmium levels) were analyzed as features, with hearing loss status—defined 
as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, 
and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine 
learning algorithms, including Random Forest, XGBoost, Gradient Boosting, 
Logistic Regression, CatBoost, and MLP, were optimized and evaluated. 
Model performance was assessed using accuracy, area under the curve (AUC), 
sensitivity, and specificity, while SHAP (SHapley Additive exPlanations) elucidated 
feature contributions.

Results: The CatBoost model demonstrated the strongest performance, 
achieving an accuracy of 74.9% and an AUC of 0.792 on test data. Age, 
education level, gender, and blood levels of lead and cadmium emerged as the 
most significant features associated with hearing loss, as determined by SHAP 
analysis. These findings highlight key correlates of hearing impairment within 
the study population.

Conclusion: This study underscores the utility of a machine learning framework 
in identifying associations between heavy metal biomarkers and hearing loss 
in a nationally representative sample. While not designed to forecast hearing 
loss over time, our findings suggest potential clinical relevance for identifying 
individuals with elevated heavy metal exposure who may warrant further 
audiometric evaluation. This work lays a foundation for future longitudinal 
studies to explore these relationships more comprehensively.
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Introduction

Hearing loss is a critical global concern affecting approximately 
27.7 million adults in the United  States alone (1, 2). Beyond its 
prevalence, hearing loss imposes considerable psychological and 
socioeconomic burdens (3). Evidence accumulated over recent 
decades suggests the ototoxic effects of heavy metals like lead, 
cadmium, and mercury, even at low levels of exposure (4, 5). 
Agricultural, pharmaceutical, industrial settings and certain medical 
applications are common pathways for heavy metal exposure, with 
exposure rates rising dramatically in recent decades (6, 7).

Some proposed mechanisms of heavy metal-induced hearing loss 
include damage to the structures and nervous system of the inner ear, 
reduced blood flow, and lipid peroxidation in the cochlea (8, 9). A study 
conducted by Wang et al. proved the relationship between heavy metal 
exposure and risk of hearing loss through a meta-analysis of recent 
studies (5). Also, the exacerbating effect of heavy metals even in noise-
induced hearing loss has been determined in the Korean population 
(10). Many animal studies have also demonstrated the correlation and 
underlying mechanism (11–13). However, no studies to date have 
utilized machine learning (ML) to formally quantify these relationships 
and detect hearing loss based on objective exposure biomarker values. 
Since the screening and diagnostic fields are becoming smarter, an 
automatic system and platform based on artificial intelligence that 
investigates hearing loss can be  developed to reflect the complex 
relationship between heavy metals and hearing outcome.

Due to prolonged exposure to heavy metals leading to an 
increased risk of hearing loss, an accurate investigation tool for high-
risk populations enables early intervention and reduces the burden of 
hearing loss. Artificial intelligence, especially supervised learning 
which uses labeled inputs and outputs, can develop accurate models 
to explore the risk of hearing loss. In this study, we  try different 
supervised classification algorithms on a large, nationally 
representative sample from the National Health and Nutrition 
Examination Survey (NHANES) dataset to help the model learn the 
complex relationships between heavy metal levels and other attributes 
and the risk of hearing loss. As ML models become more complex, it 
is necessary to have explainable methods that can clarify the 
contribution of different features to the final result. Feature 
importance-based explanations have been used to enhance the safety 
and tractability of the models. We conduct an interpretability analysis 
to address a key limitation of black box models by explaining the 
reasons behind their performances. This kind of analysis provides 
clinicians and researchers more confidence in using the models for 
risk assessment purposes.

Method

Study design and data source

We conducted a retrospective analysis using data from the 
National Health and Nutrition Examination Survey (NHANES) from 
2012 to 2018. NHANES is an ongoing cross-sectional survey 
conducted by the National Center for Health Statistics to assess the 
health and nutritional status of adults and children in the 
United  States. The survey combines interviews, physical 
examinations, and laboratory tests using a complex, multistage 

probability sampling design to obtain nationally representative 
samples (14).

From the initial 28,874 NHANES participants, we applied several 
exclusion criteria to obtain our final analytic sample. We excluded 
individuals under 20 years of age, those with incomplete audiometric 
data, and those who self-reported any hearing loss or related 
conditions. This exclusion criterion was applied to focus the analysis 
on objectively classified hearing loss based on audiometric data, 
thereby reducing potential biases from heterogeneous underlying 
conditions and supporting the study’s aim of identifying associations 
rather than longitudinal prediction. Participants were excluded if they 
answered affirmatively to questions about potential causes of hearing 
loss such as genetic/hereditary factors, ear infections, ear diseases, 
illnesses/infections, drugs/medications, head/neck injuries, exposure 
to loud brief noise, long-term noise exposure, or aging. We excluded 
participants who self-reported significant exposure to loud noise 
based on the NHANES Audiology Questionnaire. Specifically, 
individuals who indicated past or current occupational noise exposure 
or substantial off-work exposure to loud noise were removed from the 
analysis. To account for the potential impact of ototoxic medications 
on hearing loss, we reviewed data from the NHANES Prescription 
Medication Section (DSQ), which records prescription drugs taken by 
participants in the past 30 days. Based on clinical evidence and prior 
research, we  identified a list of ototoxic medications, including 
acetaminophen (15), hydrocodone (16), ciprofloxacin (17), phenytoin 
(18), levofloxacin (19), rifampin (20), minocycline (21), aspirin (22), 
metronidazole (23), nitroglycerin (24), and bumetanide (25, 26). Only 
35 participants (1.3% of the total sample) reported using these 
medications, and due to the low prevalence of exposure, we retained 
these individuals in the analysis to avoid unnecessary reduction in 
sample size and maintain the representativeness of the cohort. After 
rigorously applying these exclusion criteria, our final analytic sample 
consisted of 2,772 eligible NHANES participants (Figure 1).

To develop our model for hearing impairment, we  selected 
demographic variables (gender, age, race/ethnicity, education level, 
marital status, family income-to-poverty ratio), clinical measures 
(blood pressure, physical activity, smoking status, diabetes diagnosis, 
body mass index, health insurance status), and biomarkers of heavy 
metal exposure (mercury, lead, cadmium, arsenic, barium, cobalt, 
cesium, molybdenum, manganese, antimony, tin, thallium, tungsten, 
and uranium) consistently measured in the NHANES dataset from 
2012 to 2018. These variables were chosen based on their potential 
associations with hearing health, as identified through an extensive 
literature review.

Hearing loss status

We defined hearing impairment as a binary outcome based on the 
speech-frequency pure-tone average (PTA), calculated as the mean 
hearing threshold in decibels hearing level (dB HL) across 500, 1,000, 
2000, and 4,000 Hz frequencies for the better ear. This approach aligns 
with the audiometric testing procedures and guidelines established by 
the American Speech-Language-Hearing Association. Specifically, 
we categorized participants as having a hearing impairment (coded as 
1) if their PTA value exceeded 25 dB HL, indicating mild or worse 
impairment. Participants with PTA values below or equal to 25 dB HL 
were considered to have normal hearing (coded as 0) (27) (Figure 2).
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Preprocessing

Prior to model development, a series of preprocessing steps were 
undertaken to optimize the NHANES dataset for analysis. Responses 
indicating refusal or lack of knowledge were considered missing values to 
mitigate potential biases in performance metrics. A threshold was 
established to filter out variables and participants with substantial missing 
information — in particular, variables lacking over 20% of their data and 
participants missing crucial data points were removed from the study.

To address the presence of outliers, a two-stage detection strategy 
was employed. Initially, DBSCAN (Density-Based Spatial Clustering of 
Applications with Noise) was applied to isolate outliers based on 
density estimations, effectively managing clusters of varying densities. 
This was complemented by a tree-based anomaly detection method 
that isolates outliers through random feature partitioning, enhancing 
robustness in the multidimensional feature space. This dual approach 

ensured comprehensive outlier management without relying on 
distributional assumptions, further refining the dataset for analysis.

Categorical and ordinal features were one-hot encoded, 
transforming them into a machine-readable numerical format, thereby 
facilitating their inclusion in the modeling process. For numerical 
variables, scalar normalization techniques were applied to ease the 
influence of outliers and ensure equitable feature contributions (28).

To address missing data, a hybrid imputation strategy was 
implemented to enhance dataset robustness. For categorical variables, 
missing values were imputed using the mode, maintaining their 
integrity. For numerical variables, an iterative imputation technique 
was employed, predicting missing values based on relationships with 
other features across multiple iterations. This approach offers a more 
sophisticated alternative to mean imputation, minimizing bias and 
preserving the dataset’s predictive power while ensuring all relevant 
cases were retained for analysis.

FIGURE 1

Flow diagram of the cohort study.

FIGURE 2

Proposed methodology.
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To address missing data, an imputation strategy was 
implemented, utilizing the mode for categorical variables and the 
mean for numerical variables. This approach preserved the 
integrity of the dataset while enabling the inclusion of all relevant 
cases in the analysis.

Given the dataset’s noticeable imbalance, predominantly 
skewed toward individuals without hearing impairment, the 
Synthetic Minority Over-sampling Technique (SMOTE) was 
implemented. SMOTE enhances model performance on 
imbalanced data by creating synthetic examples of the under-
represented class, thereby balancing the dataset and promoting a 
more equitable learning environment.

For feature selection, Recursive Feature Elimination (RFE) 
was utilized in conjunction with a Random Forest estimator. RFE 
is an iterative process that recursively eliminates the least 
important features based on the estimator’s feature importance 
rankings, ultimately retaining the 20 most relevant features for 
hearing impairment. This approach facilitated the identification 
of the most significant factors, enhancing the interpretability and 
performance of the final model.

Machine learning model evaluation

In our study, we employed a rigorous evaluation process to assess 
the performance of several machine learning algorithms in exploring 
hearing outcomes based on heavy-metal exposure. We used Python 
version 3.8.8. to develop Random Forest, XGBoost, Gradient Boosting, 
Logistic Regression, CatBoost, and MLP (29–31). These algorithms 
were selected based on their proven track record in similar tasks across 
various domains, as demonstrated by their superior performance 
metrics in related research (32, 33).

To optimize the capabilities of each model, we  undertook a 
comprehensive hyperparameter tuning process. This involved an 
extensive exploration of the hyperparameter spaces for each algorithm, 
to identify the configurations that yielded the most accurate 
performances. We employed a randomized search strategy across 5 
iterations, with 5-fold cross-validation for each model. This approach 
ensured that the models were fine-tuned to their optimal settings for 
our specific task (Supplementary Table S1).

Our validation methodology involved splitting the dataset into 
training and test subsets, with 70% of the data allocated for training 
purposes and the remaining 30% used for model evaluation. The 
models’ performances were assessed using a comprehensive suite of 
metrics, including accuracy, sensitivity, specificity, precision, the area 
under the curve (AUC), and the F1 score. These metrics provided a 
holistic view of each model’s strength and reliability, taking into 
account their ability to correctly identify true positives (sensitivity) 
and true negatives (specificity), as well as their overall accuracy 
and precision.

Model interpretation

To enhance the interpretability of these models, we  leveraged 
SHAP (SHapley Additive exPlanations), a powerful framework that 
provides intuitive explanations by attributing the model’s results to the 
contributions of individual features (34).

One of the key visualizations we utilized was the SHAP beeswarm 
plot. These plots aggregate the SHAP values of all features across the 
dataset, illustrating the distribution of each feature’s impact on the 
model’s output. The color coding within these plots aids in discerning 
whether a feature increases or decreases the likelihood of hearing loss, 
offering a clear understanding of the feature’s influence.

Furthermore, we employed SHAP decision plots to gain a granular 
understanding of the decision-making process for individual 
outcomes. These plots trace the path from the base value (the model’s 
output value without any feature information) to the final 
performance, sequentially adding the effect of each feature. This step-
by-step breakdown provides a transparent narrative of how each 
feature contributes to the outcome, highlighting the complex 
interactions and nonlinear relationships between features (35).

Integrating SHAP into our analysis bridged the gap between 
model accuracy and interpretability, allowing for a deeper 
comprehension of the underlying patterns and relationships within 
the data.

Result

Characteristics of the study population

Among 2,779 participants who retrained for the analysis, 468 
(16.88%) contributors had experienced hearing loss. A comparative 
analysis between the hearing loss and no hearing loss groups revealed 
significant differences in their baseline characteristics, as presented in 
Tables 1, 2. Participants with hearing loss tended to be older, smokers, 
with lower educational levels and family income, and a higher 
prevalence of hypertension and diabetes (all p < 0.001). The 
proportion of male participants decreased from 63.03% in the hearing 
loss group to 47.74% in the no hearing loss group, suggesting potential 
gender differences between the groups (p < 0.001).

Blood sample analysis showed significantly higher levels of lead, 
cadmium, and ethylmercury in the hearing loss group (all p < 0.001). 
Furthermore, urine samples from the same group exhibited 
considerably higher levels of lead, cadmium, arsenous acid, thallium, 
antimony, tungsten, and monomethylarsonic acid (all p < 0.001).

Machine learning model performance

We compared the performance of our six ML algorithms which 
were each trained and tested precisely. To prevent overfitting or 
uncertainty in the models, we utilized RFE to penalize and select our 
22 optimal features for model development. The details of models’ 
performance metrics are presented in Table  3 and the visualized 
comparison between ML models is shown in Figure 3.

CatBoost classifier outperformed other models with an accuracy 
of 74.9 and 74.0% and AUC of 0.792 and 0.786 for train and test 
groups. Compared to Logistic Regression, our best model achieved a 
satisfactory increase of more than 4% in AUC and accuracy. Among 
all six models, XGBoost had the best precision with 0.786 for test 
group, while the best sensitivity belongs to MLP with 0.701 for train 
group. The results of the AUC metric are depicted in Figure 4, which 
shows the averaged ROC curves across the full range of specificity and 
sensitivity thresholds for all six models.
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Feature importance

We applied the Bee Swarm SHAP method to explain the role of 
each feature and the effect on the model for detecting hearing loss in 
the CatBoost model, where the red and blue features represent 
associated factors and protective factors, respectively (Figure 5A). 
Also, in terms of SHAP values, longer bars meant more importance. 
Additionally, we sorted the importance of variables in ascending order 
according to the average value as presented in Figure 5B. The result 
shows that age was the most influential associated factor for HL 
classification, followed by lower educational levels. Male gender was 
also positively correlated with hearing loss which made it more likely 

that the model classifies the participant as a hearing loss case. Among 
heavy metals, higher blood lead and cadmium levels were the most 
important associated factors, while selenium and barium were other 
important heavy metals with lower impact on positive association.

By utilizing the SHAP decision plot, we tried to clarify how the 
CatBoost model arrived at the outcome for each particular instance. 
As shown in Figure 6, each line represents a participant in the decision 
plot. Lines toward the right side mean that features like older age, 
higher blood lead levels, and less education pushed the model result 
toward hearing loss. Conversely, lines toward the left indicate that 
features like female gender, nonsmoking status, and lower selenium 
levels led the model to demonstrate no hearing loss.

TABLE 1 Baseline numerical characteristics of the participants.

Numerical variable Total, mean (SD) Hearing loss, mean 
(SD)

No hearing loss, 
mean (SD)

p-value

Age 45.267 (15.517) 59.464 (12.598) 42.389 (14.433) <0.001

BMI 29.378 (7.156) 29.897 (6.725) 29.273 (7.237) 0.071

Minutes vigorous-intensity work 52.784 (117.619) 62.006 (128.742) 51.215 (115.587) 0.178

Minutes moderate-intensity work 85.699 (133.125) 89.816 (134.650) 84.999 (132.891) 0.570

Minutes moderate recreational activities 38.126 (56.087) 33.173 (47.906) 38.969 (57.333) 0.063

Minutes severe recreational activities 23.005 (53.645) 30.680 (69.828) 21.700 (50.287) 0.035

Mercury, Inorganic, blood (ug/L) 0.272 (0.333) 0.265 (0.280) 0.272 (0.343) 0.642

Mercury, ethyl, blood (ug/L) 0.111 (0.035) 0.104 (0.032) 0.112415 (0.036) <0.001

Lead, blood (ug/dL) 1.304 (1.575) 1.663 (1.718) 1.230 (1.534) <0.001

Cadmium, blood (ug/L) 0.489 (0.568) 0.530 (0.576) 0.481 (0.567) <0.001

Mercury, total, blood (ug/L) 1.631 (2.882) 1.573 (3.066) 1.643 (2.843) 0.651

selenium, blood (ug/L) 193.766 (25.134) 194.142 (27.118) 193.689 (24.714) 0.741

Manganese, blood (ug/L) 10.124 (3.963) 9.871 (3.933) 10.176 (3.968) 0.131

Arsenous acid, urine (ug/L) 0.442 (0.440) 0.390 (0.399) 0.453 (0.447) <0.001

Arsenic acid, urine (ug/L) 0.611 (0.180) 0.610 (0.170) 0.611 (0.182) 0.839

Arsenobetaine, urine (ug/L) 10.895 (42.049) 9.950 (39.342) 11.086 (42.583) 0.575

Arsenocholine, urine (ug/L) 0.206 (0.604) 0.190 (0.299) 0.210 (0.649) 0.307

Dimethylarsinic acid, urine (ug/L) 5.582 (7.380) 5.545 (8.868) 5.590 (7.042) 0.918

Monomethylarsonic acid, urine (ug/L) 0.684 (0.589) 0.605 (0.507) 0.700 (0.603) <0.001

Mercury, urine (ug/L) 0.486 (1.397) 0.514 (2.600) 0.481 (0.991) 0.784

Barium, urine (ug/L) 1.771 (3.001) 1.809 (2.552) 1.763 (3.085) 0.735

Cadmium, urine (ug/L) 0.328 (0.417) 0.418 (0.416) 0.310 (0.414) <0.001

Cobalt, urine (ug/L) 0.495 (0.686) 0.502 (0.688) 0.494 (0.686) 0.810

Cesium, urine (ug/L) 4.945 (3.914) 4.938 (3.100) 4.946 (4.060) 0.959

Molybdenum, urine (ug/L) 50.659 (46.275) 49.089 (41.264) 50.978 (47.231) 0.379

Manganese, urine (ug/L) 0.164 (0.563) 0.149 (0.200) 0.167 (0.611) 0.240

Lead, urine (ug/L) 0.540 (1.031) 0.632 (1.000) 0.521 (1.036) <0.001

Antimony, urine (ug/L) 0.079 (0.303) 0.066 (0.082) 0.082 (0.330) 0.030

Tin, urine (ug/L) 1.159 (3.210) 1.428 (3.388) 1.104 (3.170) 0.571

Thallium, urine (ug/L) 0.198 (0.201) 0.177 (0.129) 0.203 (0.213) <0.001

Tungsten, urine (ug/L) 0.129 (0.664) 0.095 (0.142) 0.136 (0.725) 0.013

Arsenic, urine (ug/L) 18.518 (48.018) 17.219 (44.624) 18.781 (48.682) 0.497

Uranium, urine (ug/L) 0.009 (0.016) 0.009 (0.013) 0.009 (0.017) 0.638
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TABLE 3 Prediction performance of ML models.

Model Accuracy F1 score AUCROC Specificity Sensitivity

RF Train set 0.756 (0.754–0.757) 0.343 (0.339–0.348) 0.789 (0.779–0.800) 0.771 (0.768–0.773) 0.681 (0.678–0.683)

Test set 0.756 0.348 0.772 0.768 0.696

XGBoost Train set 0.698 (0.695–0.700) 0.418 (0.415–0.424) 0.778 (0.774–0.780) 0.700 (0.698–0.701) 0.691 (0.690–0.692)

Test set 0.747 0.309 0.750 0.786 0.577

CatBoost Train set 0.749 (0.739–0.761) 0.323 (0.320–0.325) 0.792 (0.790–0.793) 0.779 (0.778–0.780) 0.601 (0.600–0.601)

Test set 0.740 0.342 0.786 0.764 0.621

Gradient 

Boosting

Train set 0.747 (0.745–0.750) 0.344 (0.340–0.350) 0.790 (0.789–0.792) 0.766 (0.765–0.768) 0.651 (0.650–0.653)

Test set 0.734 0.347 0.762 0.758 0.619

Logistic 

Regression

Train set 0.702 (0.701–0.704) 0.402 (0.400–0.403) 0.746 (0.744–0.749) 0.711 (0.707–0.716) 0.658 (0.656–0.659)

Test set 0.681 0.401 0.723 0.698 0.597

MLP Train set 0.708 (0.705–0.710) 0.411 (0.409–0.412) 0.766 (0.765–0.768) 0.709 (0.701–0.715) 0.701 (0.699–0.702)

Test set 0.708 0.385 0.749 0.723 0.632

TABLE 2 Baseline categorical characteristics of the participants.

Categorical variable Total, N (%) Hearing loss, N (%) No hearing loss, N 
(%)

p value

Gender Male 1,395 (50.32) 295 (63.03) 1,100 (47.74) <0.001

Female 1,377 (49.68) 173 (36.97) 1,204 (52.26)

Race/Ethnicity Mexican American 378 (13.64) 68 (14.53) 310 (13.46) 0.009

Other Hispanic 340 (12.27) 64 (13.68) 276 (11.98)

Non-Hispanic White 918 (33.11) 179 (38.25) 739 (32.07)

Non-Hispanic Black 663 (23.92) 89 (19.02) 574 (24.91)

Other Race 473 (17.06) 68 (14.52) 405 (17.58)

Education level Less than 9th grade 234 (8.44) 71 (15.20) 163 (7.07) <0.001

9–11th grade 318 (11.48) 82 (17.56) 236 (10.24)

High school graduate/GED 604 (21.80) 121 (25.91) 483 (20.96)

Some college or AA degree 848 (30.60) 110 (23.55) 738 (32.03)

College graduate or above 767 (27.68) 83 (17.77) 684 (29.69)

Family PIR <1.30 831 (29.98) 155 (33.12) 645 (27.99) <0.001

1.30–3.49 943 (34.02) 164 (35.04) 760 (32.99)

>3.50 998 (36.00) 149 (31.84) 899 (39.02)

Marital status Married 1,394 (50.32) 266 (56.96) 1,128 (48.98) <0.001

Widowed 112 (4.04) 46 (9.85) 66 (2.87)

Divorced 276 (9.96) 67 (14.35) 209 (9.08)

Separated 87 (3.15) 14 (3.00) 73 (3.17)

Never married 611 (22.06) 47 (10.06) 564 (24.49)

Living with partner 290 (10.47) 27 (5.78) 263 (11.41)

Health insurance Yes 2,175 (78.55) 398 (85.04) 1777 (77.23) <0.001

No 594 (21.45) 70 (14.96) 524 (22.77)

Smoking Never smoker 1,580 (57.00) 252 (53.85) 1,336 (57.99) <0.001

Past smoker 554 (19.99) 102 (21.80) 437 (18.97)

Current smoker 638 (23.02) 114 (24.35) 531 (23.04)

Hypertension Yes 872 (31.47) 227 (48.5) 645 (28.01) <0.001

No 1899 (68.53) 241 (51.5) 1,658 (71.99)

Diabetes Yes 344 (13.20) 121 (27.01) 223 (9.86) <0.001

No 2,362 (86.80) 327 (72.99) 2035 (90.14)
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Discussion

We evaluated six ML models to expedite early detection of hearing 
loss caused by heavy metal exposure. Our study used a representative 
NHANES dataset sample to identify the model with the highest 
classification accuracy. An estimated AUC in the range of 0.7–0.8 in 

our models is generally considered a “Good” capacity (36). The 
CatBoost algorithm, the best-performing model, attained a notable 
accuracy of 74.9% and an AUC of 0.792. Besides, the SHAP algorithm 
identified age, education level, gender, lead, and cadmium 
concentration as the main features that contributed to the conclusion. 
The timely identification of hearing loss through the application of this 

FIGURE 3

Comparison of ML models’ performance.

FIGURE 4

AUC-ROC curves of ML models.
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FIGURE 5

SHAP BeeSwarm plot and feature importance. (A) SHAP BeeSwarm plot for detecting hearing loss in the CatBoost model. (B) Feature importance 
ranking for detecting hearing loss in the CatBoost model. ug/L: Mean concentration; BMI: Body mass index.
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screening tool facilitates early intervention and treatment, thereby 
enhancing the quality of life.

Recently many studies have utilized ML to examine hearing 
outcomes based on various features. An AUC of 0.93 and accuracy 
of 85% based on speech-in-noise testing, an AUC of 0.80 and 
accuracy of 80% based on noise exposure, and an AUC of 0.96 
based on demographics and clinical outcomes are some of the best 
examples of exploring hearing outcome. However, we believe our 
study represents a pioneering effort to utilize heavy metals as 
associated factors of hearing outcomes (37–39). SVM, RF, and 
LightGBM were the best models in recent studies, while, almost 
none of them used the CatBoost algorithm in their study. In 
addition, recent studies mainly focused on minimizing the absolute 
error rate and maximizing the precision. While having a precise 
performance and minimizing error across all cases is statistically 
favorable, it does not necessarily translate to the best real-world 
results in a medical setting. If a model is overly focused on precision 
and mean error, it risks being too conservative in its performance. 
As a result, patients who do need additional follow-up may 
be missed. This could have serious consequences for individuals’ 
long-term hearing health and quality of life. Therefore, instead of 
focusing solely on precision, we have opted to optimize sensitivity 

and recall along with accuracy and AUC. This approach is more 
appropriate for diagnostic evaluations for hearing, which are 
relatively simple, inexpensive, and low-risk. By combining ML 
screening with standardized diagnostic testing only for flagged 
individuals, populations can be  efficiently monitored for 
hearing loss.

The CatBoost algorithm provided our first aim to find the 
best ML model performance. This particular classifier is known 
for its ability to effectively manage categorical variables through 
the application of Ordered Boosting, a variant of gradient 
boosting. The algorithm’s use of multiple weak models (decision 
trees) to create a strong ensemble model results in a high level of 
accuracy, which is particularly useful for capturing nonlinear 
patterns in data (40). While our primary objective was to develop 
the most effective hearing loss classification algorithm based on 
heavy metal exposure, we were also interested in understanding 
the key factors that influence the decision-making process of 
these classifiers. To this end, we  opted to utilize the SHAP 
algorithm, as it allows for a greater degree of transparency and 
interpretability in our model outputs.

The SHAP analysis assigns a value to each feature, which denotes 
its contribution to the outcome. By using this technique, we can obtain 

FIGURE 6

SHAP decision plot.
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insights into the contribution of each feature in noticing hearing loss 
for a particular patient (local interpretation), the accuracy of the result 
for that patient (local explanation), and the contribution of each 
feature to the model’s performance across the entire dataset (global 
explanation and interpretation) (41). To provide better global and 
local insights, and to avoid focusing solely on the global interpretation 
of Bee Swarm SHAP, we utilized the SHAP decision plot. This plot 
helps to show the impact of each feature on the model’s output for a 
specific instance, thus providing a clearer understanding of the 
diagnosis and reasons behind it.

Our models retained known associated factors from patient 
characteristics such as increasing age, worse education level, and 
male gender. Aging is the primary associated factor for hearing 
loss, while lower education levels are associated with poorer 
healthcare and greater exposure to the related factors (42, 43). 
We have also identified being male as a significant associated 
factor for hearing loss, likely due to increased exposure to 
occupational and environmental noise that men face on average, 
as well as biological differences resulting from male sex hormones 
and their potential effects on hearing vulnerability compared to 
female hormones (44, 45). In addition, blood lead and cadmium 
concentrations have been shown to impact hearing outcomes due 
to their toxic effects on the cochlea and auditory nerve (46, 47). 
However, urine lead and cadmium appear to have a lower impact 
on hearing outcomes due to their nature as daily 
exposure indicators.

Heavy metals, including lead, cadmium, mercury, barium, 
arsenic, and manganese, have been conclusively linked to hearing 
loss. Exposure to these heavy metals through various routes, such 
as diet, inhalation, or dermal absorption, can increase hearing 
loss by anywhere from 3 to 75% (5, 48). Heavy metals can damage 
both the axons and myelin of peripheral nerves, with small nerve 
fibers being more susceptible than their larger counterparts (49). 
Furthermore, heavy metals can induce oxidative stress, 
inflammation, and vascular damage in the inner ear (48). The 
combination of these mechanisms can explain the association 
between heavy metal exposure and hearing loss. Yang et al. (50) 
demonstrated a significant association between blood lead levels 
and hearing loss in their meta-analysis, reinforcing the evidence 
that heavy metal exposure plays a role in auditory health. Our 
study builds on this foundation by employing machine learning 
and SHAP-based analysis to classify hearing status, thereby 
offering a more detailed, data-driven interpretation of how heavy 
metals, particularly lead and cadmium, influence 
hearing impairment.

The ML models developed and evaluated in this study show 
promise as effective screening tools to help address the growing 
problem of heavy metal-induced hearing loss. This screening 
approach could lighten the burden on healthcare systems when 
prospectively implemented, enabling the efficient monitoring of 
large populations. By facilitating early detection, the models may 
help improve long-term patient outcomes by allowing for timely 
clinical intervention that is tailored to an individual’s risk profile. 
The non-invasive nature of ML screening makes it a suitable first-
line assessment prior to more resource-intensive 
diagnostic evaluations.

This study is the first of its kind to develop ML models 
incorporating heavy metal biomarker data in order to discover 

hearing loss risk. By analyzing which features like lead and 
cadmium levels contributed most to model outcomes, our study 
provides a novel perspective on their relative importance in 
auditory function. This pioneering work lays the foundation for 
more comprehensively understanding the relationship between 
environmental exposures and hearing outcomes through the use of 
advanced analytical techniques. The examination of a high-quality 
population-based registry was conducted to ensure the accuracy of 
the outcome. It appears more reasonable to consider this model 
when selecting high-risk patients rather than ruling out low-risk 
ones, considering the high recall and low precision. This approach 
can help capture all high-risk participants due to the availability of 
diagnosis approaches. However, the study has some limitations that 
require careful consideration. First, due to the cross-sectional 
nature of the dataset and lack of follow-up, the causality between 
the features and hearing loss could not be determined. Second, the 
use of a single retrospective dataset may lead to confounding effects 
of unmeasured factors, thereby making it difficult to apply this 
model to other institutions. Nonetheless, this study provides a 
foundation for developing a model that fits well with each 
institution. Third, the analysis of available data was limited by the 
fact that a significant proportion of participants did not undergo 
urine testing for cadmium and arsenic. Therefore, further studies 
are warranted to prospectively examine the detection of hearing 
loss through heavy metals using a large sample of the general 
population. Another limitation is the potential confounding effect 
of ototoxic medications; however, the low prevalence of exposure 
(n = 35, 1.3%) in our cohort suggests minimal impact on results, 
though future studies with larger samples and detailed medication 
data, including dosage and long-term use, could provide further 
insights. Additionally, while exposure to volatile organic 
compounds (VOCs) and pesticides is known to contribute to 
hearing loss, their frequent co-occurrence with heavy metals in 
environmental and occupational settings made it impractical to 
exclude such participants, as this would have reduced the 
representativeness of our cohort and introduced selection bias. Due 
to data limitations, our study could not explicitly account for 
vibration exposure, a well-established risk factor for hearing loss, 
which is frequently encountered alongside noise. Future research 
should also explore the combined effects of noise and vibration on 
hearing outcomes. While this study made important advances by 
focusing specifically on investigating hearing loss with heavy metal 
exposures, future work could aim to achieve even higher 
performance by integrating these biomarker features within models 
alongside additional clinical and demographic factors examined in 
other related research.

Conclusion

Overall, our findings provide preliminary validation of ML as a 
decision support tool for monitoring and detecting heavy metal-
induced hearing loss at a population level. Specifically, we demonstrate 
that the CatBoost classifier achieved the highest performance with an 
AUC of 0.792 and accuracy of 74.9%. With prospective validation in 
larger, independent cohorts, this framework could aid public health 
efforts by facilitating early detection efforts and guiding clinical 
resource allocation.
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