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Introduction: Public health data analysis is critical to understanding disease 
trends. Existing analysis methods struggle with the complexity of public health 
data, which includes both location and time factors. Machine learning offers 
powerful tools but can be computationally expensive and require specialized 
knowledge. Dynamic mode decomposition (DMD) is an alternative that offers 
efficient analysis with fewer resources. This study explores applying DMD 
in public health using lung cancer data and compares it with other machine 
learning models.

Methods: We analyzed lung cancer incidence data (2000–2021) from 1,013 
US counties. Machine learning models (random forest, gradient boosting 
machine, support vector machine) were trained and optimized on the training 
data. We also employed time series, a linear regression model, and DMD for 
comparison. All models were evaluated based on their ability to predict 2021 
lung cancer incidence rates.

Results: The time series model achieved the lowest root mean squared error, 
followed by random forest. Meanwhile, DMD had an RMSE similar to that of 
Random Forest. Nearly all counties in Kentucky had higher lung cancer incidence 
rates, while states like California, New Mexico, Utah, and Idaho showed lower 
trends.

Conclusion: In summary, DMD offers a promising alternative for public 
health professionals to capture underlying trends and potentially have lower 
computational demands compared to other machine learning models.
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1 Introduction

Public health data is multidimensional, encompassing factors like geolocation and time. 
Spatial–temporal analysis of public health data helps us understand disease patterns, identify 
vulnerable populations, and design interventions. Time series models were traditionally used 
for temporal data, but they lack insights into geospatial patterns. Machine learning (ML) uses 
algorithms trained on data sets to create models that enable machines to perform tasks that 
would otherwise only be possible for humans. ML empowers computers to learn from data, 
identify patterns, predict outcomes, and discover the hidden coherent structures among 
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complex data. ML algorithms like random forest (RF) and gradient 
boosting machine (GBM) excel at finding patterns in complex data, 
revealing connections between demographics, movement, and disease 
spread. This allows for more precise outbreak predictions and targeted 
interventions. Furthermore, support vector machines (SVMs) 
effectively classify data by drawing a line (or hyperplane) that best 
divides the data into two groups, maximizing the distance between the 
groups. SVMs are valuable even with limited samples for disease-type 
classification of individual risk prediction.

While powerful for prediction and temporal analysis, the existing 
models (RF, GBM, SVM) often require additional geospatial analysis. 
Their effective use requires specialized data science and machine 
learning expertise. Additionally, training complex models demands 
significant computational resources, which may not be universally 
accessible, especially for public health practitioners in resource-limited 
settings, hindering early detection and response times. Furthermore, 
the interpretability of ML models is limited. In contrast to ML, dynamic 
mode decomposition (DMD) is a data-driven approach for analyzing 
dynamic systems by obtaining coherent spatial–temporal modes to 
efficiently analyze the data from complex systems with clear 
perspectives. It decomposes complex data into simpler modes, 
revealing the underlying processes without requiring a traditional 
physical model. While ML excels at prediction, DMD provides a 
deeper understanding of the data’s dynamic patterns. DMD was 
originally developed in the fluid mechanics community to discover low 
dimensional models of coherent structures (1). Later, it was applied to 
analyze other data such as power grid (2), influenza and measles (3), 
and COVID-19 (4). DMD has the advantages of being low-cost and 
using minimal calculating power while having the capacity to explore 
underlying data patterns. It reduces the complexity of high-dimensional 
data by decomposing it into a set of dynamic modes, each associated 
with a specific oscillation frequency and decay/growth rate that enables 
revealing underlying patterns responsible for observed behavior. DMD 
allows researchers to analyze the data with less computational power, 
saving time. It also offers a compelling combination of low-dimensional 
DMD interpretable information, allowing researchers to gain insights 
into the system’s dynamics. This approach is particularly valuable 
compared to traditional machine learning models that often require 
extensive computational resources and are less explainable. DMD’s 
computational efficiency and relative ease of use make it a potentially 
powerful tool for public health practitioners with interpretable modes. 
This opens doors to applying data-driven insights in public health 
settings with reduced barriers to entry.

Lung cancer is the second most common cancer in the 
United States, and the National Cancer Institute predicts 234,580 new 
lung cancer cases in 2024 (5). The annual per-patient cost of medical 
services for patients with lung cancer ranges from $12,200 to $118,000 
annually (6), with the greatest financial burden occurring at the time 
of initial diagnosis and the last year of life. This poses a significant 
burden to patients, caregivers, and healthcare systems. Previous 
studies used machine learning models to predict lung cancer incidence 
rates, often including cancer-associated predictors and determinants. 

In practice, collecting and validating such lung cancer data can 
be time consuming.

No single ML model is superior for cancer rate prediction, with 
different researchers determining different ML models to be superior in 
different studies (7). RF (7, 8) and neural networks (7, 9) are common 
models for predicting lung cancer incidence rates. RF, while powerful, 
can be a “black box” for public health professionals unfamiliar with 
advanced statistics, making it difficult to interpret how the model arrives 
at its conclusions. On the other hand, neural network models require 
multiple predictors, especially at a larger scale, to achieve efficient 
predictions. With neural networks, it can also be challenging to collect 
high-dimensional data quickly across different geographic locations. 
Other models, such as SVM (8) and GBM (10) have also been used to 
predict lung cancer with highly accurate predictions. However, their 
implementation can require specialized software and parameter tuning, 
posing a challenge for public health professionals without a strong data 
science background. There is a need to find a quick and less complex 
method to predict the temporal trends of lung cancer. This study aimed 
to apply and test DMD to analyze a large-scale lung cancer incidence 
dataset at the county level in public health settings to identify hidden 
temporal patterns, dependencies, and dynamic relationships and assess 
the prediction ability of DMD compared to other traditional and 
machine learning-based data analysis methods. We hypothesized that 
DMD would exhibit comparable prediction accuracy to RF and SVM.

2 Methods

2.1 Data source

We collected county-level lung cancer age-adjusted incidence 
rates from 2000 to 2021 from 22 state registries within the Surveillance, 
Epidemiology, and End Results Program (SEER) (11) using SEER*Stat 
software. We used the Agency for Healthcare Research and Quality 
(AHRQ) Digital Healthcare Research Checklist to extract the data 
(12). We obtained the delayed-incidence rate, which has been adjusted 
for reporting delay. Reporting delay refers to the time between cancer 
diagnosis and reporting to cancer registries. Analyzing delayed rates 
can help determine cancer incidence rates and trends more precisely. 
After removing 15 state-level registries and 55 counties with missing 
data, we analyzed data from 1,013 counties using TS, RF, GBM, and 
SVM. We then conducted DMD to compare the results.

2.2 Training and testing datasets

We first divided the data into two datasets: training (2000–2020) 
and testing (2021). We used data from 2000–2019 to build RF, GBM, 
SVM, and TS models, using the RMSE (root mean squared error) as 
the measure to optimize the parameters and obtain the lowest 
RMSE. Then, we applied the trained model to the 2000–2020 data to 
predict 2021 data and calculated the RMSE for each method.

2.3 Random forest and gradient boosting 
machine

RFs were constructed by fitting multiple decision trees to 
random subsets of the training data, with each tree using a random 

Abbreviations: DMD, Dynamic mode Decomposition; ETS, Exponential Smoothing; 

GBM, Gradient Boosting Machine; RF, Random Forest; SEER, Surveillance, 

Epidemiology, and End Results Program; SVD, Singular Value Decomposition; 

SVM, Support Vector Machine; TS, Time Series.
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selection of features at each split (13). We determined the optimal 
number of trees and maximum tree depth through a grid search, 
evaluating models based on Root Mean Squared Error (RMSE) on 
the training data. GBMs were similarly fit using a grid search to 
optimize the number of trees and interaction depth, which controls 
the complexity of allowed interactions between features in the 
model (2). For both RF and GBM, the final model was trained on 
the entire training data set using the hyperparameters identified 
through the grid search. We evaluated the performance of the final 
models by predicting the target variable (2021) and calculating 
the RMSE.

2.4 Support vector machine (SVM)

We conducted a grid search to tune the hyperparameters of the 
SVM model. The hyperparameters evaluated were cost and gamma. 
Cost controls the trade-off between maximizing the margin between 
the decision boundary and the support vectors and minimizing the 
training error. Gamma controls the influence of training data points 
on the decision boundary. We used a radial basis function kernel for 
the SVM, as it is a common choice for non-linear relationships 
between features.

The grid search evaluated different combinations of cost values 
(0.1, 1, 10, 100) and gamma values (0.1, 1, 10, 100). We calculated the 
root RMSE on the training data to evaluate each model’s performance. 
We selected the model with the lowest RMSE as the optimal model. 
The final SVM model was trained on the entire training data set using 
the hyperparameters identified through the grid search. The final 
model was then used to predict the 2021 lung cancer incidence rate 
using 2000–2020 data.

2.5 Time series

We applied the exponential smoothing with trend (ETS) model, a 
popular technique well-suited for capturing trends in time series data. 
ETS offered a suitable balance between simplicity and effectiveness for 
this specific analysis focused on capturing trends in incidence rates, 
especially for public health data analysis to practitioners unfamiliar 
with complex time series models.

We implemented the ETS model using the “ets” function from the 
“forecast” R package. The alpha parameter, which controls the weight 
given to recent observations in the smoothing process, was set to 0.2, 
which was chosen based on the prior optimization process. For each 
county, the ETS model was fit to the historical incidence rate data. The 
resulting model was then used to generate a one-step forecast for the 
incidence rate in the year 2021.

2.6 Linear regression model

We conducted a linear regression model using 2000–2019 data as 
input and 2020 as the outcome to train the model first. Once 
we obtained the coefficients, we used 2000–2020 data to predict 2021 
age-adjusted mortality rates and calculated the RMSE. We conducted 
this analysis in R, version 4.3.3.

2.7 Dynamic mode decomposition

We organized the incidence rate data into matrix 
 = … 1 2 mX x x x  where kx is the incidence rate at the kth year. Then, 

we reorganized these data into two matrices, − = … 1 1 2 1mX x x x , 
 = … 2 2 3 mX x x x , where m  is the total number of snapshots. 

Assume 2X  can be linearly approximated with 1X  such that ≈2 1X AX
, then the matrix could then be calculated as = †

2 1A X X , where †
1X  is 

the Moore-Penrose pseudoinverse of 1X . We started with the singular 
value decomposition (SVD) of 1X

 
∗≈ Σ1X U V

where ∗ denotes the conjugate transpose, × ×∈ Σ∈,n r r rU C C  and 
is diagonal, ×∈ m rV C , n is the total number of the elements in one 
snapshot, and r  is the rank of the reduced SVD approximation to 1X . 
The full matrix A can be computed as − ∗= Σ 1

2A X V U . In practice, 
researchers are usually only interested in the leading r eigenvalues and 
eigenvectors of A, so an order-reduced approximation A can 
be calculated by projecting the full matrix onto the proper orthogonal 
decomposition modes, ∗ ∗ −= = Σ

1
2A U AU U X V . The reduced order 

matrix defines a linear model + =  1k kx Ax where the original vector 
= k kx Ux . The spectral decomposition of A can be  calculated as 
= ΛAW W , where W  are eigenvectors of A, Λ is a diagonal matrix 

contains eigenvalues λk of the DMD, which are also the eigenvalues 
of the original matrix A. Finally, the DMD modes for matrix A can 
be  constructed as −Φ = Σ 1

2X V W . The prediction by DMD for 
φ λ − −

=
= =ΦΛ∑ 1 1

1
r k k

k j j jjx b b  where φ j  and λ jare DMD modes and 

eigenvalues (or eigenvectors and eigenvalues of the matrix A); jb is 
the mode amplitude (1, 14).

Twenty-one years of smoking data were available for the 
prediction. We used the first 20 years of data (m = 20) to construct the 
DMD analysis and the last year of data to compare with the prediction 
by DMD. We  followed the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) reporting 
guidelines (15).

3 Results

3.1 2021 county-level lung cancer 
incidence rate prediction

Our evaluation of different machine learning models for 
predicting the 2021 lung cancer incidence rate showed TS has the 
lowest RMSE at 15.3 (Table 1), while RF was 20.5. SVM and GBM 
performed similarly, with RMSEs being 24.4 and 24.3, respectively. 
Linear regression had the highest RMSE of 24.7. In general, the 
predicted rates were higher than the other models. From the box 
plot, the range and quartile of the predicted values were similar to 
the actual incidence rate. DMD’s MSE of 20.5 is the same as that 
of the random forest model. Conversely, the DMD had the highest 
Spearman correlation coefficient (0.706) among the machine 
learning models between the predicted and actual values of the 
2021 lung cancer incidence rate, while GBM had the lowest 
(0.589).
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FIGURE 1

Actual and model-predicted 2021 lung cancer incidence rates. The boxplot visualizes the actual and predicted 2021 lung cancer incidence rates and 
reveals that random forest, gradient boosting, and support vector machines all have predicted means similar to the actual data. In contrast, linear 
regression and time series models predict higher values. Additionally, the random forest model exhibits the tightest range of predicted values.

3.2 Dynamic mode decomposition

An example of the prediction using all ranks is shown in 
Figures 1, 2, indicating that DMD can capture the overall trend of the 
lung incidence rate in different counties but with under-predictions 
for high incidence rates.

We checked the RMSE for the year 2021 with the number of 
ranks used in SVD, as shown in Figure 3a. In general, the RMSE 
increased with the ranks, which is surprising as the RMSE usually 
decreases with the number of ranks used in the reconstruction. 
This indicates that the incidence rate data may contain noise, and 
the sample size for 20 years may not be enough to form a linear 
analysis. Figure 3b shows that the more ranks used during the 
SVD truncation, the more energy is retained in decomposition. 
The distribution of eigenvalues shows the dynamic features of the 
associated modes such as growing, decaying, or oscillating 
behavior for each mode. The eigenvalues are plotted in Figure 4, 
where most of the eigenvalues are within the unit circle, indicating 
the decaying of lung incidence rates over the years. It is consistent 
with the raw data that the incidence rates are decreasing over 
the years.

3.3 Machine learning and other models

Figures 5–9 compares the 2021 lung cancer incidence rate with 
the predicted values from various machine learning models. The 
predicted values generally align with the observed trend, except for 
linear regression (Figure 9), showing the predictions from machine 
learning models and DMD have a more robust and resilient 
performance in the face of noise and uncertainty. While linear 
regression captured a similar overall direction, its predictions deviated 
more significantly from the actual data. Overall, the agreement 
between the predicted and actual values was modest, as evidenced by 
the correlation coefficients in Table 1.

4 Discussion

This study used county-level lung cancer incidence rates to test 
DMD and other analysis methods, including linear regression, time 
series, and machine learning models. We  found that DMD has a 
comparative prediction ability compared to other models while having 
low computational cost and skill set requirements. The results suggest 

TABLE 1 Root mean squared error or predicted 2021 lung cancer incidence rate.

Studied models RMSE* Spearman correlation coefficient

Dynamic mode decomposition 20.5 0.706**

Time series 15.3 0.822**

Linear regression 24.7 0.644**

Random forest 20.5 0.654**

Gradient boost machine 24.3 0.589**

Support vector machine 23.4 0.610**

*RMSE: root mean square error. **p < 0.001.
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that time series, machine learning methods, and linear regression 
models were able to capture the underlying trends in incidence rate 
data and generate reasonably accurate predictions for 2021. While the 
specific performance metrics may have differed slightly between the 
models, the overall trends and insights gleaned were largely similar.

In our study, DMD exhibited comparable prediction accuracy 
while requiring significantly less computational power and producing 
results faster than RF and SVM. By decomposing the data matrix into 
a set of dominant modes, DMD focuses on capturing the most 
essential information for representing the system’s dynamics. This 
reduces the computational complexity compared to machine learning 
models, which often involve complex non-linear optimization 

processes and require tuning numerous hyperparameters. These lower 
computational needs and faster processing time features of DMD 
make this method particularly appealing for users with limited 
resources or needing real-time data analysis. Additionally, due to its 
efficient processing format, DMD excels at identifying modes from 
time series data. This efficiency translates to lower training 
requirements than ML models while achieving comparable accuracy. 
In essence, DMD presents a trade-off between accuracy and 
computational demands, making it a choice for practical scenarios 
when high computational cost is not permitted.

Our comparison applying various ML models to lung cancer 
incidence prediction revealed some expected and unexpected 

FIGURE 2

The lung incidence rate for 2021 is compared with dynamic mode decomposition prediction using all ranks. The x-y plot visualizes the DMD predicted 
(blue dot) versus the actual (red dot) 2021 lung cancer incidence rate. It indicates that the DMD model predicts overall lower values, but the fluctuation 
trends align with the actual rates.

FIGURE 3

(a) The root mean square error (RMSE) for the lung incidence rate for dynamic mode decomposition prediction with different ranks of the mapping 
matrix. That the RMSE increases with the number of ranks may be associated with the fluctuating nature of the lung incidence rates. (b) The energy 
ratio of the truncated singular value decomposition at different ranks over the original data. More energy is retained in the reconstructed model with 
increased ranks.
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differences. First, linear regression models often perform well with 
linear trend data. However, cancer incidence rate temporal trends are 
typically not strictly linear, posing a lower prediction ability. In our 
study, linear regression has the highest RMSE, showing the underlying 
temporal trends at the county level may be more complex than simple 
linear relationships. Second, time series typically shows the lowest 

RMSE as the model often detects the recurrent patterns in the 
temporal data, yet it performed the best in our study. Third, RF 
predicted cancer incidence rates better than SVM and GBM based on 
the RMSE scores. RF combines multiple decision trees, making it 
robust enough to handle complex relationships within the data. 
Fourth, like RF, GBM uses decision trees. However, GBM builds them 
sequentially, potentially leading to overfitting, especially with highly 
correlated features in cancer incidence data. The results indicate GBM 
and SVM may struggle compared to RF with complexities in data.

An advantage of DMD is the interpretability of the extracted 
modes. For some ML models, the users cannot see the underlying 
logic, making interpretation challenging. With DMD, the dynamic 
modes directly correspond to specific frequencies and decay rates in 
the data. This allows users to understand the underlying geospatial-
temporal patterns driving the observed trends and gain valuable 
insights into the system’s dynamics. The magnitude of the modes is a 
measure of the contribution to lung incidence rate by the local county 
under the associated eigenvalues. For example, the magnitude of the 
dominant eigenvector/mode (i.e., the frequency is zero) was mapped 
into different states, as shown in Figure 10. It indicates that nearly all 
the counties in Kentucky had a higher lung incidence rate, while 
California, New Mexico, Utah, and Idaho had lower trends. This 
interpretability is crucial in public health applications, where 
transparent and explainable results are essential for informing 
decision-making and intervention strategies (16–18). The extracted 
DMD modes come from the original data without further simulation 
or operation, offering a direct avenue to public health professionals 
and partners with limited data literacy. Public health practitioners 
often face the challenge of rapidly analyzing and responding to 
emerging public health threats like infectious disease outbreaks, 

FIGURE 5

The comparison of the 2021 lung incidence rate with time series prediction using all ranks. The x-y plot visualizes the time series predicted (blue dot) 
versus the actual (red dot) 2021 lung cancer incidence rate. It indicates random forest predicted values exhibit low variance compared to the actual 
data. This indicates generally more conservative estimates with less spread.

FIGURE 4

The real and imaginary parts of the eigenvalues for all the 20 ranks. 
Most of the eigenvalues are within the unit circle, indicating the 
decaying rate for lung incidence.
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biological emergencies, and natural disasters (17). These situations 
usually necessitate implementing time-sensitive interventions and 
resource allocation strategies based on real-time data analysis. In such 

scenarios, a ML model’s ease of use and interpretability become 
crucial factors. While neural networks and SVM offer powerful 
prediction capabilities, their complexity often requires significant 

FIGURE 6

The comparison of the 2021 lung incidence rate with random forest prediction using all ranks. The x-y plot visualizes the random forest predicted (blue 
dot) versus the actual (red dot) 2021 lung cancer incidence rate. It indicates random forest predicted values have acceptable variance while still 
matching the overall trend.

FIGURE 7

The comparison of the 2021 lung incidence rate with gradient boosting machine prediction using all ranks. The x-y plot visualizes the gradient 
boosting machine predicted (blue dot) versus the actual (red dot) 2021 lung cancer incidence rate. It indicates gradient boosting machine predicts 
values with a higher variance, although it captures the overall trend of the real data.
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FIGURE 9

The comparison of the 2021 lung incidence rate with linear regression prediction using all ranks. The x-y plot visualizes the linear regression predicted 
(blue dot) versus the actual (red dot) 2021 lung cancer incidence rate. It indicates linear regression predicts values with similar fluctuations to the actual 
rates, but at a consistently higher level.

expertise in model training, hyperparameter tuning, interpretation, 
and advanced computational ability (18), which can be a barrier for 
public health practitioners without extensive data science backgrounds 
(19–21).

With its inherent interpretability and relatively simpler 
implementation process, DMD emerges as a potential tool that public 
health professionals could readily adopt. The core algorithm of DMD 
relies on well-established linear algebra techniques that simplify the 

FIGURE 8

The 2021 lung incidence rate was compared with support vector machine prediction using all ranks. The x-y plot visualizes the support vector machine 
predicted (blue dot) versus the actual (red dot) 2021 lung cancer incidence rate. It indicates that support vector machine predicted data have high 
variance and contain more extreme values.
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model implementation compared to ML models, which often require 
specialized coding skills and libraries. Additionally, visually analyzing 
the extracted dynamic modes associated with the data empowers users 
to understand the underlying patterns driving the observed trends. 
Moreover, DMD’s ability to handle complex and high-dimensional data 
makes it suitable for analyzing data sets encompassing various public 
health indicators, such as demographics, socioeconomic factors, and 
environmental data. By integrating these diverse data sources, DMD can 
contribute to developing more comprehensive and holistic public health 
models, ultimately aiding in identifying key risk factors and formulating 
targeted interventions. In contrast, RF and GBM are ensemble methods 
based on decision trees, adept at capturing complex, non-linear 
relationships but often sacrificing interpretability and requiring 
significant computational resources for training large ensembles. SVM 
seeks an optimal hyperplane for classification or regression, powerful 
for high-dimensional data but sensitive to kernel choice and parameter 
tuning, with interpretability linked to support vectors rather than 
system dynamics. TS focus specifically on temporal dependencies and 

trends using smoothing techniques, generally computationally efficient 
for univariate series but inherently lacking spatial awareness. DMD’s 
reliance on linear algebra often results in lower computational demands 
compared to the iterative optimization or ensemble building of RF, 
GBM, and SVM, particularly as data dimensionality increases, 
positioning it as a balanced method for dynamic system analysis where 
interpretability and efficiency are key considerations (Table 2).

The potential applications of DMD extend beyond cancer incidence 
rate prediction and can benefit various public health domains. For 
instance, our previous study (4) demonstrated how DMD could be used 
to analyze and predict the spread of COVID-19 by identifying patterns 
in case data or mobility trends. Similarly, DMD could be applied to 
analyze and forecast trends in other health-related factors like obesity 
rates, mental health prevalence, or vaccine coverage, aiding in resource 
allocation and intervention planning. For example, DMD could be used 
to analyze data sets combining information on air pollution levels, 
socioeconomic factors like poverty rates, and asthma prevalence in a 
specific region. By identifying and interpreting the dominant modes in 

FIGURE 10

The magnitude of the dominant eigenvector (i.e., the steady state when the frequency is zero) mapped into different states. It indicates that nearly all 
the counties in Kentucky have a higher lung incidence rate, while California, New Mexico, Utah, and Idaho have lower trends.

TABLE 2 Comparison of dynamic mode decomposition with other models.

Feature Dynamic Mode 
Decomposition (DMD)

Random Forest 
(RF)

Gradient 
Boosting 
Machine (GBM)

Support Vector 
Machine (SVM)

Time Series 
(TS)

Core principle Linear dynamics approximation
Ensemble of decision 

trees

Sequential ensemble of 

trees

Optimal hyperplane 

separation

Exponential 

smoothing/ARIMA

Computational cost Low High (multiple trees)
High (sequential 

training)

Moderate-High (kernel/

tuning)
Low (for univariate)

Spatial awareness Yes (inherent in modes)
No (requires feature 

engineering)

No (requires feature 

engineering)

No (requires feature 

engineering)
No

Key strength Dynamic insights, efficiency
Robust prediction, 

handles noise
High predictive power

Effective in high 

dimensions

Simplicity, trend 

capture
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such a complex data set, DMD could reveal potential relationships 
between air pollution exposure, socioeconomic disadvantage, and 
asthma risk. Public health officials could use this information to 
prioritize air quality improvement efforts and target interventions.

Furthermore, combining DMD with geospatial analysis offers a 
unique advantage of visualizing high-risk areas. By overlaying the 
predicted incidence rates onto a map, we can readily identify geographic 
regions with high cancer rate prevalence. This visual representation can 
be a powerful tool for public health officials to address other public 
health crises, allowing them to target their interventions and resource 
allocation to identify high-risk populations and prepare for outbreaks.

4.1 Strengths and limitations

This study offers practical insights into the potential of machine 
learning techniques, particularly DMD, for analyzing and predicting 
public health trends. First, the utilization of real-world data on lung 
cancer incidence rates and readily available lung cancer incidence data 
adds context and strengthens the generalizability of the findings. 
Second, we compare the DMD with multiple ML models, using only 
lung cancer incidence rate data as the input, which provided a 
practical example and setting to test the DMD capacity. In fact, DMD 
has been applied to model infectious diseases such as flu (3), and 
COVID19 (4), which shows its capability in data driven modeling of 
high-dimensional spatial temporal analysis.

This study also has limitations. First, the study relies on a single 
data set of lung cancer incidence, limiting the generalizability of the 
findings to other populations or contexts. Additionally, the accuracy 
of the predictions generated by the machine learning models 
depended on the quality and completeness of the data used. 
Furthermore, as DMD uses linear modes to approximate nonlinear 
dynamic systems, its performance could be affected by highly 
nonlinear patterns. If the dynamic high-dimensional system is 
dominant with periodic or quasi-periodic behaviors, then DMD 
works well. However, if the system is strongly intermittent or sporadic, 
then other nonlinear models should be  used. Further research 
involving larger and more diverse datasets across different geographic 
regions is warranted to validate the findings and solidify the 
applicability of DMD in public health settings.

5 Conclusion

In summary, this study examined the capacity of various data-
driven models to predict lung cancer incidence rates, focusing 
particularly on DMD. We found DMD has a comparative analysis 
ability compared to more complex machine learning models. DMD 

can also offer both temporal and spatial insights into public health 
data, highlighting its potential as a convenient and effective analysis 
tool for a more comprehensive understanding of public health trends.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

LG: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Validation, Visualization, Writing  – 
original draft, Writing  – review & editing. JT: Conceptualization, 
Formal analysis, Investigation, Methodology, Supervision, Writing – 
original draft. MH: Conceptualization, Project administration, 
Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
 1. Schmid PJ. Dynamic mode decomposition of numerical and experimental data. Journal 

of fluid mechanics. J Fluid Mech. (2010) 656:5–28. doi: 10.1017/S0022112010001217

 2. Barocio E, Pal BC, Thornhill NF, Messina AR. A dynamic mode decomposition 
framework for global power system oscillation analysis. IEEE Trans Power Syst. (2014) 
30:2902–12. doi: 10.1109/TPWRS.2014.2368078

 3. Proctor JL, Eckhoff PA. Discovering dynamic patterns from infectious disease data using 
dynamic mode decomposition. Int Health. (2015) 7:139–45. doi: 10.1093/inthealth/ihv009

 4. Fang D, Guo L, Hughes MC, Tan J. Dynamic patterns and modeling of early 
COVID-19 transmission by dynamic mode decomposition. Prev Chronic Dis. (2023) 20. 
doi: 10.5888/pcd20.230089

 5. Common Cancer Types. National Cancer Institute. Available online at: https://
www.cancer.gov/types/common-cancers (2015).

 6. Financial Burden of Cancer Care. National Cancer Institute. Available online at: 
https://progressreport.cancer.gov/after/economic_burden (2024).

https://doi.org/10.3389/fpubh.2025.1472398
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1109/TPWRS.2014.2368078
https://doi.org/10.1093/inthealth/ihv009
https://doi.org/10.5888/pcd20.230089
https://www.cancer.gov/types/common-cancers
https://www.cancer.gov/types/common-cancers
https://progressreport.cancer.gov/after/economic_burden


Guo et al. 10.3389/fpubh.2025.1472398

Frontiers in Public Health 11 frontiersin.org

 7. Sekeroglu B, Tuncal K. Prediction of cancer incidence rates for the European 
continent using machine learning models. Health Informatics J. (2021) 27. doi: 
10.1177/1460458220983878

 8. Wang KM, Chen KH, Hernanda CA, Tseng SH, Wang KJ. How is the lung cancer 
incidence rate associated with environmental risks? Machine-learning-based modeling 
and benchmarking. Int J Environ Res Public Health. (2022) 19:8445. doi: 
10.3390/ijerph19148445

 9. Hart GR, Roffman DA, Decker R, Deng J. A multi-parameterized artificial neural 
network for lung cancer risk prediction. PLoS One. (2018) 13:e0205264. doi: 
10.1371/journal.pone.0205264

 10. Chandrasekar T, Raju SK, Ramachandran M, Patan R, Gandomi AH. Lung 
cancer disease detection using service-oriented architectures and multivariate 
boosting classifier. Appl Soft Comput. (2022) 122:108820. doi: 10.1016/j.
asoc.2022.108820

 11. SEER Research Data, 8 Registries, Nov 2023 Sub (1975–2021)—Linked To County 
Attributes-Time Dependent (1990–2022) Income/Rurality, 1969–2022 Counties, 
National Cancer Institute, DCCPS, Surveillance Research Program, Released April 2024, 
Based on the November 2023 Submission. eData-SEER Data & Software,” (2024).

 12. Agency for Healthcare Research and Quality. Checklist [internet]. Rockville (MD): 
Agency for Healthcare Research and Quality; (2023) Available online at: https://digital.
ahrq.gov/health-it-tools-and-resources/evaluation-resources/workflow-assessment-
health-it-toolkit/all-workflow-tools/checklist

 13. Sohil F, Sohali MU, Shabbir J In: G James, D Witten, T Hastie and R Tibshirani, 
editors. An introduction to statistical learning with applications in R in statistical 
theory and related fields, vol. 6. New York: Springer Science and Business Media 
(2013). 87.

 14. Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN. On dynamic mode 
decomposition: theory and applications. J Comput Dyn. (2014) 1:391–421. doi: 
10.3934/jcd.2014.1.391

 15. Equator Network. STROBE statement: STrengthening the reporting of OBservational 
studies in epidemiology [internet]. Oxford: Equator Network; (2023). Available online at: 
https://www.equator-network.org/reporting-guidelines/strobe/1

 16. Kolyshkina I, Simoff S. Interpretability of machine learning solutions in public 
healthcare: the CRISP-ML approach. Front Big Data. (2021) 4:660206. doi: 10.3389/fdata. 
2021.660206

 17. Frasca M, La Torre D, Pavettoni G, Cutica I. Explainable and interpretable artificial 
intelligence in medicine: a systematic bibliometric review. Discov Artif. (2024) 4:15. doi: 
10.1007/s44163-024-00114-7

 18. Markus AF, Kors JA, Rijnbeek PR. The role of explainability in creating trustworthy 
artificial intelligence for health care: a comprehensive survey of the terminology, design 
choices, and evaluation strategies. J Biomed Inform. (2021) 113:103655. doi: 10.1016/j.
jbi.2020.103655

 19. Prosperi M, Min JS, Bian J, Modave F. Big data hurdles in precision medicine and 
precision public health. BMC Med Inform Decis Mak. (2018) 18:139. doi: 10.1186/ 
s12911-018-0719-2

 20. Puskarich MA, Callaway C, Silbergleit R, Pines JM, Obermeyer Z, Wright DW, 
et al. Priorities to overcome barriers impacting data science application in emergency 
care research. Acad Emerg Med. (2019) 26:97–105. doi: 10.1111/acem.13520

 21. Iyamu I, Gómez-Ramírez O, Xu AXT, Chang HJ, Watt S, Mckee G, et al. Challenges in 
the development of digital public health interventions and mapped solutions: findings from 
a scoping review. Digit Health. (2022) 8:205520762211022. doi: 10.1177/20552076221102255

https://doi.org/10.3389/fpubh.2025.1472398
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1177/1460458220983878
https://doi.org/10.3390/ijerph19148445
https://doi.org/10.1371/journal.pone.0205264
https://doi.org/10.1016/j.asoc.2022.108820
https://doi.org/10.1016/j.asoc.2022.108820
https://digital.ahrq.gov/health-it-tools-and-resources/evaluation-resources/workflow-assessment-health-it-toolkit/all-workflow-tools/checklist
https://digital.ahrq.gov/health-it-tools-and-resources/evaluation-resources/workflow-assessment-health-it-toolkit/all-workflow-tools/checklist
https://digital.ahrq.gov/health-it-tools-and-resources/evaluation-resources/workflow-assessment-health-it-toolkit/all-workflow-tools/checklist
https://doi.org/10.3934/jcd.2014.1.391
https://www.equator-network.org/reporting-guidelines/strobe/1
https://doi.org/10.3389/fdata.2021.660206
https://doi.org/10.3389/fdata.2021.660206
https://doi.org/10.1007/s44163-024-00114-7
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1186/s12911-018-0719-2
https://doi.org/10.1186/s12911-018-0719-2
https://doi.org/10.1111/acem.13520
https://doi.org/10.1177/20552076221102255

	Comparison of dynamic mode decomposition with other data-driven models for lung cancer incidence rate prediction
	1 Introduction
	2 Methods
	2.1 Data source
	2.2 Training and testing datasets
	2.3 Random forest and gradient boosting machine
	2.4 Support vector machine (SVM)
	2.5 Time series
	2.6 Linear regression model
	2.7 Dynamic mode decomposition

	3 Results
	3.1 2021 county-level lung cancer incidence rate prediction
	3.2 Dynamic mode decomposition
	3.3 Machine learning and other models

	4 Discussion
	4.1 Strengths and limitations

	5 Conclusion

	References

