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Objective: To determine the current and future suitable areas of Rickettsia 
japonica, and to provide a reference for preventing its outbreak and spread.

Methods: Based on the geographic distribution of R. japonica and Haemaphysalis 
longicornis overlapping data points and information on 56 climatic factors, 
we  utilized the Maxent model to estimate suitable areas for R. japonica in 
Asian adjacent Regions and China. Model parameter adjustments and the 
construction of receiver operating characteristic curves were conducted using 
R 4.3.0 software.

Results: Average precipitation in June (prec6, 28.2%), Temperature Seasonality 
(bio4, 9.8%) and the minimum temperature in August (tmin8, 9.2%) contributed 
most to the distribution of R. japonica. The performance metrics for the Maxent 
model in predicting the distribution of R. japonica are as follows: the Area Under 
the Curve (AUC) is 0.990, the True Skill Statistic (TSS) is 0.857, and the Kappa 
statistic is 0.763. Under current climatic conditions, the Asian and adjacent 
space medium and highly suitable areas for R. japonica are estimated to 
be 176.78 × 104 km2 and 95.13 × 104 km2, respectively. The highly suitable areas 
for R. japonica were mainly distributed in east and south Asia. In China, the high 
suitability areas are mainly distributed in the southeast coastal areas and the 
Qinling Mountains and Huai River cities. Under future climatic conditions, the 
Asian and adjacent regions maximum area change rate of R. japonica increased 
by 118.65%, and that of China increased by 50.42%. Meanwhile, the suitable 
areas of R. japonica gradually expanding northward in China.

Conclusion: Under global climate change, the suitable area of R. japonica is 
generally increasing, with a northward shift observed in China. Governments 
should strengthen monitoring, risk assessment, and response strategies in 
highly suitable regions, while also preventing the invasion of R. japonica from 
external source.
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1 Introduction

Ticks, belonging to the Ixodoidea family, stand out as critical 
vectors for diseases affecting both humans and animals, surpassing 
other invertebrate carriers in the diversity of pathogens they 
transmitted. Tick-borne rickettsioses represent a globally 
distributed zoonotic threat caused by the obligate intracellular 
bacteria, rickettsia (1). Japanese spotted fever (JSF) emerges as a 
severe acute tick-borne disease, attributed to an alpha-
proteobacterial agent (Rickettsia japonica) belonging to the spotted 
fever group within the genus Rickettsia (2). The presence of 
R. japonica has been documented in various regions, including 
Japan, South Korea, and Thailand, with reports dating back to 1984 
(3). Subsequent findings have identified the bacterium in both 
ixodes ticks and the blood of individuals in central, southeastern, 
and northeastern China (4–6). A large number of studies have 
shown that Haemaphysalis longicornis is the main vector for 
R. japonica (5, 7, 8). The clinical manifestation of JSF is 
characterized by a sudden onset of symptoms, including headache, 
fever, shaking chills, skin eruptions, tick bite eschars, and overall 
malaise (9). Research indicates that following infection with JSF, if 
not promptly treated, there is a possibility of developing eruptive 
purpura, disseminated intravascular coagulation complications, 
and multiple organ failure (10, 11). Hence, it is crucial to conduct 
public health surveillance to detect cases and outbreaks promptly, 
enabling the implementation of preventive measures. This 
underscores the significance of identifying potential high-risk 
areas (12).

Global climate change is reshaping the distribution and density 
of tick populations by altering annual mean temperature, annual 
precipitation, and temperature seasonality, leading to extreme dry 
months (13). Climate significantly influences species distribution 
by modifying life cycles and environmental variables such as 
temperature, precipitation, and wind speed. These changes can 
directly impact ecology, resulting in population increases or 
decreases, and potentially leading to species evolution or extinction 
(14). Consequently, climate change poses an urgent and potentially 
irreversible threat to human societies, fauna, and vectors. 
According to the IPCC report, human activities have caused global 
warming of approximately 1°C above preindustrial levels, with a 
probable range of 0.8°C to 1.2°C. It is expected that global warming 
will reach 1.5°C between 2030 and 2052 if it continues at the 
current rate (15). Numerous studies and models (16–18) predict a 
significant expansion in tick habitats due to climate change. The 
northern global climate is anticipated to become warmer and 
wetter, facilitating the survival and adaptation of ticks like 
Haemaphysalis longicornis (H. longicornis) in many regions (19). 
This expansion of ticks has been observed on a broad scale across 
regions like Japan and the wider Asian continent (20). Therefore, 
the growing need to predict the impact of global changes has 
driven ecology towards becoming a more predictive science (21).

Even though the precise worldwide distribution of JSF remains 
unclear, ecological niche models have established associations 
between species occurrence and diverse environmental and 
climatic factors. These models enable the anticipation of 
distribution maps (22). GARP, Bioclim, Domain, and Maxent are 
extensively utilized for predicting species distribution, with the 
Maximum Entropy model (Maxent) proving particularly effective 

on a global scale (23, 24). Maxent asserts that, given precisely 
stated prior data, the probability distribution that most accurately 
reflects the current knowledge state of the system is the one with 
maximum entropy. Lorenz et al. employed Maxent modeling to 
identify regions with the highest prevalence of Mayaro virus 
occurrence in South America. Their study, based on confirmed 
cases, serological detection spanning the last two decades, and 
socio-environmental variables, aimed to map out areas of 
heightened risk for Mayaro virus presence in the region (12). 
Cheng et al. utilized epidemiological models and Maxent to assess 
the potential risk map of the spread of Usutu virus in Europe, 
providing data for the epidemiology and risk assessment of disease 
transmission (25).

There are few studies on risk prediction of R. japonica and JSF, 
and the classification of risk areas is crucial for formulating public 
policy related to control and prevention. Given this context, 
we  used overlapping datasets on the global distribution of 
R. japonica potential vectors ticks and R. japonica to identify 
potential areas where JSF occurs on a global scale and assess the 
influential bioclimatic variables for JSF using Maxent. Furthermore, 
it also aims to identify prospective areas for conservation planning 
under future climate change scenarios.

2 Materials and methods

2.1 Data collection

Distribution data on R. japonica and H. longicornis were 
obtained by retrieving data and information from the Global 
Biodiversity Information Facility (GBIF) (https://www.gbif.org, 
accessed on 1 March 2024) and the literature database (CNKI, 
PubMed, ScienceDirect, and Web of Science) (26). Both literature 
searches used combinations of the following search terms: 
“R. japonica” OR “H. longicornis” OR “Japanese spotted fever” to 
search in the database. Records lacking geographic coordinates 
were georeferenced in Google Maps (http://www.google.cn/intl/
zh-CN/earth/, accessed on 5 March 2024) (27). Further cross-
validation was conducted using Amap, and the results were verified 
and corrected through expert review. At a 95% confidence interval, 
the error margin is approximately 10 meters. Initially, 60 
distribution coordinates of R. japonica and 203 distribution 
coordinates of H. longicornis were collected. To ensure data 
integrity, we meticulously scrutinized and removed duplicates and 
missing records, resulting in 52 and 139 valid distribution points 
for R. japonica and H. longicornis, respectively. We employed the 
INSIDE operation within ArcGIS software (version 10.7, ESRI Inc., 
United States) to exclude distribution points situated in marine 
environments. Subsequently, to mitigate spatial sampling bias and 
reduce model overfitting, we  utilized ENMTools to filter the 
occurrence data, retaining only one point per grid cell at a spatial 
resolution of 5 arcminutes (28). Following these procedures, 
we  obtained 48 reliable overlapping data distributions for 
H. longicornis and R. japonica (see Supplementary Figure 1 and 
coordinate point data). Given that the distribution of data points is 
primarily concentrated in Asia, we will delineate the geographical 
scope to Asia and adjacent regions to ensure the reliability of the 
model’s predictive extrapolation. To align with the specifications of 
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the Maxent software (version 3.4.4, http://biodiversityinformatics.
amnh.org/open_source/maxent; accessed date: 15 September 2023), 
the distribution records were formatted as csv files.

2.2 Climatic variables and processing

Climatic data were obtained from the WorldClim Global 
Climate Database (version 2.1, https://worldclim.org/; accessed on: 
6 September 2023) (29). The dataset included near-current climate 
information spanning from 1970 to 2000, as well as projections for 
future climate conditions covering the periods 2021–2040, 2041–
2060, 2061–2080, and 2081–2,100. These projections were based on 
the BCC-CSM2-MR model, a middle-resolution climate system 
model developed by Beijing and participating in CMIP6, 
considering four socio-economic pathways (SSPs): 126, 245, 370, 
and 585. Key climatic variables examined in this study comprised 
elevation (Ele), monthly minimum temperature (Tmin1–Tmin12), 
monthly maximum temperature (Tmax1–Tmax12), monthly 
precipitation (Prec1–Prec12), and nineteen bioclimatic variables 
(bio1–bio19; refer to Supplementary Table 1) at a spatial resolution 
of 5 arcminutes (approximately 10 km). To meet the requirements 
of the Maxent software, all climatic variables were converted into 
ASCII format (30).

To avoid overfitting due to high correlation among climatic 
variables, a preliminary experiment was conducted using the 
Maxent model with the distribution data of R. japonica and 19 
environmental variables to obtain the contribution rates of climatic 
variables affecting R. japonica and rank them from high to low, 
subsequently discarding factors with a contribution rate less than 
1.0%. The climatic variables initially selected were subjected to 
Pearson correlation analysis using R software (version 4.3.0 https://
www.r-project.org; Obtained on April 15, 2022), and variables with 
a correlation coefficient absolute value greater than 0.8 and lower 
contribution rates were removed. Ultimately, 8 variables were 
chosen as predictors (Table 1).

2.3 Optimizing parameters for the 
maximum entropy model

The Maxent software employs the maximum entropy method to 
model species niches and distributions. In this study, we aimed to 
forecast suitable areas for R. japonica under both near-term and future 
climate scenarios. The data sets were randomly split, allocating 75% 
of the distribution points for model establishment and 25% for testing. 
Bootstrap sampling was utilized, with the process involving 20 
replicates, a limit of 5,000 iterations, and the application of a rule for 
the 10th percentile training presence threshold. In addition, 10-fold 
cross-validation was applied to the training and validation process of 
the model.

The optimization process of Maxent model parameters involved 
evaluating the influence of regularization multiplier (RM) and feature 
combination (FC) on predictive performance and accuracy (31, 32). 
RM was examined across eight levels: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4, 
while FC consisted of five characteristic parameters: automatic linear 
(L), quadratic (Q), fragmentation (hinge, H), product (P), and 
threshold (T), resulting in eight feature combinations (L, LQ, LQP, 
QHP, LQH, LQHP, QHPT, and LQHPT). The optimization of these 
parameters utilized the “ENMeval” package in the R software (33, 34), 
utilizing the Akaike Information Criterion Correction (AICc). 
Generally, smaller AIC values were prioritized in simulations, with 
AICc serving as a standard measure for assessing model fit quality 
(35). In this study, linear, quadratic, and product features were 
selected, with a regularization multiplier set at 1 (Parameter selection 
in Supplementary materials). The predictive performances and 
contributions of all the selected variables were determined using the 
jackknife test.

2.4 Model evaluation

For the evaluation of the Maxent model in this study, we employed 
three standard metrics: the Receiver Operating Characteristic (ROC) 
curve, the KAPPA statistic, and the True Skill Statistic (TSS). The ROC 
metric is determined by computing the area under the curve (AUC). 
The area measure has a value range of 0–1, with a value closer to 1 
indicating a stronger correlation between environmental variables and 
the predicted geographic distribution of species, reflecting a higher 
predictive performance of the model (36). The KAPPA statistic is a 
normalized measure used to evaluate the agreement between model 
predictions and observed data, incorporating aspects of species range, 
sensitivity (True Positive Rate, TPR), and specificity (1 – False Positive 
Rate, FPR). The TSS provides a numerical index that represents the 
net accuracy of the model in predicting the presence and absence of 
species. The criteria for assessing the effectiveness and accuracy of 
these three-evaluation metrics are presented in Table 2 (37, 38).

2.5 Classification of suitable areas

The State Key Laboratory for Infectious Disease Prevention and 
Control of the Chinese Center for Disease Control and Prevention 
obtained the ArcGIS software. The probability of R. japonica presence 
was stratified into four categories using natural break points: 
unsuitable, low suitability, moderate suitability, and high suitability 

TABLE 1 Percentage contributions of environmental variables in Maxent 
for R. japonica.

Abbreviation Definition Contribution 
rate (%)

prec6 Average Precipitation of June (mm) 28.2

bio4 Temperature Seasonality (standard 

deviation ×100)

9.8

tmin8 Minimum temperature of August 

(°C)

9.2

ele Elevation 8.4

prec9 Average Precipitation of September 

(mm)

3.1

bio14 Precipitation of Driest Month 2.5

prec8 Average Precipitation of August 

(mm)

1.2

prec11 Average Precipitation of November 

(mm)

1.1
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areas. This classification was performed using the reclassification tool 
in ArcGIS, based on complementary clog log values (39).

3 Results

In this study, three common metrics, AUC, TSS, and Kappa, were 
selected as the basis for the assessment of model accuracy. We obtained 
an AUC value of 0.990, a TSS value of 0.857, and a Kappa value of 
0.763 for the model of R. japonica. The mean omission of test data of 
R. japonica was in general agreement with the predicted omission 
(Figure 1A), indicating that the models were well constructed. The 
AUC value (Figure 1B) was close to 1; The TSS value was >0.85, and 
the Kappa value was >0.70. According to the model accuracy 
evaluation reference standards (Table  2), the results of the three 
evaluation indicators suggest good to excellent levels. These results 
indicate that the obtained Maxent model predictions were highly 
accurate. Maxent model revealed that the most influential climatic 
variables affecting the suitability of R. japonica, were average 
precipitation in June (prec6), precipitation of warmest quarter 
(bio18),temperature seasonality (bio4), minimum temperature in 
August (tmin8), elevation (ele), average precipitation in September 
(prec9), precipitation of driest month (bio14), isothermality (bio3), 
minimum temperature in January (tmin1), average precipitation in 
August (prec8), average precipitation in November (prec11). Pearson 
correlation test was further conducted on the selected climatic 
variables (Figure 2). Variables exhibiting high correlation but low 
contribution were subsequently removed, resulting in the retention of 
eight climatic variables in the final analysis (Table 1).

Given the substantial contribution rates of prec6 and bio4, 
we  conducted a univariate analysis to elucidate their individual 
influences. As depicted in Figure 3A, the probability of R. japonica 
presence exhibited an initial increase followed by a subsequent 
decrease with the rise in Average Precipitation in June. Notably, within 
the 160–600 mm interval of Average Precipitation in June, the 
probability exceeded 0.7, indicating highly suitable range. The 
probability reached its peak value (approximately 0.9) when the 
Average Precipitation in June was around 200 mm. Furthermore, the 
Temperature Seasonality variation coefficient within highly suitable 
habitats ranged from 600 to 900, with a peak around 800, as illustrated 
in Figure 3B.

The distribution of R. japonica occurrence points was 
predominantly in East Asia, Southeast Asia, and several European 
countries (Figure  4). The predicted potentially suitable area for 
R. japonica under historical climate conditions spanned 17.67 million 
square kilometers. Within these suitable regions, the proportions of 
highly suitable, moderately suitable, and less suitable areas were 7.05, 
14.64, and 78.31%, respectively. Highly and moderately suitable areas 
were primarily concentrated in Eastern Asia (including the southeast 
of China, Korea, and Japan), and Southern Asia (encompassing the 

east of India, Thailand, Cambodia, Myanmar, Laos, Bangladesh, 
Vietnam, and the Philippines). Marginally suitable areas were 
observed not only in the vicinity of moderately and highly suitable 
regions but also in Europe (including Norway, United  Kingdom, 
Netherlands, Belgium, France, Germany, Switzerland, Austria, Latvia, 
Estonia, Lithuania, Sweden, Poland, Czech Republic, Italy, Slovakia, 
Hungary, Croatia, Bosnia  and  Herzegovina, Ukraine, Romania, 
Russia, Kazakhstan), in the middle and south of Australia and 
New Zealand.

Among 16 future climate scenarios, the potential range of middle 
to high suitable areas for R. japonica expanded, encompassing regions 
such as China, Bhutan, Bangladesh, India, Vietnam, Laos, Burma, 
Cambodia, Thailand and other countries in Southeast Asia (Figure 5). 
Under the SSP5-8.5 scenario model, the projected maximum extent 
of the suitable area for Asia and its adjacent regions is anticipated to 
reach 1525.51 × 104 km2, with an area change rate of 118.65% from 
2021 to 2040. The maximum area of high suitability for R. japonica 
across different time periods is observed in the SSP3-7.0 scenario for 
the years 2041–2060, where the high suitability area reached its peak 
at 193.42 × 104 km2, compared to the current suitable area of 
95.13 × 104 km2 (Table 3).

In the historical climate scenario, China’s suitable areas are 
primarily concentrated in the southeast coastal regions, as well as the 
cities along the Qinling Mountains and the Huai River. Moderately 
and less suitable areas are predominantly found in Liaoning, Hebei, 
Tianjin, Beijing, Shandong, Shaanxi, and Yunnan. Highly suitable 
areas are distributed across Henan, Jiangsu, Sichuan, Chongqing, 
Hubei, Anhui, Hunan, Jiangxi, Zhejiang, Guangdong, Guangxi, Fujian, 
Hainan, and Taiwan (Figure 6). Under the SSP5-8.5 scenario models, 
the suitable area of R. japonica in China during 2021–2040 is the 
largest, which is 3.95 × 106 km2, and the area change rate is 50.42%. 
The areas potentially suitable for R. japonica under each climate 
scenario demonstrate an overall increasing trend in the future 
(Table 4), with suitability areas gradually expanding northward.

4 Discussion

We employed the Maxent model with optimized parameters to 
forecast the future suitable areas of R. japonica Asian and adjacent 
regions under four SSPs scenarios, serving as an early warning. Our 
findings indicate that mean precipitation in June, temperature 
seasonality, minimum temperature in August, and elevation are the 
primary factors influencing the potential geographical distribution 
of R. japonica, with mean precipitation in June exhibiting the 
greatest contribution rates and permutation importance. The 
projected suitable areas of R. japonica in different periods under 
each climate scenario, both Asian and within China, surpass those 
under the current climate scenario. In Asian and adjacent regions, 
Japan emerges as the most favorable region for R. japonica. In 

TABLE 2 Model evaluation index reference standard.

Evaluation index Failure General Moderate Better Excellent

ROC 0.00–0.60 0.60–0.70 0.70–0.80 0.80–0.90 0.90–1.00

TSS 0.00–0.40 0.40–0.55 0.55–0.70 0.70–0.85 0.85–1.00

KAPPA 0.00–0.20 0.20–0.40 0.40–0.60 0.60–0.80 0.80–1.00
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Southeast Asia, suitable zones transition from moderate-low to 
moderate-high suitability. Moreover, potential suitable zones in 
Europe show signs of expansion. Under future climate scenarios, the 

highly suitable areas for R. japonica in central and southern China 
are projected to increase, with the suitable areas gradually 
expanding northward.

FIGURE 1

Validation charts of model performance. (A) Training omission rate graph, (B) receiver operating characteristic curve.

FIGURE 2

Heat map of Pearson’s correlation coefficient.
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Currently, there were few literatures exploring the relationship 
between climate and JSF. The majority of research were concentrated 
on clinical symptoms of cases and serological testing (9, 40–43). 
According to the latest monitoring data from Japan, the incidence 
rate of JSF had been consistently rising until 2016 (44). It was 
observed that JSF had become more prevalent among the older adult 
population by 2020. More importantly, the incidence of JSF is 
increasing in areas not previously considered high-incidence areas 
(45). We  suspect that this phenomenon is related to changes in 

temperature and increased precipitation. It was predicted that Tick-
Borne Diseases (TBD) would become prevalent in new regions due 
to global warming, prompting ticks that prefer warmer environments 
to become more active (17, 46). As observed in mainland China, 
climate factors such as temperature, sunshine duration, precipitation, 
and seasonal indicators are correlated with the incidence rate of TBD 
(19). Our research has also found the average precipitation in June, 
temperature seasonality, and the minimum temperature in August 
contributed strongly to the distribution of R. japonica. In regions with 

FIGURE 3

Response curves for dominant climatic factors (A) Response curve for average precipitation of June; (B) Response curve for temperature seasonality.

FIGURE 4

Suitable areas of R. japonica under near-current climate conditions.
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FIGURE 5

Suitable areas for R. japonica in Asia and adjacent regions under future climate scenarios. (A) SSP585: 2021–2040; (B) SSP370: 2041–2060; (C) SSP126: 
2061–2080; (D) SSP126: 2081–2100.

TABLE 3 Habitat distribution of R. japonica in Asia and adjacent regions under current and future climate conditions (×104 km).

Period Climate 
scenarios

Total 
area

Low 
suitability

Medium 
suitability

High 
suitability

Area 
change

Area 
changes 
rate (%)

1970–2000 Current 697.71 425.79 176.78 95.13 – –

2021–2040 ssp1-2.6 1488.13 1021.31 285.99 180.83 790.42 113.29

ssp2-4.5 1386.85 945.97 259.18 181.70 689.14 98.77

ssp3-7.0 1367.48 940.54 253.41 173.53 669.77 96.00

ssp5-8.5 1525.51 1048.56 295.49 181.46 827.80 118.65

2041–2060 ssp1-2.6 1051.85 647.36 261.37 143.11 354.14 50.76

ssp2-4.5 1110.86 691.15 249.19 170.53 413.15 59.22

ssp3-7.0 1430.62 979.42 257.78 193.42 732.91 105.05

ssp5-8.5 1366.18 932.07 256.92 177.19 668.47 95.81

2061–2080 ssp1-2.6 1437.58 977.09 270.68 189.81 739.87 106.04

ssp2-4.5 1007.57 572.85 268.40 166.31 309.86 44.41

ssp3-7.0 1315.24 867.56 269.14 178.54 617.53 88.51

ssp5-8.5 1388.65 924.94 290.19 173.53 690.94 99.03

2081–2,100 ssp1-2.6 1260.80 867.56 225.62 167.61 563.09 80.71

ssp2-4.5 1207.46 798.81 260.83 147.83 509.75 73.06

ssp3-7.0 1196.82 735.62 302.26 158.94 499.11 71.54

ssp5-8.5 848.71 488.64 229.85 130.22 151.00 21.64
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high precipitation and relatively high temperatures, the suitable 
habitat area for R. japonica is larger. These findings were consistent 
with a study conducted in Japan, which revealed that the incidence 
rate of JSF is related to year-round seasonal temperature fluctuations 
(47). The possible reason for this is the continuous increase in the 
population size of the vector ticks, allowing them to attack hosts even 
during winter. The prevalence of R. japonica is mainly from April to 
December, and the vector ticks activity shift with the change of 
climate, which can attack the hosts at the end of calendar winter and 
in early spring (48).

In southern China, the distribution areas of R. japonica share the 
same Köppen climate classification, known as Cfa, characterized by a 
temperate climate with hot summers and an absence of dry seasons. 
This climate type entails a minimum monthly mean temperature 
ranging from 0 to 18°C and a maximum monthly mean temperature 
of 22°C or higher throughout the year, coupled with high humidity 
(31). Over the past 40 years, the Cfa climate classification has notably 
expanded in China, mirroring the findings of our study, where highly 
suitable areas for R. japonica have demonstrated a tendency to expand 
in southern China. Moreover, within suitable areas of China, 
R. japonica has expanded northward. This expansion can primarily 
be attributed to the projected warmer and wetter climate in the North, 

which enhances the climate suitability for tick survival in many 
regions (49, 50).

The expansion of the suitable area implies an increasing public 
health risk for the population residing within these regions. 
We  unexpectedly found that the incidence of JSF is increasing in 
eastern Japan (Fukushima, Ibaraki, Tochigi, Gunma, and Shizuoka 
Prefectures), where the disease has previously been regarded as 
non-prevalent regions (51, 52). Meanwhile, reports of JSF cases in 
China have also gradually increased over the past 5 years (53–56). 
Therefore, it is imperative to enhance health education regarding tick 
prevention and control measures among the population residing in 
the potentially suitable areas, disseminating knowledge about the 
course and etiology of JSF among healthcare professionals as well as 
in society (57). Simultaneously, promoting and guiding individuals to 
take protective measures to prevent tick contact and bites. This 
includes using repellents, wearing untreated or permethrin-treated 
protective clothing, and conducting tick checks after entering indoor 
spaces, followed by showering to assist in detecting ticks on the skin 
(58). In addition, regular monitoring of tick density and activity, 
assessing the potential health risks posed by ticks to humans and 
animals, effective prevention through environmental modification, 
biological control, and physical barriers, developing an early warning 

FIGURE 6

Suitable areas for R. japonica in China under future climate scenarios. (A) SSP585: 2021–2040; (B) SSP370: 2041–2060; (C) SSP585: 2061–2080; 
(D) SSP370: 2081–2100.
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system for emerging tick-borne diseases, and conducting targeted 
vaccination campaigns in high-incidence areas (59).

Our research presents distinct advantages. Firstly, there is 
currently no existing study on the risk prediction of R. japonica and 
JSF. This study introduces a systematic approach for Asian and 
adjacent regions predicting the distribution of R. japonica. The Maxent 
model, based on the principle of maximum entropy, offers several 
advantages: it exhibits higher accuracy in prediction outcomes and is 
capable of achieving superior modeling results with smaller sample 
sizes, which is importantly notable (60, 61). Additionally, Maxent 
facilitates the identification and interpretation of non-linear responses. 
Contributions and Jackknife analyses promptly highlight crucial 
variables, while response curves illustrate the variation in probabilities 
with dependent variables, providing comprehensive information (62). 
Maxent further excels over other models such as GLMs, GAMs, 
BIOCLIM, and GARP in predictive accuracy due to its ability to 
model complex environmental variables (63). Furthermore, 
predictions were enhanced by overlaying coordinates of H. longicornis 
and R. japonica, significantly improving the accuracy of risk 
distribution forecasts. This approach identifies numerous prospective 
regions susceptible to R. japonica invasion in China. While not yet 
intercepted or detected in China, these regions could potentially 
be  colonized under specific conditions. Lastly, the expansion of 
suitable areas for R. japonica towards northern China is attributed to 
global warming and the significant increase in the Cfa climate, 
highlighting a notable trend in our findings.

Several limitations were identified in our study that highlight 
areas for improvement in future research. Firstly, our reliance on 
historical climate data spanning from 1970 to 2000 restricted access 
to current climate information, potentially impacting the accuracy of 
current suitability estimates. Moreover, the exclusive use of the Maxent 

model focused solely on species’ climatic adaptability and specific 
climatic variables, neglecting the inclusion of other critical factors. To 
enhance precision in estimating distribution within suitable habitats, 
future studies should incorporate a broader range of variables 
including soil moisture levels, vegetation cover types, population 
densities, tick vector densities, and land use patterns. Finally, and of 
critical importance, due to the limitations of current data, the 
geographical scope for future predictions is limited to analysis of Asia 
and adjacent regions. Although this study has enhanced model 
performance by refining feature selection and adjusting regularization 
parameters to optimize model fitting, it is imperative to exercise 
caution when extrapolating the model. Future research should focus 
on collecting more data from various regions to further validate and 
refine the model.

5 Conclusion

Detecting potential regions suitable for species invasion holds 
significant importance in preventing alien incursions. Utilizing the 
Maxent model, we  evaluated the potential invasion ranges of 
R. japonica under both current and future climate conditions. Our 
findings reveal that the potential invasion range of R. japonica 
predominantly spans subtropical and warmer temperate regions, 
encompassing areas such as Japan, South Korea, southeast China, 
various southeast Asian countries, and European nations. Temperature 
seasonality and precipitation emerged as pivotal climatic factors 
influencing the potential distribution of R. japonica. Looking ahead, 
the invasion range of R. japonica is poised to expand globally. Within 
China, the southeastern region witnesses an increase in high-suitability 
areas, with a discernible trend of expansion towards the north. These 

TABLE 4 Habitat distribution of R. japonica in China under current and future climate conditions (×104 km).

Period Climate 
scenarios

Total 
area

Low 
suitability

Medium 
suitability

High 
suitability

Area 
change

Area 
change rate 

(%)

1970–2000 Current 262.51 77.97 109.41 75.14 – –

2021–2040 ssp1-2.6 359.83 129.35 117.70 112.77 97.32 37.07

ssp2-4.5 355.94 142.40 112.78 100.76 93.43 35.59

ssp3-7.0 351.56 148.79 103.78 98.98 89.05 33.92

ssp5-8.5 394.86 155.27 137.63 101.96 132.35 50.42

2041–2060 ssp1-2.6 366.38 136.02 130.28 100.08 103.87 39.57

ssp2-4.5 362.54 130.23 121.08 111.23 100.03 38.11

ssp3-7.0 379.06 148.95 110.64 119.47 116.55 44.40

ssp5-8.5 351.15 135.77 127.44 87.94 88.64 33.76

2061–2080 ssp1-2.6 358.06 130.40 112.00 115.66 95.55 36.40

ssp2-4.5 367.45 125.52 133.40 108.53 104.94 39.98

ssp3-7.0 370.98 137.76 128.46 104.76 108.47 41.32

ssp5-8.5 373.14 131.37 130.42 111.35 110.63 42.14

2081–2,100 ssp1-2.6 346.85 137.29 98.51 111.05 84.34 32.13

ssp2-4.5 352.05 142.68 114.86 94.51 89.54 34.11

ssp3-7.0 375.37 141.24 131.02 103.11 112.86 42.99

ssp5-8.5 358.13 157.22 119.84 81.07 95.62 36.43
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insights furnish valuable reference points for devising appropriate 
management strategies aimed at thwarting the establishment and 
further dissemination of R. japonica throughout the world.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

XW: Conceptualization, Data curation, Formal analysis, 
Methodology, Software, Visualization, Writing – original draft. MS: 
Project administration, Writing  – review & editing. ZiW: 
Methodology, Writing – review & editing. HJ: Conceptualization, 
Resources, Writing – review & editing. ZhW: Data curation, Formal 
analysis, Writing – review & editing. QL: Conceptualization, Funding 
acquisition, Supervision, Visualization, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by the National Key R&D Program of China (No. 
2020YFC1200101), the Chinese Academy of Engineering (2023-JB-
12), the Major Program of National Natural Science Foundation of 
China (Grant number: 32090023), and Comprehensive Innovation 
Capability Support of Intelligent Tracking and Forecasting for 
Infectious Diseases (grant number 102393240020020000004/2024N
ITFID715).

Acknowledgments

We are grateful to the Institute of Chinese Center for Disease 
Control and Prevention (China CDC) for their legitimate software 
support and administrative assistance. In addition, we would like to 
express our sincere appreciation to the teams for their support and 
assistance in conducting this study.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.1478736/
full#supplementary-material

SUPPLEMENTARY FIGURE 1

Distribution of data points around the world.

References
 1. Piotrowski M, Rymaszewska A. Expansion of tick-borne rickettsioses in the world. 

Microorganisms. (2020) 8:1906. doi: 10.3390/microorganisms8121906

 2. Nakada N, Yamamoto K, Tanaka M, Ashizawa H, Yoshida M, Umemura A, et al. 
Clinical differentiation of severe fever with thrombocytopenia syndrome from Japanese 
spotted fever. Viruses. (2022) 14:1807. doi: 10.3390/v14081807

 3. Uchida T, Tashiro F, Funato T, Kitamura Y. Isolation of a spotted fever group 
Rickettsia from a patient with febrile exanthematous illness in Shikoku, Japan. Microbiol 
Immunol. (1986) 30:1323–6. doi: 10.1111/j.1348-0421.1986.tb03053.x

 4. Lu M, Li F, Liao Y, Shen JJ, Xu JM, Chen YZ, et al. Epidemiology and diversity of 
Rickettsiales Bacteria in humans and animals in Jiangsu and Jiangxi provinces, China. 
Sci Rep. (2019) 9:13176. doi: 10.1038/s41598-019-49059-3

 5. Qin XR, Han HJ, Han FJ, Zhao FM, Zhang ZT, Xue ZF, et al. Rickettsia japonica and 
novel Rickettsia species in ticks, China. Emerg Infect Dis. (2019) 25:992–5. doi: 
10.3201/eid2505.171745

 6. Hu H, Liu Z, Fu R, Liu Y, Ma H, Zheng W. Detection and phylogenetic analysis of 
tick-borne bacterial and protozoan pathogens in a forest province of eastern China. Acta 
Trop. (2022) 235:106634. doi: 10.1016/j.actatropica.2022.106634

 7. Jiang J, Choi YJ, Kim J, Kim HC, Klein TA, Chong ST, et al. Distribution of 
Rickettsia spp. in ticks from northwestern and southwestern provinces, Republic of 
Korea. Korean J Parasitol. (2019) 57:161–6. doi: 10.3347/kjp.2019.57.2.161

 8. Fujikawa T, Yoshikawa T, Kurosu T, Shimojima M, Saijo M, Yokota K. Co-infection 
with severe fever with thrombocytopenia syndrome virus and Rickettsia japonica after 
tick bite, Japan. Emerg Infect Dis. (2021) 27:1247–9. doi: 10.3201/eid2704.203610

 9. Teng Z, Gong P, Wang W, Zhao N, Jin X, Sun X, et al. Clinical forms of Japanese 
spotted fever from case-series study, Zigui County, Hubei Province, China, 2021. Emerg 
Infect Dis. (2023) 29:202–6. doi: 10.3201/eid2901.220639

 10. Nakata R, Motomura M, Tokuda M, Nakajima H, Masuda T, Fukuda T, et al. A case 
of Japanese spotted fever complicated with central nervous system involvement and multiple 
organ failure. Intern Med. (2012) 51:783–6. doi: 10.2169/internalmedicine.51.6214

 11. Gao S, Li L, Zhou X, Dai X, Lu L, Chen Y, et al. Fatal Rickettsia Japonica infection 
complicating disseminated intravascular coagulation in Yichang, China. Infect Drug 
Resist. (2022) 15:6613–23. doi: 10.2147/idr.S383917

 12. Lorenz C, Freitas Ribeiro A, Chiaravalloti-Neto F. Mayaro virus distribution in 
South America. Acta Trop. (2019) 198:105093. doi: 10.1016/j.actatropica.2019.105093

 13. Ma B, Sun J. Predicting the distribution of Stipa purpurea across the Tibetan 
plateau via the MaxEnt model. BMC Ecol. (2018) 18:10. doi: 10.1186/s12898-018-0165-0

 14. Åkesson A, Curtsdotter A, Eklöf A, Ebenman B, Norberg J, Barabás G. The 
importance of species interactions in eco-evolutionary community dynamics under 
climate change. Nat Commun. (2021) 12:4759. doi: 10.1038/s41467-021-24977-x

 15. IPCC. IPCC special report on the ocean and cryosphere in a changing climate. 
Geneva: Rep., IPCC (2019).

 16. Ma R, Li C, Tian H, Zhang Y, Feng X, Li J, et al. The current distribution of tick 
species in Inner Mongolia and inferring potential suitability areas for dominant tick 
species based on the MaxEnt model. Parasit Vectors. (2023) 16:286. doi: 
10.1186/s13071-023-05870-6

 17. Gilbert L. The impacts of climate change on ticks and tick-borne disease risk. Annu 
Rev Entomol. (2021) 66:373–88. doi: 10.1146/annurev-ento-052720-094533

 18. Cunze S, Glock G, Kochmann J, Klimpel S. Ticks on the move-climate change-
induced range shifts of three tick species in Europe: current and future habitat 
suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and 
Dermacentor marginatus. Parasitol Res. (2022) 121:2241–52. doi: 10.1007/s00436- 
022-07556-x

https://doi.org/10.3389/fpubh.2025.1478736
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1478736/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1478736/full#supplementary-material
https://doi.org/10.3390/microorganisms8121906
https://doi.org/10.3390/v14081807
https://doi.org/10.1111/j.1348-0421.1986.tb03053.x
https://doi.org/10.1038/s41598-019-49059-3
https://doi.org/10.3201/eid2505.171745
https://doi.org/10.1016/j.actatropica.2022.106634
https://doi.org/10.3347/kjp.2019.57.2.161
https://doi.org/10.3201/eid2704.203610
https://doi.org/10.3201/eid2901.220639
https://doi.org/10.2169/internalmedicine.51.6214
https://doi.org/10.2147/idr.S383917
https://doi.org/10.1016/j.actatropica.2019.105093
https://doi.org/10.1186/s12898-018-0165-0
https://doi.org/10.1038/s41467-021-24977-x
https://doi.org/10.1186/s13071-023-05870-6
https://doi.org/10.1146/annurev-ento-052720-094533
https://doi.org/10.1007/s00436-022-07556-x
https://doi.org/10.1007/s00436-022-07556-x


Wang et al. 10.3389/fpubh.2025.1478736

Frontiers in Public Health 11 frontiersin.org

 19. Yang X, Gao Z, Wang L, Xiao L, Dong N, Wu H, et al. Projecting the potential 
distribution of ticks in China under climate and land use change. Int J Parasitol. (2021) 
51:749–59. doi: 10.1016/j.ijpara.2021.01.004

 20. Yamaji K, Aonuma H, Kanuka H. Distribution of tick-borne diseases in Japan: past 
patterns and implications for the future. J Infect Chemother. (2018) 24:499–504. doi: 
10.1016/j.jiac.2018.03.012

 21. Wouyou HG, Lokonon BE, Idohou R, Zossou-Akete AG, Assogbadjo AE, Glèlè 
KR. Predicting the potential impacts of climate change on the endangered Caesalpinia 
bonduc (L.) Roxb in Benin (West Africa). Heliyon. (2022) 8:e09022. doi: 
10.1016/j.heliyon.2022.e09022

 22. Perkins-Taylor IE, Frey JK. Predicting the distribution of a rare chipmunk 
(Neotamias quadrivittatus oscuraensis): comparing MaxEnt and occupancy models. J 
Mammal. (2020) 101:1035–48. doi: 10.1093/jmammal/gyaa057

 23. Wang X, Jiang Y, Wu W, He X, Wang Z, Guan Y, et al. Cryptosporidiosis threat 
under climate change in China: prediction and validation of habitat suitability and 
outbreak risk for human-derived Cryptosporidium based on ecological niche models. 
Infect Dis Poverty. (2023) 12:35. doi: 10.1186/s40249-023-01085-0

 24. Carvalho BM, Rangel EF, Ready PD, Vale MM. Ecological niche modelling predicts 
southward expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: 
Phlebotominae), vector of Leishmania (Leishmania) amazonensis in South America, 
under climate change. PLoS One. (2015) 10:e0143282. doi: 10.1371/journal.pone.0143282

 25. Cheng Y, Tjaden NB, Jaeschke A, Lühken R, Ziegler U, Thomas SM, et al. 
Evaluating the risk for Usutu virus circulation in Europe: comparison of environmental 
niche models and epidemiological models. Int J Health Geogr. (2018) 17:35. doi: 
10.1186/s12942-018-0155-7

 26. GBIF.org (2024) GBIF occurrence download. Available online at: https://doi.
org/10.15468/dl.beqvfy (accessed January 08, 2024).

 27. Wang S, Lu Y, Han M, Li L, He P, Shi A, et al. Using MaxEnt model to predict the 
potential distribution of three potentially invasive scarab beetles in China. Insects. (2023) 
14:239. doi: 10.3390/insects14030239

 28. Ma Q, Wan L, Shi S, Wang Z. Impact of climate change on the distribution of three 
rare salamanders (Liua shihi, Pseudohynobius jinfo, and Tylototriton wenxianensis) in 
Chongqing, China, and their conservation implications. Animals (Basel). (2024) 14:672. 
doi: 10.3390/ani14050672

 29. Rewicz A, Myśliwy M, Rewicz T, Adamowski W, Kolanowska M. Contradictory 
effect of climate change on American and European populations of Impatiens capensis 
Meerb.  – is this herb a global threat? Sci Total Environ. (2022) 850:157959. doi: 
10.1016/j.scitotenv.2022.157959

 30. Dong X, Ju T, Shi L, Luo C, Gan L, Wang Z, et al. Evaluating effects of climate 
change on the spatial distribution of an atypical cavefish Onychostoma macrolepis. J 
Environ Manag. (2024) 350:119643. doi: 10.1016/j.jenvman.2023.119643

 31. Li H, Liang Y, Dong L, Li C, Zhang L, Wang B, et al. Predicting global potential 
distribution of Peromyscopsylla hesperomys and Orchopeas sexdentatus and risk 
assessment for invading China under climate change. Front Public Health. (2022) 
10:1018327. doi: 10.3389/fpubh.2022.1018327

 32. Gao T, Shi J. The potential global distribution of Sirex juvencus (Hymenoptera: 
Siricidae) under near current and future climatic conditions as predicted by the 
maximum entropy model. Insects. (2021) 12:222. doi: 10.3390/insects12030222

 33. Ouyang X, Lin H, Bai S, Chen J, Chen A. Simulation the potential distribution of 
Dendrolimus houi and its hosts, Pinus yunnanensis and Cryptomeria fortunei, under climate 
change in China. Front Plant Sci. (2022) 13:1054710. doi: 10.3389/fpls.2022.1054710

 34. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al. 
ENMeval: An R package for conducting spatially independent evaluations and 
estimating optimal model complexity for Maxent ecological niche models. Methods Ecol 
Evol. (2014) 5:1198–205. doi: 10.1111/2041-210X.12261

 35. Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of 
model complexity and the performance of model selection criteria. Ecol Appl. (2011) 
21:335–42. doi: 10.1890/10-1171.1

 36. Swets JA. Measuring the accuracy of diagnostic systems. Science. (1988) 
240:1285–93. doi: 10.1126/science.3287615

 37. BakhshiGanje M, Mahmoodi S, Ahmadi K, Mirabolfathy M. Potential distribution 
of Biscogniauxia mediterranea and Obolarina persica causal agents of oak charcoal 
disease in Iran's Zagros forests. Sci Rep. (2024) 14:7784. doi: 10.1038/s41598-024-57298-2

 38. Allouche O, Tsoar A, Kadmon RJ. Assessing the accuracy of species distribution 
models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. (2006) 
43:1223–32. doi: 10.1111/j.1365-2664.2006.01214.x

 39. Zhou R, Gao Y, Chang N, Gao T, Ma D, Li C, et al. Projecting the potential 
distribution of Glossinamorsitans (Diptera: Glossinidae) under climate change using the 
MaxEnt model. Biology (Basel). (2021) 10:1150. doi: 10.3390/biology10111150

 40. Uchida T, Yan Y, Kitaoka S. Detection of Rickettsia japonica in Haemaphysalis 
longicornis ticks by restriction fragment length polymorphism of PCR product. J Clin 
Microbiol. (1995) 33:824–8. doi: 10.1128/jcm.33.4.824-828.1995

 41. Zeng W, Li Z, Jiang T, Cheng D, Yang L, Hang T, et al. Identification of bacterial 
communities and tick-borne pathogens in Haemaphysalis spp. collected from Shanghai, 
China. Trop Med Infect Dis. (2022) 7:413. doi: 10.3390/tropicalmed7120413

 42. Sakabe S, Tanaka H, Nakanishi Y, Toyoshima H. The clinical course of 239 cases 
of Japanese spotted fever in Ise red cross hospital, 2006–2019. J Infect Chemother. (2022) 
28:211–6. doi: 10.1016/j.jiac.2021.10.014

 43. Li H, Zhang PH, Du J, Yang ZD, Cui N, Xing B, et al. Rickettsia japonica infections 
in humans, Xinyang, China, 2014–2017. Emerg Infect Dis. (2019) 25:1719–22. doi: 
10.3201/eid2509.171421

 44. Kinoshita H, Arima Y, Shigematsu M, Sunagawa T, Saijo M, Oishi K, et al. 
Descriptive epidemiology of rickettsial infections in Japan: scrub typhus and 
Japanese spotted fever, 2007–2016. Int J Infect Dis. (2021) 105:560–6. doi: 10.1016/ 
j.ijid.2021.02.069

 45. Otsuka Y, Hagiya H, Fukushima S, Harada K, Koyama T, Otsuka F. Trends in the 
incidence of Japanese spotted fever in Japan: a Nationwide, two-decade observational 
study from 2001–2020. Am J Trop Med Hyg. (2023) 108:701–4. doi: 
10.4269/ajtmh.22-0487

 46. Parola P, Socolovschi C, Jeanjean L, Bitam I, Fournier PE, Sotto A, et al. Warmer 
weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl Trop Dis. 
(2008) 2:e338. doi: 10.1371/journal.pntd.0000338

 47. Yoshikura H. Geographical distribution of Japanese spotted fever and 
Tsutsugamushi disease in Japan – possible effect of environmental temperature. Jpn J 
Infect Dis. (2017) 70:349–51. doi: 10.7883/yoken.JJID.2016.274

 48. Kopsco HL, Gronemeyer P, Mateus-Pinilla N, Smith RL. Current and future 
habitat suitability models for four ticks of medical concern in Illinois, USA. Insects. 
(2023) 14:213. doi: 10.3390/insects14030213

 49. Sato M, Ikeda S, Arai R, Kato M, Aoki J, Nishida A, et al. Diversity and distribution 
of ticks in Niigata prefecture, Japan (2016–2018): changes since 1950. Ticks Tick Borne 
Dis. (2021) 12:101683. doi: 10.1016/j.ttbdis.2021.101683

 50. Zhang L, Ma D, Li C, Zhou R, Wang J, Liu Q. Projecting the potential distribution 
areas of Ixodes scapularis (Acari: Ixodidae) driven by climate change. Biology (Basel). 
(2022) 11:107. doi: 10.3390/biology11010107

 51. Matsuura H, Yokota K. Case report: family cluster of Japanese spotted fever. Am J 
Trop Med Hyg. (2018) 98:835–7. doi: 10.4269/ajtmh.17-0199

 52. Arai R, Sato M, Kato M, Aoki J, Nishida A, Watanabe K, et al. Spotted fever group 
rickettsiae (SFGR) detection in ticks following reported human case of Japanese spotted 
fever in Niigata prefecture, Japan. Sci Rep. (2021) 11:2595. doi: 10.1038/s41598-021-81587-9

 53. Lu Q, Yu J, Yu L, Zhang Y, Chen Y, Lin M, et al. Rickettsia japonica infections in 
humans, Zhejiang Province, China, 2015. Emerg Infect Dis. (2018) 24:2077–9. doi: 
10.3201/eid2411.170044

 54. Zhou Y, Wang Q, Shen Y, Shen B, Zhang Y, Wang W, et al. A case of critical 
Japanese spotted fever in Zhejiang, China. Infect Drug Resist. (2023) 16:3425–30. doi: 
10.2147/idr.S408499

 55. Li W, Liu SN. Rickettsia japonica infections in Huanggang, China, in 2021. 
IDCases. (2021) 26:e01309. doi: 10.1016/j.idcr.2021.e01309

 56. Li J, Hu W, Wu T, Li HB, Hu W, Sun Y, et al. Japanese spotted fever in eastern 
China, 2013. Emerg Infect Dis. (2018) 24:2107–9. doi: 10.3201/eid2411.170264

 57. Buczek W, Koman-Iżko A, Buczek AM, Buczek A, Bartosik K, Kulina D, et al. 
Spotted fever group rickettsiae transmitted by Dermacentor ticks and determinants of 
their spread in Europe. Ann Agric Environ Med. (2020) 27:505–11. doi: 
10.26444/aaem/120602

 58. Eisen L. Personal protection measures to prevent tick bites in the United States: 
knowledge gaps, challenges, and opportunities. Ticks Tick Borne Dis. (2022) 13:101944. 
doi: 10.1016/j.ttbdis.2022.101944

 59. Petersen LR, Beard CB, Visser SN. Combatting the increasing threat of vector-
borne disease in the United States with a National Vector-Borne Disease Prevention 
and control system. Am J Trop Med Hyg. (2019) 100:242–5. doi: 10.4269/ 
ajtmh.18-0841

 60. Fourcade Y, Engler JO, Rödder D, Secondi J. Mapping species distributions with 
MAXENT using a geographically biased sample of presence data: a performance 
assessment of methods for correcting sampling bias. PLoS One. (2014) 9:e97122. doi: 
10.1371/journal.pone.0097122

 61. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. 
Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci 
Data. (2018) 5:180214. doi: 10.1038/sdata.2018.214

 62. Zeimes CB, Olsson GE, Ahlm C, Vanwambeke SO. Modelling zoonotic diseases 
in humans: comparison of methods for hantavirus in Sweden. Int J Health Geogr. (2012) 
11:39. doi: 10.1186/1476-072x-11-39

 63. Ortega-Huerta MATP. Modeling ecological niches and predicting geographic 
distributions: a test of six presence-only methods. Rev Mex Biodiv. (2008) 
79:205–16.

https://doi.org/10.3389/fpubh.2025.1478736
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1016/j.ijpara.2021.01.004
https://doi.org/10.1016/j.jiac.2018.03.012
https://doi.org/10.1016/j.heliyon.2022.e09022
https://doi.org/10.1093/jmammal/gyaa057
https://doi.org/10.1186/s40249-023-01085-0
https://doi.org/10.1371/journal.pone.0143282
https://doi.org/10.1186/s12942-018-0155-7
https://doi.org/10.15468/dl.beqvfy
https://doi.org/10.15468/dl.beqvfy
https://doi.org/10.3390/insects14030239
https://doi.org/10.3390/ani14050672
https://doi.org/10.1016/j.scitotenv.2022.157959
https://doi.org/10.1016/j.jenvman.2023.119643
https://doi.org/10.3389/fpubh.2022.1018327
https://doi.org/10.3390/insects12030222
https://doi.org/10.3389/fpls.2022.1054710
https://doi.org/10.1111/2041-210X.12261
https://doi.org/10.1890/10-1171.1
https://doi.org/10.1126/science.3287615
https://doi.org/10.1038/s41598-024-57298-2
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.3390/biology10111150
https://doi.org/10.1128/jcm.33.4.824-828.1995
https://doi.org/10.3390/tropicalmed7120413
https://doi.org/10.1016/j.jiac.2021.10.014
https://doi.org/10.3201/eid2509.171421
https://doi.org/10.1016/j.ijid.2021.02.069
https://doi.org/10.1016/j.ijid.2021.02.069
https://doi.org/10.4269/ajtmh.22-0487
https://doi.org/10.1371/journal.pntd.0000338
https://doi.org/10.7883/yoken.JJID.2016.274
https://doi.org/10.3390/insects14030213
https://doi.org/10.1016/j.ttbdis.2021.101683
https://doi.org/10.3390/biology11010107
https://doi.org/10.4269/ajtmh.17-0199
https://doi.org/10.1038/s41598-021-81587-9
https://doi.org/10.3201/eid2411.170044
https://doi.org/10.2147/idr.S408499
https://doi.org/10.1016/j.idcr.2021.e01309
https://doi.org/10.3201/eid2411.170264
https://doi.org/10.26444/aaem/120602
https://doi.org/10.1016/j.ttbdis.2022.101944
https://doi.org/10.4269/ajtmh.18-0841
https://doi.org/10.4269/ajtmh.18-0841
https://doi.org/10.1371/journal.pone.0097122
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1186/1476-072x-11-39

	Projecting the potential distribution of Rickettsia japonica in China and Asian adjacent regions under climate change using the Maxent model
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Climatic variables and processing
	2.3 Optimizing parameters for the maximum entropy model
	2.4 Model evaluation
	2.5 Classification of suitable areas

	3 Results
	4 Discussion
	5 Conclusion

	References

