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Background: The double burden of malnutrition (DBM) in the same individual
is a neglected public health concern, especially in low- and middle-income
countries (LMICs). The DBM is associated with increased risks of non-
communicable diseases, childbirth complications, and healthcare costs related
to obesity in adulthood. However, evaluating low prevalence outcomes
in relatively small populations is challenging using conventional frequentist
statistics. Our study used Bayesian latent models to estimate DBM prevalence
at the individual-level in small populations located in remote towns and rural
communities in the Brazilian Amazon.

Methods: We employed a cross-sectional survey of urban and rural
children aged 6–59 months, considering DBM as the coexistence of stunting
and overweight in the same individual. We evaluated four river-dependent
municipalities, sampling children in randomly selected households in each town
and a total of 60 riverine forest-proximate communities. Through Bayesian
modeling we estimated the latent double burden of malnutrition (LDBM) and
credible intervals (CI).

Results: The exceedance probability of LDBM was used to quantify this form of
malnutrition at the population level. Rural prevalence of LDBM was significantly
higher in Jutai (3.3%; CI: 1.5% to 6.7%) compared to Maues and Caapiranga.
The likelihood that LDBM rural prevalence exceeded 1% was very high in
Jutai (99.7%), and Ipixuna (63.2%), and very low (<2%) in rural communities
elsewhere. Exceedance probabilities (at 1%) also varied widely among urban
sub-populations, from 6.7% in Maues to 41.2% in Caapiranga. The exceedance
probability of LDBM prevalence being above 3.0% was high in rural Jutai (59.7%).

Discussion: Our results have important implications for assessing DBM in
vulnerable and marginalized populations, where health and nutritional status
are often poorest, and public health e�orts remain focused on undernutrition.
Our analytical approach could enable more accurate estimation of low
prevalence health outcomes, and strengthen DBM monitoring of hard-to-reach
populations.
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Introduction

The co-occurrence of undernutrition and overweight is known
as the double burden of malnutrition (DBM), an emerging
health concern which is characterized by a rapid increase in
the prevalence of overweight individuals and slow reduction in
rates of undernutrition (1, 2), particularly in low- and middle-
income countries (LMICs) (3–7). DBM is shaped by changing diets
and physical activity patterns, and is associated with increased
risks of non-communicable diseases, childbirth complications, and
elevated health costs related to obesity in adulthood (8, 9).

DBM can be assessed at the level of population (e.g.,
country, sub-national region, or rural community), household,
and individual. Around nine-in-ten studies have estimated DBM
prevalence at the community/population level (1, 7, 10), largely
because this aggregation facilitates straightforward comparison
among different populations. Estimating the prevalence of stunting
and overweight DBM at the individual level in remote towns
and rural communities can be challenging in LMICS, where
child health surveys tend to have limited coverage and sampling
biased toward larger cities, often excluding vulnerable populations
such as indigenous people and other traditional rural populations
(11). Reliable prevalence estimates are also difficult when studies
have relatively small, statistically underpowered sample sizes
(12, 13). Nonetheless, reliable estimates of malnutrition are
essential for assessing the scale of nutritional problems in specific
contexts, and guiding related interventions by state and non-state
institutions (14).

In preschool children, estimates of stunting and overweight
DBM prevalence at the individual level are low (typically below
3%), and are mostly based on samples from country-scale or sub-
national regional scales (5, 7), in which severe spatial and social
inequities in health determinants become homogenized. A lack of
stunting and overweight DBM research for specific geographies
(including separating rural and urban sub-populations) and
vulnerable populations (e.g., traditional forest-dwelling peoples in
Amazonia and elsewhere) contributes to poor understanding of this
health problem in LMICs (5, 15, 16).

Nutritional epidemiological studies typically characterize
malnutrition based on observed anthropometric values (e.g.,
height-for-age z-scores) which fall above or below predefined
cutoff points (e.g., 2 standard deviations below the reference
population’s median value). Interpreting prognostic risk is
problematic for values near thresholds, near marginal values, and
for ethnic minorities (17, 18). Given generally low prevalence of
DBM at the individual level when using thresholds recommended
by the World Health Organization (WHO), some authors adopt
alternative definitions [e.g., Sagastume et al. (7) identified 17
DBM typologies] or even alternative thresholds, mainly for the
overweight indicator (19, 20), hindering comparison across
studies. Furthermore, for research into specific populations and/or
with relatively small sample sizes, point estimates and interval
estimates based on frequentist statistics can be inappropriate
due to the likelihood of Type 2 error (false negatives, leading
to under-estimation of DBM) and unfeasible for low prevalence
nutritional outcomes.

Overcoming the challenges in estimating low prevalence
nutritional outcomes in specific populations with restricted sample

sizes is necessary for effectively monitoring DBM in LMICs,
including robustly evaluating potential interventions for vulnerable
populations. In this study, we will use the latent risk of double
burden of malnutrition (LDBM) to estimate the magnitude of a
low prevalence outcome. In doing so, we attempt to overcome the
limitations of conventional frequentist approaches for estimating
DBMprevalence, particularly for relatively small populations where
the health and nutrition indexes are often poorest (21–24), or
situations in which obtaining anthropometric measurements from
thousands of individuals is not practical.

Here, we define LDBM as the probability of stunting and
overweight co-occurring. We use “latent” to describe the risk or
probability of stunting and overweight occurrence because we do
not directly observe and calculate this value, due to unknown
population parameters θ. The population parameters capture
important characteristics associated with the outcome, such as
mean, variance, and correlation. However, this probability can
be estimated through the joint modeling of the two nutritional
outcomes of interest, and the associated uncertainty can be
quantified by generalizing the uncertainty arising from θ, a task
well-suited to Bayesian inference. The LDBM definition allows
estimation even with few observed cases of DBM, since this
probability can be extracted from the properties of the joint density
rather than a proportion of observed cases. Hence, we consider
a bivariate vector Y =

(

Y(1),Y(2)
)

consisting of two variables
related to health outcomes, Y(1) and Y(2) (e.g., height/length-for-
age index and body mass index), characterized by a joint density
function fθ

(

y1, y2
)

that depends on population parameters θ . Given
θ , LDBM is defined as Pr

(

Y(1) < t1, Y(2) > t2 |θ
)

.
Specifically, this paper draws on a unique dataset of rural and

urban children in four remote, river-dependent municipalities in
the Brazilian Amazon to examine whether latent Bayesian models
may enable researchers to estimate DBM with modest sample sizes.
We estimate LDBM as the probability of encountering two kinds
of malnutrition (stunting and overweight) in the same individual
child, selected randomly from towns and rural communities.

Methods

Study design

We conducted a cross-sectional, population-based study in
2015 and 2016 in four municipalities (Caapiranga, Ipixuna, Jutai,
Maues; each composed of an urban center of the same name, and
a surrounding rural area) in Amazonas State, Brazil (Figure 1).
The selected municipalities were all highly river-dependent and
their urban centers have relatively high social vulnerability (e.g.,
high income poverty and inequality, and deficiencies in terms
of household access to tapped water and sanitation, educational
continuity, and primary healthcare) relative to urban centers
that are road-connected and/or closer to major cities within
Amazonia’s hierarchical urban network (25). The municipalities
were all highly-forested with >90% of their original forest cover
remaining, at the time. Within the study “universe” of river-
dependent municipalities, the four we selected were purposefully
far from each other, with varied remoteness from major cities.
This remoteness shapes access to markets, and public and private
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institutions (e.g., universities, hospitals). Travel distance by boat
from the state capital, Manaus, ranged from 162-km (Caapiranga),
342-km (Maues), 947-km (Jutai), to 2,566-km (Ipixuna). Maues
was medium-sized (c. 35,000 residents) and the other towns were
small (<15,000 urban residents) (26).

In order to compare LDBM across rural and urban sub-
populations, we sampled children under-5-years-old in randomly
selected households in each town (i.e., the urban center of
that municipality) and 60 riverine forest communities, in total
(Figures 1A–D) (27). Surveyed households were selected in the
context of a broader research project, investigating child health
(27) and household food insecurity (28). Consequently, sampling
included some households in which there were no children under-
5-years-old. In each town, 200 households were randomly sampled
as part of the broader study. Accordingly, 200 urban locations were
randomly generated within the boundaries of each town (i.e., 800
urban households across the four towns). Urban sampling density
was corrected for population density based on census sector-level
information from the official 2010 demographic census (25). Urban
sampling points were generated using ArcGIS 10.3 along the streets
(within 20 meters) and were restricted to the potentially habitable
area (using satellite imagery and openstreetmap.org). For each
municipality, we intended to sample 80 rural households from 16
surrounding rural communities (five households per community,
totaling 320 households from 64 communities) but the final sample
was 311 households from 63 communities (27). These communities
were not randomly selected but instead chosen because they
covered diverse geographies, including: a gradient in travel distance
from the nearest town (7–249 km); locations inside and outside of
Sustainable Use Reserves; locations on the main Amazon channel,
and second- and third-order tributaries; flooded-forest (várzea)
and non-floodplain (terra firme) contexts.

Within each community, we first worked with residents to
develop a list of all inhabited households, and then from these we
randomly selected five households, whom we invited to participate
in the study. In this paper, we only include data from those urban
and rural households with children under-5-years-old. All children
aged 6-to-59 months residing in each household were considered
eligible (i.e., we did not have an expected number of children in the
planned household sample but instead sampled all eligible children
within sampled households). The sample for this paper comprises
422 households (all georeferenced) and 585 children (Figure 1),
predominantly urban (67.1% of households n = 283); 65.0% of
sampled children (n = 380; Table 1). Reflecting municipality-scale
demographic differences and greater household sampling effort in
towns, the number of sampled children was smallest in Caapiranga
(urban= 65; rural= 35), and largest in Jutai (urban= 131; rural=
74) (Table 1).

Data collection and key variables
We used a structured questionnaire which was piloted

beforehand in another municipality (Autazes) in Amazonas State,
with similar geographic characteristics to the four described above.
This paper draws on questions in the socio-demographic and child
health sections of the survey instrument. When possible, childbirth
dates were obtained from official documents held by caregivers.

The field research team spent 1 week training in standardized
anthropometric data-collection techniques in Manaus, prior to
starting fieldwork. In each municipality, half of the urban and
rural sample was collected during a low-water dry season field
campaign (3–4 weeks per campaign, between August–December
2015) and half during a high-water wet season campaign (March–
July 2016). Each household visit was carried out by a pair of
experienced, trained interviewers. Each field campaign included a
team of six researchers (i.e., 3 pairs), four of whom were involved
in all field campaigns. The other two team members switched
halfway through, with further training provided for the two new
team members. All researchers were Brazilian, with Masters-level
education or above. All anthropometric data collection followed
(29, 30) under supervision of the first author. Weight and
length/height measurements were collected twice for the same
individual, and the average value was used in the analyses. The
z-scores of the height-for-age and the Body Mass Index BMI-for-
age indicators were estimated from the growth curves of the WHO
(29). Height-for-age z-scores below −2 were considered indicative
of stunting. Z-scores above 2 for BMI-for-age were considered
indicators of overweight individuals. Height-for-age z-scores below
−6 or above 6, and BMI-for-age z-scores below −5 or above 5
were considered implausible (29). To reiterate, we assessed DBM
at the individual level, defined by the co-occurrence of stunting
and overweight (31), a conventional indicator to estimate the child
DBM at the individual level (32, 33).

Ethics
Data collection was approved by the Brazilian Health Ethics

Commission (Comissão Nacional de Ética em Pesquisa do Conselho
Nacional de Saúde, Protocol 45383215.5.0000.0005) and Lancaster
University’s Research Ethics Committee (S2014/126). Anonymity,
voluntary participation and other ethical considerations were
ensured at all stages of the research.

Code availability
Our analysis of the latent double burden of malnutrition was

performed using the Julia programming language (34). All the
code for our analysis, including data cleaning and processing,
exploratory data analysis, modeling, and summarizing results, is
available at https://erickchacon.gitlab.io/latent-double-burden.

Statistical analysis

Bayesian model
The latent double burden ofmalnutrition (LDBM), which refers

to the probability of encountering two malnutrition outcomes in
the same person (in this case, child) randomly selected from a
population, can be expressed by the following equation:

p = Pr
(

Y(1) < t1, Y
(2) > t2 |θ

)

, (1)

where the problem of malnutrition occurs if the height-for-
age z-scores, Y(1), is lower than t1 and the BMI-for-age, Y(2), is
greater than t2. The comparison direction and thresholds can be
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FIGURE 1

Map of the study area constituting four highly-forested river-dependent municipalities in Amazonas State, Brazil. In each municipality [(A-D) where
gray shading indicates the municipality’s territory], we sampled children within randomly selected households in the town, and surrounding rural
settlements.

TABLE 1 Characteristics of children under 60 months-old and households evaluated, according to area and municipality, Amazonas, Brazil, 2015–16.

Area Municipality Children Households Children per household DBM

Rural Caapiranga 35 27 1.3 0%

Rural Maues 44 33 1.3 0%

Rural Jutai 74 42 1.8 4.1%

Rural Ipixuna 52 37 1.4 1.9%

Urban Caapiranga 65 50 1.3 1.5%

Urban Maues 108 80 1.4 1.9%

Urban Jutai 131 91 1.4 0.8%

Urban Ipixuna 76 62 1.2 0%

easily modified if using other health variables. We modeled LDBM
in the four municipalities (i = 1, 2, 3, 4), distinguishing between
municipal samples from rural areas (j = 1), and urban centers
(j = 2). It is assumed that the k -th pair of observations yijk =
(

y(1)
ijk , y

(2)
ijk

)

in region j of municipality i comes from a bivariate

normal distribution:

Yijk ∼ MVN
(

µij, 6ij
)

. (2)

Here, µij =

(

µ
(1)
ij , µ

(2)
ij

)

and 6ij are the mean vector and

2 × 2 covariance matrix for the health outcome variables
in region type j of municipality i . The covariance matrix is

parametrized with variances
(

σ
(1)
ij

)2
and

(

σ
(2)
ij

)2
on the diagonal,

and the covariance ρij × σ
(1)
ij × σ

(2)
ij on the off-diagonal. Notice

that σ
(1)
ij and σ

(2)
ij are the standard deviations of the nutrition

indicator variables in rural and rural areas of a municipality,
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and ρi,j represents the correlation between these variables. It
is assumed that the three parameters vary between different
municipalities due to differences in their determinants of health
and nutrition. Depending on the application, other assumptions
may be made, including the assumption of constant correlation
across municipalities. Therefore, these parameters need to be
estimated in order to then calculate the LDBM.

The formulation of our Bayesian model was completed by
defining the prior distribution for the parameters. We assumed

flat uninformative priors for the mean parameters, π
(

µ
(l)
ij

)

∝ 1

for l = 1, 2 . Furthermore, a uniform prior was defined for the
correlation parameter, ρij ∼ U (−1, 1), and log-flat priors were

assumed for the standard deviation parameters, π
(

log
(

σ
(l)
ij

))

∝

1 for l = 1, 2.
Bayesian inference is achieved by calculating the posterior

distribution of the parameters, π
(

µij,6ij|yij1, yij2, · · · , yijnij

)

, or by

obtaining samples from this distribution.We used the Hamiltonian
Monte Carlo (HMC) method to obtain samples µ

[m]
ij and 6

[m]
ij for

m = 1, · · · ,M , where M represents the total number of stored
samples. The Turing.jl package in the Julia programming language
was used for this purpose (35).

Predicting LDBM
The exceedance probability, used to quantify the magnitude

of malnutrition at the population level, was estimated using the
posterior LDBM, which is the probability distribution of LDBM
given the set of observed values in our sample. It is defined as:

π

(

pij | yij1, · · · , yijnij

)

=

∫

π

(

pij,µij,6ij | yij1, · · · , yijnij

)

dµijd6ij

π

(

pij | yij1, · · · , yijnij

)

=

∫

π

(

µij,6ij | yij1, · · · , yijnij

)

π
(

pij |µij,6ij
)

dµijd6ij

where the first term of the integral is the posterior distribution
of the parameters, and the second term is the probability of LDBM,
based on some observed values for the parameters. Samples from
this posterior distribution of LDBM in rural and urban regions j
of municipality i are obtained using samples µ

[m]
ij and 6

[m]
ij for

m = 1, · · · ,M from the posterior distribution and calculating:

p[m]
ij = Pr

(

Y(1)
ij > t1, Y

(2)
ij < t2 |µ

[m]
ij ,6[m]

ij

)

. (3)

This can be done using the properties of a bivariate normal
distribution and can also be calculated when the outcomes
are jointly above or below certain cutoff points. The resulting

collection
(

p[1]ij , p[2]ij , · · · , p[M]
ij

)

consisted of 20,000 realizations

from the posterior distribution of LDBM that can be used to
provide point estimates and their respective credible intervals, as
well as exceedance probabilities of the outcome under different
circumstances (prevalences being 1%; 3% or correlation 0; see
Results section).

Considering association between individuals
In the analysis of the double burden on children, some

individuals may belong to the same household, leading to
potential associations due to shared exposure factors. To account
for this, we can extend the previously presented model by
incorporating a bivariate household-level random effect, Wh.
Let Yhk represent the health outcomes of the k-th child in
household h, then the conditional distribution can be defined
as Yhk |Wh ∼ MVN

(

µ +Wh, 6ij
)

, such as children from the
same household share the common random effect Wh. To ensure
identifiability, we assume a zero-mean Gaussian distribution for
the bivariate random effect, Wh ∼ MVN (0, 6w), with diagonal
covariance matrix 6w. Note that if household dependency exists
only for one health outcome, Wh can be unidimensional. The
resulting marginal distribution of the bivariate health outcome is
Yhk ∼ MVN (µ,6w + 6). Using this distribution, the LDBM is
computed as explained in the previous section (Equation 3).

Results

We analyzed the LDBM in rural and urban areas of
four municipalities. Given that some children belonged to
the same households (Table 1), we first assessed the need to
account for household-level dependency. Using likelihood ratio
tests and comparing the Akaike Information Criteria (AIC)
for z-scores of height-for-age and BMI-for-age, we found no
significant improvement from adding random effects in most
municipalities and area types at a 10% significance level. However,
significant improvements were observed for the urban sub-
population in Jutai when including random effects for height-for-
age and for the urban sub-population in Ipixuna for BMI-for-
age (Supplementary Table 1). Consequently, we applied the LDBM
model with household-level random effects for height-for-age in
urban Jutai, for BMI-for-age in urban Ipixuna, and without random
effects for all other sub-populations. Models with random effects
were re-parametrized after inference to ensure comparability with
models without random effects.

The posterior distributions of the means for the stunting
indicator were below zero for both rural and urban sub-
populations in all four municipalities (Figure 2), demonstrating
an overall chronic nutritional disadvantage for children in this
study. For all municipalities, there was a stronger rural tendency
for stunted linear growth relative to urban sub-populations, in
the sense that the distributions from rural sub-populations had
lower mean height-for-age Z-scores compared to urban sub-
populations. The apparent “urban advantage” was less pronounced
in Caapiranga, seemingly due to lower rural stunting probability
compared to other rural sub-populations. For overweight, the
posterior distributions of all rural and urban sub-populations
were substantially above zero (i.e., there was an overall tendency
toward higher BMI-for-age). There was a slightly greater tendency
toward overweight among urban sub-populations, apart from Jutai,
where rural BMI-for-age z-scores were much higher than for
urban children.

Most of the posterior distributions of the standard deviations
for the height-for-age z-scores were above one among children
in Ipixuna and Jutai, whereas the distributions of the standard
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FIGURE 2

Posterior distributions of mean z-scores for stunting (height-for-age) and overweight (BMI-for-age) indicators (x-axes) for children
under-5-years-old sampled from rural and urban sub-populations. Dashed vertical lines represent the median values of each indicator from the
WHO reference population.

deviations for Caapiranga and Maues children were clustered
around one (Figure 3). Hence, variation in height-for-age was
greater in the rural and urban sub-populations in Ipixuna and Jutai,
and lower in Caapiranga and Maues. Within municipalities, we did
not find substantial differences in stunting variability between rural
and urban sub-populations. For overweight, the variability was
lower in rural areas and was right-skewed distributed (with almost
all variability ranging between 0.5 and 1.0 standard deviations),
particularly in Caapiranga and Maues. Variability in overweight
varied markedly among children in the four urban sub-populations
and was notably high, above one, in Caapiranga.

Urban children tended to have positively correlated height-for-
age and BMI-for-age z-scores, although this was less pronounced
in urban Jutai (Figure 3). Rural patterns were more heterogenous;
there was a positive correlation in these indicators for rural
Caapiranga and Maues, whereas the correlations for rural children
in Ipixuna and Jutai were mostly negative. The direction
of the correlation between the indicators is important for
estimating the prevalence of LDBM, as higher values will be
observed when there is congruence between the direction of the
bivariate distribution and the quadrant of interest. Accordingly,
the exceedance probabilities and the estimated prevalence of
LDBM were relatively high among rural children in Ipixuna
and Jutai, compared to very low estimated prevalence for
rural children in Caapiranga and Maues (Supplementary Table 2).
There was a clear negative correlation between height-for-age
and BMI-for-age z-scores in the rural areas of Ipixuna and
Jutai, and a positive correlation in Caapiranga and Maues,
regardless of whether the children were rural or urban residents
(Supplementary Figure 1).

The estimated prevalence of LDBM was highest in rural areas
of Jutai (3.3%; CI: 1.5% to 6.7%) and Ipixuna (1.2%; CI: 0.3% to
3.8%), and the urban area of Caapiranga (0.9%; CI: 0.3% to 2.4%),
and lower in other rural and urban areas (Table 2; Figure 4). The
likelihood that LDBM prevalence exceeds 1.0% of children under-
5-years-old was very high in rural Jutai (exceedance probability of
99.7%), rural Ipixuna (63.2%), and very low (<2%) for the other
two rural sub-populations. Exceedance probabilities also varied
widely among urban sub-populations, from 6.7% inMaues to 41.2%
in Caapiranga. The exceedance probability of LDBM prevalence
being above 3.0% of children was high in rural Jutai (59.7%), and
below 6% for all other sub-populations (Table 2). Consequently,
in Jutai the prevalence of LDBM was significantly higher among
rural children than among their urban counterparts, whereas
we did not find evidence of meaningful rural-urban differences
(i.e., because credible intervals overlapped) in other municipalities
(Figure 4). The prevalence of LDBM was relatively similar across
urban sub-populations, whereas rural prevalence varied more,
being significantly higher in Jutai than in Maues or Caapiranga
(Figure 4).

Discussion

This study is the first, to our knowledge, to estimate the
DBM at the individual level among rural and urban children
using Bayesian-inference latent modeling. Our approach was
designed to improve latent prevalence estimates for low prevalence
phenomena, such as DBM. We applied our novel analytical
technique to a unique dataset of similar-aged children randomly
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FIGURE 3

Posterior distributions of the standard deviations (σ) and correlations (ρ) (x-axes) of z-scores of height-for-age (stunting indicator) and BMI-for-age
(overweight indicator) from children under-5-years old sampled in rural and urban sub-populations. Vertical dashed lines represent variability of 1 for
the standard deviation sub-plots, and zero for the correlation sub-plots.

TABLE 2 Exceedance probabilities∗ (Pr), median, lower limits (LL) and upper limits (UL) of the credible intervals for the prevalence of the latent double

burden of malnutrition (overweight and stunting) among children under 5-years-old in rural and urban areas of Amazonas State, Brazil.

Area Municipality Pr (p > 0.01) Pr (p > 0.03) Median LL UL

Rural Caapiranga 0.007 0.0 0.001 0.0 0.006

Rural Maues 0.016 0.0 0.001 0.0 0.009

Rural Jutai 0.997 0.587 0.033 0.015 0.067

Rural Ipixuna 0.618 0.062 0.012 0.003 0.037

Urban Caapiranga 0.433 0.011 0.009 0.003 0.026

Urban Maues 0.07 0.0 0.005 0.002 0.012

Urban Jutai 0.042 0.0 0.005 0.002 0.011

Urban Ipixuna 0.264 0.002 0.007 0.002 0.02

∗Exceedance probabilities (pr) surpassing 1 or 3%.

sampled within remote, river-dependent municipalities in the
Brazilian Amazon; an under-studied and historically marginalized
population which is vulnerable to the effects of the climate crisis,
and other shocks and stressors (36, 37).

In our study, latent DBM (LDBM) at the individual level was
at low prevalence (1.2% or below) in the sampled sub-populations,
apart from one (rural Jutai), at 3.3% (CI: 1.5% to 6.7%) of children.

A meta-analysis using a frequentist approach to report individual-
level stunting and overweight DBM among children under-5-years-
old found a mean prevalence of just 2.3% in low-income countries
and 2.7% inmiddle-income countries (38). Tzioumis et al. (38) used
data from Demographic and Health Surveys in 36 countries, yet
their study populations may be more similar to ours than to that of
the National Study of Food andNutrition (ENANI) of nearly 15,000
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FIGURE 4

Estimated prevalence and quantile-based credible intervals (CI) of the Latent Double Burden of Malnutrition (overweight and stunting) in sampled
rural and urban sub-populations.

Brazilian children (39). In Amazonas State (with 62 municipalities)
the ENANI sample included only 42 children from metropolitan
Manaus and a handful from two proximate road-connected
municipalities. In Amazonas, the coverage and implementation
of universal healthcare (e.g., adequate prenatal care), food and
nutrition policies (e.g., adequate school meals, municipal Food
Security Councils), and social protections (e.g., Maternity Pay) can
be relatively weak outside of Manaus (25, 40, 41). Latent modelling
is well-suited for studies with restricted sample sizes, such as with
hard-to-reach or modest-sized focal populations.

Our latent models draw on observed variability in stunting
and overweight indicators in small-samples and demonstrate
that DBM prevalence risks can be above zero for particular
sub-populations, even if no DBM cases are recorded based on
frequentist classification. For instance, in the rural sub-populations
of Caapiranga and Maues (the less remote municipalities in
this study), where the randomly sampled households had fewer
children under-5-years-old, there was a positive correlation
between height-for-age Z-scores and BMI-for-age Z-scores. For
those sub–populations, there were zero cases of DBM using the
frequentist approach yet the estimated prevalences of LDBM were
different from zero. Moreover, using our Bayesian approach it
was possible to estimate credible intervals, parameters such as
mean, median, and exceedance probabilities In the two extremely
remote municipalities, Ipixuna and Jutai, the z-score correlation
was reversed; short height-for-age rural children tended to be
overweight, and rural LDBM prevalence was higher than in the
less-remote municipalities. This may reflect that healthcare access,
sanitation coverage, employment opportunities and income, state-
led food and nutrition security interventions, and other social

determinants of health (42) are worse in more remote parts of
Amazonia (25).

Despite the wide credible intervals, we estimated higher point
prevalence of LDBM in Jutai and Ipixuna’s rural areas compared
to their urban centres, consistent with existing research in LMICs
and the well-established notion of “urban advantage” in health
and nutrition. Tzioumis et al. (38) found lower prevalence of
stunting and overweight coexistence among urban children (1.1%)
compared to their rural counterparts (2.0%). In Brazil, DBM
prevalence at the individual level is estimated to be 1.0% among
the general population of children aged 5-to-11-years-old (43).
A survey of children under-5-years-old in Kenya observed a
higher occurrence of stunting and overweight in the rural zone in
comparison to urban zone for both sexes (44). The occurrence of
individual-level stunting and overweight DBM in children under-5-
years-old in two districts in South Africa had a prevalence of 5.7%,
with no significant difference between urban and rural areas (45).

We found evidence of an emerging malnutrition concern
in rural Jutai, where the exceedance probabilities of LDBM
being above 1% and 3% of children were very high (99%
and 60%, respectively). The geographical locations of the rural
communities sampled in Jutai may explain this sub-population’s
higher DBM prevalence. The town of Jutai and some of the
surrounding rural communities we sampled are located on the
banks of the Solimões River, between the regional urban hubs of
Tabatinga and Tefé. Towns on this stretch of river have relatively
good access to passenger-cargo boats (39), enabling surrounding
rural communities to access obesogenic food products (46–49),
including ultra-processed foods. Infant formula milk products
may be reaching these communities through floating markets,

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1481397
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Orellana et al. 10.3389/fpubh.2025.1481397

and competing with breastfeeding. This is problematic because
breastfeeding is protective against stunting and overweight (50,
51). This may partly explain the greater shift to the right in the
overweight curve of children in rural Jutai, compared to other
rural sub-populations.

Although we did not find evidence of significant differences
between the credible intervals of LDBM prevalence across the four
sampled urban areas, no null prevalences were generated, and the
point estimate of LDBM in Caapiranga was slightly higher than in
the other urban sub-populations. Furthermore, interval estimates
indicate that this value could approach 2.3%, and the highest
probability of this prevalence exceeding 1% in the urban area was in
Caapiranga, at about 41%. We cannot fully explain the differences
in the LDBM among towns. Nonetheless, potential explanations
include the spatial proximity of Caapiranga to the metropolis of
Manaus (159 km travel distance), which could facilitate access to
ultra-processed products, usually high in fat, sugar, or sodium and
associated with overweight/obesity (43, 52–54). Other possibilities
include the influence of socioeconomic variables not evaluated in
our study such as maternal education, family size, maternal height,
and birth weight, child’s diarrhea and household sanitation (55, 56).

Our results demonstrate that the precision of LDBM estimates
may vary depending on sample size, the variability of posterior
distributions, and the congruence of these parameters with the
probability that a given child’s height-for-age Z-score and BMI-
for-age Z-score are simultaneously below −2 and >2 standard
deviations, respectively (upper-left quadrants in the subplots
of Supplementary Figure 2). The credible intervals for LDBM
prevalence were relatively wide for two urban sub-populations
(Caapiranga and Ipixuna), which also had smaller sample sizes and
asymmetric, right-shifted variation in the malnutrition indicators
compared to the other two urban sub-populations. Interestingly,
although more rural children were sampled in Ipixuna and Jutai
than in Caapiranga and Maues, credible intervals were much
wider for the former two than the latter, possibly related to
the negative correlation pattern observed in both urban sub-
populations, including a substantial number of marginal values
for DBM. Overall, our results show the limitations of traditional
frequentist approaches for assessing low-prevalence malnutrition
outcomes in relatively small samples. Restricted sample sizes
are a common challenge for studies involving specific, and
geographically hard-to-reach population groups such as indigenous
peoples and other traditional forest-dwelling peoples in Amazonia
(23, 57, 58). Our findings demonstrate that these challenges
can be partially overcome through the application of Bayesian
latent models that account for marginal values rather than only
considering observed cases for point prevalence estimates, and
instead using credible intervals and exceedance probabilities.
Even using Bayesian latent models, however, further stratifying
our modestly-sized sample by age group (for example) would
tend to increase the credible intervals, limiting the interpretation
of results.

Our study, combined with evidence from other LMICs,
suggests that children from marginalized populations—whether
living in rural or urban areas—are susceptible to stunting and
overweight DBM (2, 4, 59). Poor dietary nutrition in terms of
both quality and quantity is one of the possible mechanisms for
the co-occurrence of DBM (2). The replacement of traditional

dietary patterns with ultra-processed products, a phenomenon that
has intensified in LMICs like Brazil, may be a crucial factor for
the increase in DBM (21, 23, 52, 54, 57). It is no coincidence
that national surveys point to socioeconomically vulnerable
population strata as the most susceptible to the rising trend in
the consumption of ultra-processed foods among Brazilians (60).
Therefore, interventions aimed at mitigating DBM should consider
contextual determinants of diet (9, 23, 57, 61, 62).

Our study represents an advance by applying Bayesian latent
models to compare different contexts of DBM emergence at the
individual level among children living in remote areas of Amazonia.
Geographically specific studies into under-researched populations
are important because the literature on DBM is mainly limited
to research assessing DBM in terms of co-occurrence at the
community or household-level (7, 38). Furthermore, although
certain credible intervals of our estimates were relatively wide,
possibly due to sample size, when compared with results from
national surveys, we emphasize the need for analytical approaches
that allow for the assessment of low-occurrence outcomes in
specific groups with restricted population sizes. Aggregating
population data at the national, state, or municipal level may
obscure health inequities and render invisible the health inequities
experienced by marginalized river-dwelling populations in remote
parts of Amazonia.

Using Bayesian latent models may be useful for research
or monitoring into other low-occurrence health or nutrition
conditions at the population level, especially for initiatives lacking
the resources of national- or international-scale studies and related
sample sizes. Nonetheless, we highlight some limitations with
our study. Our Bayesian approach using latent models hinders
comparability with case-based frequentist analyses of observed
prevalence. Our approach also requires greater computational
performance and more specialist programming skills relative to
conventional statistical analyses. Nevertheless, Hossain et al.’s (63)
study into DBM prevalence among reproductive-aged women
found that a Bayesian approach like ours obtained more precise
parameter estimates and robust conclusions compared with a
classical analytical technique (logistic regression) for estimating
the prevalence. However, the specificity of our studied population,
while making it impossible to select larger and more diversified
rural samples, also limits the definition of informative priors, which
would facilitate more precise (narrower) credible intervals for
estimated prevalence (63).

Conclusion

Using latent Bayesian models, we assessed a malnutrition
outcome of low prevalence (the coexistence of stunting and
overweight in the same individual children) in relatively small
sample sizes from remote towns and rural communities in
Amazonia. Furthermore, we analyzed the latent risk of DBM in
vulnerable and marginalized populations, where the health and
nutrition status are often poorest and the public health policies tend
to focus strictly on undernutrition. Our approach can help to obtain
more accurate estimates of low prevalence outcomes, and support
public health service provision for effectively monitoring DBM in
LMICs, particularly in vulnerable and hidden populations.
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