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Objective: This study examined associations between serum concentrations 
of per- and polyfluoroalkyl substances (PFASs) and gout risk in the U.S. adult 
population using the National Health and Nutrition Examination Survey 
(NHANES) 2007–2018 data. And assessing the potential intermediary effect of 
uric acid.

Methods: The study included 8,494 participants, with 385 having gout. Four 
PFAS compounds (PFOA, PFOS, PFHxS, PFNA) were measured. PFOS is the 
most prevalent PFAS in the environment, biota, and human tissues. It is rapidly 
absorbed and accumulates in the liver, kidneys, and blood, binding to serum 
albumin and low-density lipoprotein. PFOA is highly persistent in the body, 
mainly accumulating in the kidneys and liver through enterohepatic circulation, 
posing risks due to its difficulty in metabolism and excretion. PFHxS has the 
longest metabolic half-life in humans (7.3 years) and bioaccumulates in the 
endocrine, immune, nervous, and reproductive systems. PFNA is the second 
most detected PFAS in human serum after PFOS. It is more likely to accumulate 
and express toxicity in the reproductive organs, liver, and immune system 
compared to PFOS and PFOA. Multivariate logistic regression and weighted 
quantile sum regression were used to assess individual and mixture effects. 
Mediation analysis was conducted to estimate effect of uric acid.

Results: In fully adjusted model, the associations were nonsignificant, with 
PFOA showing a marginally positive association. Mixture analysis revealed a 
significant positive association with gout risk across all models. PFOS was the 
largest contributor to the mixture effect. Stronger associations were observed in 
old people and females. Sensitivity analyses confirmed the robustness of these 
findings. Mediation analysis indicated significant intermediary effect of uric 
acid in the associations of PFAS with risk of gout, with the mediated proportion 
ranging from 48 to 77%.

Conclusion: This study provides evidence for a potential link between 
PFAS exposure and gout risk, particularly when considering mixtures. While 
associations with individual PFASs are largely explained by demographic and 
lifestyle factors, the persistent association of mixtures with gout risk highlights 
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the importance of considering combined exposures in environmental health 
research. Uric acid level plays a crucial intermediary effect.

KEYWORDS

mixture exposure, PFAS (per- and polyfluoroalkyl substances), gout, WQS regression, 
logistic regression

1 Introduction

PFASs are a class of synthetic chemicals characterized by their 
persistence in the environment and potential for bioaccumulation in 
living organisms (1). Since their introduction in the 1940s, PFASs have 
been widely used in various consumer and industrial applications 
because of their unique water- and oil-repellent properties (2). 
However, the widespread use and environmental persistence of PFASs 
have led to their ubiquitous presence in the environment and human 
body, raising significant concerns about their potential health impacts 
(3, 4). The health effects of PFAS exposure have been a subject of 
increasing research interest. Studies have linked PFAS exposure to 
various adverse health outcomes, including endocrine disruption, 
immunotoxicity, and metabolic disorders (5, 6). Of particular concern 
is the potential role of PFASs in the development of chronic diseases, 
including those related to metabolic dysfunction (7).

Gout, a form of inflammatory arthritis characterized by the 
deposition of monosodium urate crystals in joints and surrounding 
tissues, has emerged as a significant public health concern (8). The 
prevalence of gout has been increasing globally, with factors such as 
dietary changes, obesity, and an aging population contributing to this 
trend (9). While traditional risk factors for gout, including genetic 
predispositions and lifestyle factors, are well established, interest in 
understanding the potential role of environmental exposure in gout 
etiology is increasing (10). Recent epidemiological studies have 
suggested a potential link between environmental pollutants and the 
risk of gout. For example, exposure to lead and other heavy metals has 
been associated with elevated uric acid levels and increased gout risk 
(11). Given the widespread exposure to PFASs and their known effects 
on metabolic processes, there is a compelling rationale for investigating 
the potential association between PFAS exposure and gout risk (12).

The complexity of PFAS exposure patterns in real-world settings 
necessitates a comprehensive approach to exposure assessment. While 
many studies have focused on individual PFAS compounds, the 
importance of considering mixtures is increasingly recognized (13). 
The National Academies of Sciences, Engineering, and Medicine have 
emphasized the need for research on the health effects of PFAS 
mixtures, as opposed to single compounds, to better reflect real-world 
exposure scenarios (14).

Investigating the crucial biological mechanisms of PFAS on risk of 
gout is of great importance to the understanding of its toxicity profiles. 
Uric acid has been reported as a crucial mechanism for health damage 
caused by environmental exogenous toxicants. Moreover, uric acid was 
reported as the central aspect of the pathogenesis of gout exposure. 
Based on the above, uric acid levels may be one biological mechanism 
of PFAS exposure on gout risk, and the potential intermediary effect 
of uric acid very likely exists in the relationship of PFAS exposure with 
gout risk (PFAS to uric acid), however, the role of uric acid levels in the 
effects of PFAS on gout risk was not fully analyzed, particularly in 
population-based epidemiological studies. To the best of our 

knowledge, whether uric acid mediates the adverse effects of PFAS on 
the risk of gout has not been assessed. Mediation analysis is a causal 
inference tool in environmental epidemiological studies, as it could 
divide the total effect into direct effect and indirect effect and 
be adapted to more complex analysis scenarios with consideration of 
the potential interaction effects between exposure and mediation.

To address these knowledge gaps, our study aimed to investigate 
the associations between the concentrations of serum PFASs, both as 
individual compounds and as mixtures, and the prevalence of gout in 
a representative sample of the U.S. adult population. By utilizing data 
from the NHANES from 2007–2018, we  employ a robust cross-
sectional study design to explore this relationship. Our approach 
incorporates advanced statistical techniques, including generalized 
linear models (GLMs) to assessment of PFAS-related gout risk and 
employ mediation analysis to examine the intermediary effects of uric 
acid in the relationships of PFAS with gout risk.

This study aims to contribute to the growing body of evidence on 
the health impacts of PFAS exposure and inform future research and 
policy decisions regarding these persistent environmental contaminants. 
By examining both individual PFAS compounds and their mixtures, 
we aim to provide insights into the complex relationships between 
environmental exposure and chronic disease risk, with potential 
implications for public health interventions and regulatory strategies.

2 Materials and methods

2.1 Study population and design

This study utilized data from the NHANES, a cross-sectional, 
nationally representative survey designed to assess the health and 
nutritional status of the noninstitutionalized civilian population in the 
United States. Data from six NHANES cycles spanning 2007–2018 
were analyzed. The initial sample comprised 13,160 participants with 
complete PFASs data across all cycles. A series of exclusion criteria 
were applied to define the analytical sample. Initially, 1,047 
participants lacking biospecimens for PFAS measurements were 
excluded. By using values beyond 3 times the standard deviation as 
criteria for determining outliers, 267 samples were excluded. From the 
remaining 11,846 participants, 2,072 samples lacking gout data were 
excluded. Additionally, 1,280 individuals with missing data on 
covariates of interest were removed. This resulted in a final analytical 
sample of 8,494 participants, consisting of 8,109 individuals without 
gout and 385 with gout. The detailed sample selection process is 
shown in Figure 1.

2.1.1 Exposure assessment: serum PFAS 
concentrations

Serum samples collected from participants were processed and 
stored at −80°C in specialized containers before being transported to 
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a designated Centers for Disease Control and Prevention (CDC) 
laboratory for analysis. The specimen collection and processing 
procedures adhered to the protocols outlined in the NHANES 
laboratory/medical technician procedure manual.

Quantitative detection of perfluoroalkyl substances, including 
perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid 
(PFOS), perfluorohexane sulfonic acid (PFHxS), and 
perfluorononanoic acid (PFNA), was performed via online 

solid-phase extraction coupled with high-performance liquid 
chromatography-Turbo Ion Spray-Tandem mass Spectrometry 
(SPE-HPLC-TIS-MS/MS). The limit of detection (LOD) for each 
PFAS was established at three times the standard deviation (SD) of 
the blank concentration. For concentrations below the LOD, the 
machine-read  value obtained through instrumental analysis was 
utilized if detectable. In cases where no machine-read  value was 
available, values were imputed using LOD/ 2.

FIGURE 1

Flowchart of participants selection.
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To account for the right-skewed distribution of PFAS 
concentrations, all values were log2-transformed for subsequent 
statistical analyses. Quality control measures, including the analysis of 
blank samples and duplicate samples, were implemented throughout 
the analytical process to ensure the accuracy and reliability of 
PFAS measurements.

Quality control measures were rigorously implemented 
throughout the analytical process. Each analytical batch included 
method blanks, duplicate samples, and quality control samples to 
monitor potential contamination and ensure measurement reliability. 
Calibration standards were analyzed at the beginning and end of each 
analytical sequence to verify instrument performance. For internal 
quality control, relative percent differences for duplicate analyses were 
maintained below 15%, and recoveries of quality control samples were 
kept within 85–115% of expected values. All analytical procedures 
strictly followed the NHANES laboratory protocols to ensure data 
quality and comparability across different survey cycles.

2.1.2 Outcome assessment: gout
The determination of gout status among participants was based 

on self-reported data collected through a structured questionnaire 
administered by trained NHANES interviewers. During the medical 
conditions interview, participants were asked the following 
question: “Has a doctor or other health professional ever told 
you that you had gout?” Participants who responded affirmatively 
to this question were classified as having gout, whereas those who 
responded negatively were categorized as not having gout. This 
binary classification served as the primary outcome variable for 
subsequent analyses.

2.1.3 Covariate assessment
The selection of covariates was informed by prior research on the 

associations between PFAS exposure and gout, as well as known risk 
factors for gout. A comprehensive set of demographic, socioeconomic, 
lifestyle, and health-related variables was included to adjust for 
potential confounding effects.

Demographic variables included uric acid, age (analyzed as 
both a continuous variable and categorized into young: 20–39, 
middle-aged: 40–59, and older: ≥60 years), sex (male, female), and 
ethnicity (categorized as Mexican American, other Hispanic, 
non-Hispanic white, non-Hispanic black, and another race). 
Socioeconomic factors included educational attainment 
(dichotomized as below high school and high school graduate or 
higher) and the family poverty-income ratio (PIR, categorized as ≤
1.30, 1.31–3.50, and > 3.50). Marital status was classified as married, 
widowed, divorced, separated, never married, or living with a 
partner. Lifestyle factors included smoking status (Yes: Answer 
“Yes” to answer “Smoked at least 100 cigarettes in life” or Cotinine 
value greater than or equal to 0.05 ng/mL; No: Answer “No” to the 
question or Cotinine value less than 0.05 ng/mL), alcohol status 
(Yes: Answer the question “How often drink alcohol over past 
12 months” with a value greater than or equal to 3; Answer the 
question “How often drink alcohol over past 12 months” with a 
value less than 3 are considered nondrinkers), and physical activity 
(Level 1: Sit during the day and not walk very much; Level 2: Stand 
or walk a lot during the day but not have to carry or lift things very 
often; Level 3: Lift light load or have to climb stairs or hills often; 
Level 4: heavy work or carry heavy loads). The health-related 

variables included body mass index (BMI), which was analyzed as 
a continuous variable and categorized as <25, 25–29.9, or ≥
30 kg/m2.

2.1.4 Serum uric acid examination
A standard biochemistry test was conducted by trained laboratory 

technicians, and uric acid concentration was measured using a timed 
endpoint method. Detailed instructions about analytical 
methodologies, principles, and operating procedures are shown in the 
NHANES Laboratory Method Files.

2.2 Statistical methods

The statistical analysis was conducted in two main parts: 
individual PFAS analysis and mixture analysis. Prior to analysis, all 
PFAS concentrations were log2-transformed to address their right-
skewed distribution. Descriptive statistics were calculated for all study 
variables, with means and standard deviations reported for continuous 
variables and frequencies and percentages for categorical variables. 
Differences in characteristics between participants with and without 
gout were assessed via t tests for continuous variables and chi-square 
tests for categorical variables.

For the individual PFAS analysis, Pearson correlation coefficients 
were computed among the log2-transformed PFAS concentrations to 
evaluate potential collinearity. Associations between individual PFAS 
concentrations and gout were examined via multivariable logistic 
regression models. Three models with increasing levels of adjustment 
were employed: an unadjusted model; a model adjusted for age and 
sex; and a fully adjusted model including uric acid, age, sex, ethnicity, 
educational attainment, BMI, PIR, marital status, smoking status, 
alcohol consumption, and physical activity. Odds ratios (ORs) and 
95% confidence intervals (CIs) were calculated to estimate the change 
in the odds of gout per doubling of PFAS concentration. PFAS 
concentrations were also modeled categorically using quartiles, with 
the lowest quartile serving as the reference group.

To account for multiple comparisons, p values were adjusted via 
the Benjamini–Hochberg false discovery rate (FDR) method. 
Statistical significance was determined at an FDR-adjusted p value (q 
value) < 0.05, whereas results with an unadjusted p value >0.05 were 
considered marginally significant. Subgroup analyses were conducted 
to evaluate potential effect modification by stratifying the fully 
adjusted model by age group and sex. Restricted cubic spline models 
with 3–5 knots were used to visualize potential nonlinear relationships 
between individual PFAS concentrations and the log odds of gout, 
adjusting for all covariates in the fully adjusted model.

For the mixture analysis, weighted quantile sum (WQS) regression 
was employed to assess the combined effect of PFAS mixtures on gout 
risk. Three WQS models were fitted: an unadjusted model, a model 
adjusted for age and sex, and a fully adjusted model including all 
covariates as in the individual PFAS analysis. The WQS index was then 
used in logistic regression models to estimate the mixture effect on 
gout incidence. The weights assigned to each PFAS in the WQS model 
were used to assess their relative importance in the mixture effect. 
These results were compared with which from multiple linear 
regression by including all PFASs. A mediation analysis was conducted 
to analyze the effect of uric acid in the relationship of PFAS exposure 
with gout risk.
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Sensitivity analyses were performed for both individual PFAS and 
mixture analyses. To evaluate the impact of potential outliers, 
participants with PFAS concentrations above the 99th percentile were 
excluded. To eliminate the influence of taking the lowest measurable 
concentration when the PFAS concentration is lower than the 
measured value, the PFAS concentration below the measured value is 
randomly reassigned, and all analyses were rerun on the subset to 
compare with the main analysis results.

Statistical analyses were performed in R (Version 4.4.2). The WQS 
model was conducted using the “gWQS” package, and the mediation 
effect model was conducted using the “mediation” package. Statistical 
significance was regarded as a two-sided p value <0.05.

3 Results

3.1 Statistical description

The study population comprised 8,494 adults, including 4,112 
males and 4,382 females. Among these participants, 385 (4.53%) 
reported a diagnosis of gout. Table 1 presents the demographic and 
clinical characteristics of the study population stratified by gout status. 
Significant differences in several key variables were observed between 
participants with and without gout. Individuals with gout were 
generally older (63.25 years vs. 48.76 years, p < 0.001) and had a 
higher BMI (31.93 kg/m2 vs. 29.17 kg/m2, p < 0.001). The gout group 
also had a greater proportion of females (51.59% vs. 48.41%, 
p < 0.001) and showed differences in ethnicity distribution, marital 
status, physical activity levels, and smoke status compared with the 
non-gout group.

Age, BMI, PIR and uric acid are continuous variables that are 
reported as the means and standard deviations. The others are 
categorical variables, which are reported as frequencies 
and proportions.

Table 2 summarizes the distributions of the serum concentrations 
of the four PFAS compounds examined in this study. The table 
provides key statistics, including geometric means, arithmetic means, 
and percentiles, offering a comprehensive overview of PFAS exposure 
levels in the study population. The geometric mean concentration of 
PFOS was the highest (7.21 ng/mL), followed by that of PFOA 
(2.24 ng/mL), PFHxS (1.42 ng/mL), and PFNA (0.82 ng/mL) on the 
log2 scale.

Figure 2 Pearson correlation between serum PFAS levels after Iog2 
transformation shows the Pearson correlation coefficients between the 
log2-transformed serum concentrations of the four PFAS compounds. 
The correlation analysis revealed varying degrees of association 
among the PFAS. The strongest correlation was observed between 
PFOS and PFNA ( 0.716r = ), suggesting potential common sources 
or similar pharmacokinetics for these compounds. Conversely, PFHxS 
and PFNA showed the weakest correlation ( 0.443r = ), indicating 
potentially distinct exposure pathways or metabolic processes for 
these PFAS.

3.2 Individual PFAS analysis

The associations between individual PFAS concentrations and 
gout were examined via three logistic regression models with 

increasing levels of adjustment. Table 3 presents the results of these 
analyses. In the unadjusted model (Model 1), all four PFASs showed 
significant positive associations with gout. The ORs per doubling of 
PFAS concentration were 1.50 (95% CI: 1.30, 1.75) for PFOA, 1.47 
(95% CI: 1.31, 1.66) for PFOS, 1.33 (95% CI: 1.18, 1.50) for PFHxS, 
and 1.27 (95% CI: 1.10, 1.46) for PFNA. All associations were 
statistically significant (p < 0.001). After adjusting for age and sex 
(Model 2), the associations were substantially attenuated and lost 
statistical significance. In the fully adjusted model (Model 3), which 
accounted for additional demographic, socioeconomic, and lifestyle 
factors, the associations remained nonsignificant. However, PFOA 
showed a marginally positive association with gout (OR: 1.11, 95% CI: 
0.94, 1.31, p =0.21). The Akaike information criterion (AIC) values 
indicated improved model fit with increasing adjustment, with Model 
3 showing the best fit for all PFAS.

To explore potential nonlinear relationships, restricted cubic 
spline analyses were performed. Figure 3 illustrates the dose–response 
relationship between the log2-transformed PFAS concentration and 
the odds of gout, based on Model 3. The curve suggests no significant 
nonlinear correlation (PFOA: p for nonlinearity = 0.202, PFOS: p for 
nonlinearity = 0.124, PFHxS: p for nonlinearity = 0.752, PFNA: p for 
nonlinearity = 0.566), with a steeper increase in odds at lower PFAS 
concentrations and a plateauing effect at higher levels.

3.3 Mixture PFAS analysis

The combined effects of the four PFASs on gout risk were 
assessed via WQS regression. Table 4 presents the results of the 
WQS analysis across the three models with increasing levels of 
adjustment. In the unadjusted model (Model 1), the WQS index 
showed a significant positive association with gout (OR: 1.38, 95% 
CI: 1.28, 1.47). These findings indicate that higher overall PFAS 
mixture exposure was associated with increased odds of gout. After 
adjusting for age and sex (Model 2), the association between the 
PFAS mixture and gout remained significant and became lower 
(OR:1.35, 95% CI: 1.25, 1.46). In the fully adjusted model (Model 
3), which accounted for additional uric acid content, demographic, 
socioeconomic, and lifestyle factors, the positive association 
persisted and further strengthened (1.38, 95% CI:1.28, 1.49). The 
AIC values indicated improved model fit with increasing 
adjustment, with Model 3 showing the best fit.

Figure 4 illustrates the weights assigned to each PFAS in the 
WQS index for all three models. Across all the models, PFOS 
consistently emerged as the largest contributor to the mixture effect. 
In Model 3, the weights were distributed as follows: PFOS (0.49), 
PFOA (0.37), PFHxS (0.12), and PFNA (0.02). This suggests that 
while all four PFAS contributed to the overall mixture effect, PFOS 
and PFOA play more prominent roles. These findings indicate that 
combined exposure to multiple PFASs may have a stronger 
association with gout risk than individual PFAS exposure does. The 
persistence of this association across different levels of adjustment 
suggests that the mixture effect is robust to confounding by various 
demographic and lifestyle factors. The dominance of PFOS in the 
mixture effect aligns with its higher serum concentrations observed 
in the study population and underscores its potential importance in 
gout etiology.
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3.4 Multiple linear regression analysis

The results from the multiple linear regressions (Table 5) show 
the multiple linear regression results of three different models 
(Model 1, Model 2, Model 3), each considering different covariates. 
Each model analyzed the association between four types of PFAS 
and gout risk. In Model 1, all four PFAS are positively correlated 
with gout risk, which is consistent with the WQS regression results. 
In both Model 2 and Model 3, PFOS, PFHxS, and PFNA were 

negatively correlated with gout risk, which differs from the WQS 
regression results. In the multiple linear regression results, the AIC 
value decreased from Model 1 to Model 3, indicating an 
improvement in model fit, which is consistent with the WQS 
regression results.

Overall, WQS regression provides the overall effect of PFAS 
mixtures, while multiple linear regression provides detailed effects of 
individual PFAS. These results indicate that higher overall PFAS 
mixture exposure is associated with an increased risk of gout, even 

TABLE 1 Baseline characteristics of participants by gout status.

Variable Level Overall Without gout With gout p value

Age mean (SE) 49.41 (0.19) 48.76 (0.19) 63.25 (0.69) < 0.001

Age group, n (%)

20–39 2,863 (0.34) 2,836 (0.99) 27 (0.01) < 0.001

40–59 2,818 (0.33) 2,711 (0.96) 107 (0.04)

≥60 2,813 (0.33) 2,562(0.91) 251 (0.09)

BMI, mean (SE) 29.36 (0.08) 29.17 (0.08) 31.93 (0.41) < 0.001

BMI group, n (%)

<25 2,441 (0.29) 2,381 () 60 () < 0.001

25–30 2,746 (0.32) 2,622 () 124 (0.05)

≥30 3,307 (0.39) 3,106(0.93) 201 (0.07)

PIR, mean (SE) 2.52 (0.02) 2.52 (0.02) 2.59 (0.08) 0.329

PIR Group, n (%)

≤1.30 2,727 (0.32) 2,602 (0.95) 125 (0.05) 0.846

1.31–3.50 3,136 (0.37) 2,999 (0.96) 137 (0.04)

>3.50 2,631 (0.31) 2,508 (0.95) 123 (0.05)

Uric acid mean (SE) 5.46 (0.02) 5.40 (0.02) 6.56 (0.09) < 0.001

Sex, n (%)
Male 4,112(0.48) 3,849(0.94) 263 (0.06) < 0.001

Female 4,382(0.52) 4,260 (0.97) 122 (0.03)

Ethnicity, n (%)

Mexican American 1,254 (0.15) 1,231 (0.98) 23(0.02) < 0.001

Other Hispanic 869 (0.10) 846 (0.97) 23 (0.03)

Non-Hispanic White 3,669 (0.43) 3,458 (0.94) 211(0.06)

Non-Hispanic Black 1,720 (0.20) 1,635 (0.95) 85 (0.05)

Other Race – Including 

Multi-Racial
982 (0.11) 939 (0.96) 43 (0.04)

Marital status, n (%)

Married 4,401 (0.52) 4,156 (0.94) 245 (0.06) < 0.001

Widowed 643 (0.08) 599 (0.93) 44 (0.07)

Divorced 933 (0.12) 889 (0.95) 44 (0.05)

Separated 288 (0.03) 274 (0.95) 14 (0.05)

Never married 1,561 (0.18) 1,598 (0.98) 28 (0.02)

Living with partner 688 (0.08) 658 (0.99) 10 (0.01)

Smoke status, n (%)
Yes 3,757 (0.44) 3,538 (0.94) 219 (0.06) < 0.001

No 4,737 (0.56) 4,571 (0.96) 166 (0.04)

Alcohol status, n (%)
Yes 2,924 (0.34) 2,783 (0.95) 141 (0.05) 0.382

No 5,570 (0.66) 5,326 (0.95) 244 (0.05)

Physical activity, n (%)

Level 1 3,789 (0.45) 3,600 (0.95) 189 (0.05) 0.016

Level 2 1,914 (0.23) 1,820 (0.95) 94 (0.05)

Level 3 1,128 (0.13) 1,096 (0.97) 32 (0.03)

Level 4 1,663 (0.20) 1,593 (0.96) 70 (0.04)

Educational level, n (%)
<High school 2012 (0.24) 1,906 (0.95) 106 (0.05) 0.079

≥High school 6,482 (0.76) 6,203 (0.96) 279 (0.04)

https://doi.org/10.3389/fpubh.2025.1484663
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Feng et al. 10.3389/fpubh.2025.1484663

Frontiers in Public Health 07 frontiersin.org

after adjusting for various factors. WQS regression provides a more 
consistent basis for comparison with multiple linear regression 
analysis. The combination of the two can provide a more 
comprehensive analytical perspective.

3.5 Subgroup analysis

To explore potential effect modifications, subgroup analyses were 
conducted, stratifying the fully adjusted model by age and sex. These 
analyses revealed important variations in the associations between 
PFASs and gout across different demographic groups.

3.5.1 Individual PFAS analysis
Age-stratified analysis (Figure 5) of individual PFASs revealed 

distinct patterns across different age groups. For individual PFASs, the 
association with gout risk was most pronounced in the ≥60 years age 
group, followed by the 20–39 years age group, with the 40–59 years 
age group showing the weakest association. This trend suggests that 
old people may be particularly susceptible to the gout-inducing effect 
of these PFAS.

Sex-stratified analysis (Figure 6) further elucidated the complex 
relationship between PFAS exposure and gout risk. Compared with 
females, males generally demonstrated stronger associations between 
individual PFAS concentrations and gout risk. This sex-specific effect 
was particularly evident for PFOA and PFOS, suggesting potential 
interactions between these compounds and metabolism and excretion 
between males and females.

3.5.2 Mixture PFAS analysis
The WQS regression analysis provided valuable insights into the 

combined effects of PFAS mixtures on gout risk across age and sex 

subgroups (Table  6). In the age-stratified analysis, the association 
between the PFAS mixture and gout risk was strongest in the 
20–39 years age group, followed by the 40–59 years age group, whereas 
no significant association was observed in the ≥60 years age group 
(Figure 7). This trend differs from that observed in the individual 
PFAS analysis, highlighting the importance of considering mixture 
effects in addition to individual compound effects.

The sex-stratified WQS analysis revealed significant positive 
associations between the PFAS mixture and gout risk in both males 
and females (Figure 8). Notably, the relative importance of individual 
PFASs within the mixture differed between sexes. In males, PFOA 
contributed the most to the mixture effect, followed by PFOS. In 
contrast, PFHxS had the highest weight in females, followed by PFOA.

In conclusion, the subgroup analyses revealed a nuanced interplay 
between age, sex, and PFAS exposure in relation to gout risk. The 
varying patterns observed in individual and mixture analyses 
highlight the complexity of PFAS-associated health effects and the 
need for comprehensive approaches in future studies.

3.6 Sensitivity analysis

To evaluate the impact of potential outliers, we  conducted 
sensitivity analyses by excluding participants whose PFAS 
concentrations were above the 99th percentile (Table 7). For individual 
PFAS, the patterns of association remained largely consistent with our 
main analysis, with slight attenuations in the strength of associations, 
particularly in unadjusted models. The PFAS mixture analysis via 
WQS regression also revealed robust positive associations with gout 
risk across all the models, albeit with slightly lower ORs than those in 
the main analysis. The relative importance of individual PFASs within 

TABLE 2 Distribution of serum per- and polyfluoroalkyl substances (PFASs) among participants.

Log2-PFAS (ng/
mL)

GM Mean (SE) Percentile

25th 50th 75th 95th

PFOA 2.27 0.82 (0.01) 0.35 0.83 1.31 1.95

PFOS 7.40 2.00 (0.01) 1.41 2.03 2.59 3.43

PFHxS 1.41 0.35 (0.01) −0.22 0.34 0.92 1.74

PFNA 0.85 −0.17 (0.01) −0.65 −0.11 0.33 1.00

GM, geometric mean.

TABLE 3 Results of individual PFAS association analysis via three logistic regressions.

PFAS (ng/mL) PFOA PFOS PFHxS PFNA

Model 1

OR 1.50 1.47 1.33 1.27

p value <0.001 <0.001 <0.001 <0.001

AIC 3,109 3,097 3,116 3,127

Model 2

OR 1.14 0.97 0.91 1.03

p value 0.10 0.69 0.20 0.68

AIC 2,816 2,820 2,817 2,820

Model 3

OR 1.11 0.95 0.92 0.98

p value 0.21 0.45 0.23 0.75

AIC 2,644 2,645 2,644 2,644
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TABLE 4 Results of WQS regression.

Model 1 Model 2 Model 3

OR 95% CI Std. error AIC OR 95% CI Std. error AIC OR 95% CI Std. error AIC

1.38 (1.28, 1.47) 0.04 1870 1.35 (1.25, 1.46) 0.04 1863 1.38 (1.28, 1.49) 0.04 1844

the mixture remained consistent, with PFOS emerging as the largest 
contributor to the mixture effect across all the models.

To evaluate the impact of PFAS at its lowest measurable 
concentration, we  conducted sensitivity analyses by randomly 
reassigned PFAS to the lowest measurable concentration (Table 8). In 
sensitivity analysis, the OR of all PFAS in Model 1 was greater than 1 
and the p-value was less than 0.05, which is consistent with our main 
analysis results (Table 3), indicating a significant positive correlation 
between PFAS concentration and gout risk. All PFAS p-values in 
Model 2 and Model 3 were greater than 0.05, which is consistent with 

our main analysis results, indicating that the association is no longer 
significant when controlling for more covariates, but its association 
has decreased. The relative importance of individual PFASs within the 
mixture remained consistent, with PFOS emerging as the largest 
contributor to the mixture effect across all the models (Figure 9).

In summary, these sensitivity analyses indicate that our main 
findings are generally robust to the influence of extreme PFAS values. 
While the modest attenuations in the strength of associations, the 
overall patterns and statistical significance of the results remained 
largely unchanged for both individual PFAS and PFAS mixtures. This 

FIGURE 2

Pearson correlation between serum PFAS levels after Iog2 transformation.

TABLE 5 Results of individual PFAS association analysis via three multiple linear regressions.

PFAS (ng/mL) PFOA PFOS PFHxS PFNA

Model 1

OR (95%CI) 1.34 (1.06, 1.69) 1.55 (1.27, 1.90) 0.98 (0.83, 1.16) 0.73 (0.58, 0.92)

p value 0.013 <0.001 0.811 0.007

AIC 3,093

Model 2

OR (95%CI) 1.43 (1.13, 1.81) 0.93 (0.75, 1.15) 0.81 (0.68, 0.98) 0.96 (0.76, 1.21)

p value 0.003 0.494 0.026 0.733

AIC 2,813

Model 3

OR (95%CI) 1.42 (1.11, 1.81) 0.94 (0.75, 1.17) 0.84 (0.69, 1.01) 0.90 (0.71, 1.15)

p value 0.005 0.552 0.063 0.406

AIC 2,641
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consistency provides additional confidence in the reliability of our 
primary findings regarding the relationship between PFAS exposure 
and gout risk.

3.7 Analysis of intermediary effect

In this study, we conducted an analysis of intermediary effect of 
uric acid in illustrating the relationship of PFAS exposure with uric 
acid and proposed a hypothesis that uric acid might play a significant 
mediation effect in the associations of PFAS exposure with elevated 
risk of gout. The causal mediation effect model with consideration of 

the interaction effect was used in the assessment of the mediation 
effect of uric acid levels in the associations of PFAS exposure with 
elevated risk of gout. Significant mediation effects of uric acid were 
observed in our study for the associations of all 4 PFAS compounds 
with risk of gout, with the mediated proportion ranging from 48 to 
77% (Figure 10).

4 Discussion

This study investigated the associations between the serum 
concentrations of four PFASs and the risk of gout in a representative 

FIGURE 3

Restricted cubic spline curve of the relationship between serum PFAS levels after Iog2 transformation and the risk of gout. (A) PFOA, (B) PFOS, 
(C) PFHxS, (D) PFNA.

FIGURE 4

WQS regression showing the magnitude of the assigned weights for each log2-transformed PFAS in relation to gout status for Model 1 (A), Model 2 (B), 
and Model 3 (C).
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FIGURE 5

Restrictive cubic spline plot of individual PFASs and the risk of gout in different age groups with full adjustment of covariates. (A) PFOA, (B) PFOS, 
(C) PFHxS, (D) PFNA.

sample of U.S. adults via data from the NHANES 2007–2018. Our 
analyses revealed complex relationships between PFAS exposure and 
gout risk, with important implications for public health and future 

research directions. According to unadjusted analyses, all four PFASs 
were significantly positively associated with gout risk. However, after 
adjusting for demographic and lifestyle factors, these associations were 
largely attenuated and became nonsignificant, with PFOA showing 
only a marginally positive association. These findings suggest that the 
relationships between individual PFAS compounds and gout risk are 
substantially influenced by various demographic and lifestyle factors. 
Interestingly, our PFAS mixture analysis via WQS regression revealed 
a significant positive association between overall PFAS exposure and 
gout risk, which highlights the importance of considering combined 
PFAS exposure, as the cumulative effect may be more relevant to health 
outcomes than individual compound exposure. Our results align with 
recent research emphasizing the need to study PFAS mixtures, such as 

TABLE 6 WQS regression results for different age and sex subgroups.

Variables Subgroup OR 95% CI

Age

20–39 1.73 (1.32, 2.28)

40–59 1.17 (0.98, 1.39)

≥60 1.06 (0.94, 1.19)

Sex
Male 1.20 (1.05, 1.38)

Female 1.34 (1.16, 1.55)

TABLE 7 Results of the sensitivity analysis by excluding participants 
whose PFAS concentrations were above the 99th percentile.

Analysis Model PFOA PFOS PFHxS PFNA

Individual 

PFAS 

analysisa

Model 1 1.48* 1.42* 1.34* 1.17*

Model 2 1.12 0.91 0.90 0.95

Model 3 1.09 0.89 0.90 0.91

Mixture 

PFAS 

analysisb

Model 1 1.35 (1.23, 1.47)

Model 2 1.31 (1.18, 1.45)

Model 3 1.36 (1.20, 1.53)

aIndividual PFAS analysis reports ORs; * indicates corresponding p values less than 0.05.
bMixture PFAS analysis reports mixture effect estimates and 95% CIs.

TABLE 8 Results of the sensitivity analysis by randomly reassigned PFAS 
to the lowest measurable concentration.

Analysis Model PFOA PFOS PFHxS PFNA

Individual 

PFAS 

analysisa

Model 1 1.50* 1.47* 1.33* 1.27*

Model 2 1.14 0.97 0.91 1.03

Model 3 1.11 0.95 0.92 0.98

Mixture 

PFAS 

analysisb

Model 1 1.37 (1.26, 1.49)

Model 2 1.34 (1.25, 1.43)

Model 3 1.36(1.25, 1.49)

aIndividual PFAS analysis reports ORs; * indicates corresponding p values less than 0.05.
bMixture PFAS analysis reports mixture effect estimates and 95% CIs.
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FIGURE 6

Restrictive cubic spline plot of individual PFASs and the risk of gout in different sex groups with full adjustment of covariates. (A) PFOA, (B) PFOS, 
(C) PFHxS, (D) PFNA.

FIGURE 7

For WQS regression, the magnitude of the assigned weights for each log2-transformed PFAS in relation to the risk of gout for (A) Age: 20–39, (B) Age: 
40–59, and (C) Age: ≥60.
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FIGURE 8

For WQS regression, the magnitude of the assigned weights for each log2-transformed PFAS in relation to the risk of gout for (A) males and 
(B) females.

the work of Grandjean et al. (15), which demonstrated synergistic 
effects of PFAS mixtures on liver injury and cholesterol levels.

Subgroup analyses indicated potential effect modification by age 
and sex, with stronger associations observed in old peoples and 
females. These findings suggest potential age- and sex-specific 
vulnerabilities to PFAS-induced gout risk, which could be related to 
differences in PFAS pharmacokinetics, hormonal influences, or 
lifestyle factors across these subgroups. The biological plausibility of 

our findings is supported by previous research linking PFAS exposure 
to elevated uric acid levels and increased risk of hyperuricemia (16, 
17). PFASs may interfere with uric acid metabolism and excretion 
through various mechanisms, including the inhibition of organic 
anion transporters in the kidneys (18), the activation of nuclear 
receptors such as PPARα  (3), and the induction of oxidative stress and 
inflammation (19). Notably, PFOS consistently emerged as the largest 
contributor to the mixture effect across the different models. This 

FIGURE 9

Sensitivity analysis of mixture PFAS showing the magnitude of the assigned weights for each log2-transformed PFAS in relation to gout status for Model 
1 (A), Model 2 (B), and Model 3 (C).
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prominence is consistent with its higher serum concentrations and 
longer half-life than those of other PFAS compounds (20), 
underscoring the potential long-term health impacts of legacy PFASs 
despite regulatory efforts to phase out their use.

Several limitations should be considered when interpreting our 
results. The cross-sectional nature of the study limits our ability to 
establish causal or temporal relationships between PFAS exposure and 
gout development. Reliance on self-reported gout diagnoses may 
introduce misclassification bias, and future studies could benefit from 
incorporating clinical diagnoses or serum uric acid measurements. 
Our analysis was limited to four PFAS compounds, and expanding the 
panel to include emerging PFASs and other environmental 
contaminants could provide a more comprehensive understanding of 
exposure effects (6, 21). Despite adjusting for numerous covariates, the 
potential for residual confounding remains. The absence of longitudinal 
data limits our ability to assess cumulative PFAS exposure and its long-
term effects on gout risk. Finally, while the NHANES provides a 
nationally representative sample, our findings may not be generalizable 
to populations with different exposure profiles or genetic backgrounds.

Despite these limitations, our study makes several important 
contributions to the field. This study provides one of the first 
comprehensive assessments of both individual and mixed PFAS effects 
on gout risk in a large, representative U.S. population. The use of 
advanced statistical techniques, including WQS regression, offers 
insights into the cumulative impact of PFAS mixtures, addressing a 
critical gap in the literature. Our subgroup analyses highlight potential 
susceptible populations, informing future targeted research and public 
health interventions. Moreover, this study underscores the importance 
of considering both individual compounds and mixtures when 
evaluating PFAS-related health risks (22).

Future research directions could include longitudinal studies to 
establish temporal relationships and assess cumulative PFAS exposure 
effects on gout risk. Mechanistic studies are needed to elucidate the 
biological pathways linking PFAS exposure to uric acid dysregulation 
and gout development (23). Investigating potential gene–environment 
interactions that may modify PFAS-related gout risk could provide 
valuable insights into susceptibility factors. Evaluating the impact of 
PFAS exposure reduction strategies on gout incidence and prevalence 

is crucial for informing public health interventions. Finally, expanding 
the PFAS panel to include emerging compounds and exploring 
potential synergistic effects with other environmental contaminants 
would contribute to a more comprehensive understanding of PFAS-
related health risks (24).

In conclusion, our study provides evidence for a potential link 
between PFAS exposure and gout risk, particularly when considering 
cumulative exposure to PFAS mixtures. These findings contribute to the 
growing body of evidence on PFAS-related health effects and highlight 
the need for continued research and regulatory efforts to mitigate PFAS 
exposure in the general population. As we  continue to unravel the 
complex relationships between environmental exposure and chronic 
diseases, studies such as ours play crucial roles in informing public health 
policies and guiding future research endeavors in environmental health.
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