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Introduction: Urban green spaces play a critical role in addressing health issues,

ecological challenges, and uneven resource distribution in cities. This study

focuses onWuhan, where low green coverage rates and imbalanced green space

allocation pose significant challenges. Adopting a healthy city development

perspective, the research aims to assess the impact of green space optimization

on urban health, economic performance, and social structure.

Methods: A multivariable model was constructed using random forest and

Support Vector Machine (SVM) algorithms to evaluate the influence of key

indicators on urban green space. Core indicators were integrated from three

dimensions: residents’ health, environmental quality, and community interaction.

Multiple linear regression analysis was employed to quantify the potential

benefits of green space optimization on economic and social outcomes.

Results: The findings reveal that optimizing health and environmental

quality indices significantly enhances green space development. Green space

improvements drive a 73% increase in economic e�ciency by improving

residents’ health and extending life expectancy. Additionally, enhancements in

social structure are achieved at rates of 61% and 52% through strengthened

community cohesion and improved environmental quality, respectively. The

model demonstrates high stability and adaptability after multiple iterations,

providing a robust quantitative foundation for green space optimization.

Discussion: This study highlights the multidimensional value of green space

optimization in promoting urban health, economic growth, and social stability.

The results o�er a solid theoretical basis and practical guidance for green

space planning and management in healthy cities, contributing to scientific

decision-making and sustainable urban development.
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1 Introduction

Amid rapid technological advancements, the accelerated urbanization process has led

to a sharp increase in population density and resource allocation pressures, making urban

green space planning and management an urgent issue (1, 2). As an important central

city in China, Wuhan faces uneven distribution of green space resources in its urban

areas, with an overall insufficient green area and a need for further improvement in green

coverage. This situation poses significant challenges to both residents’ quality of life and

the sustainability of the urban ecosystem (3–5). The lack of urban green space may not

only lead to a continuous decline in environmental quality but also significantly exacerbate

residents’ psychological stress and physical health issues.
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Therefore, a comprehensive investigation into the intricate

relationship between the optimization of green space layout and

residents’ health is crucial for understanding the mechanisms

through which urban green spaces influence living environments.

Such research can provide essential theoretical and practical

support for enhancing urban planning and improving residents’

quality of life (6).

In recent years, research exploring the relationship between

urban green space and residents’ health has advanced significantly.

Studies have increasingly employed machine learning (ML) and

spatial modeling techniques to examine the role of green space in

optimizing living environments. For instance, Wu (7) developed a

livability prediction model for Dutch cities using ML algorithms.

By integrating features through decision jungles and decision

forests, the model achieved over 90% prediction accuracy. This

study highlighted that air pollution was a key factor affecting

urban livability and demonstrated that green space, acting as

an ecological buffer, could mitigate the effects of air pollution.

ML techniques have proven to be highly effective in processing

dynamic data and updating knowledge, offering valuable insights

for analyzing complex urban ecosystems. Furthermore, Tella et al.

(8) demonstrated the efficacy of the Random Forest (RF) algorithm

in air pollution modeling, accurately predicting PM10 hotspots

in Selangor, Malaysia. They revealed that the spatiotemporal

distribution of air pollution could reflect deficiencies in green space

in urbanized areas, which could exacerbate the negative health

impacts of pollution exposure.While these studies have emphasized

the environmental buffering role of green space, they have given less

attention to its direct health benefits for urban populations.

From the perspective of urban expansion and land use,

Elhamdouni et al. (9) analyzed the dynamic expansion of Khenifra

city in Morocco from 1991 to 2017 using SVM techniques. Their

findings revealed that the urban spatial occupancy rate surged

from 12% to 36%, accompanied by a notable imbalance in the

expansion pattern. This highlighted the potential adverse effects of

rapid urbanization on the equity and spatial balance of green space

distribution, which in turn exacerbates the reduction of residents’

activity spaces and weakens community cohesion. In a similar

vein, Chowdhury (10) compared the classification performance

of ML algorithms and identified the high efficiency of SVM, RF,

and Artificial Neural Networks (ANNs) in land use and cover

classification, providing a scientific approach to modeling urban

spatial dynamics. While these studies offer valuable technical

insights into land use and urban expansion, they have not fully

explored how the lack of green spaces indirectly affects overall

quality of life by impacting residents’ mental health and social

interactions. As such, further systematic research is required to

explore the specific roles of green spaces in enhancing both urban

ecological and social functions.

The key findings of existing research can be summarized in two

main points: first, the optimization of urban ecosystem stability

and environmental quality through green space; and second, the

positive impact of green space on residents’ mental health and

community interactions. However, from a critical perspective,

there are still some issues in the current research. Most studies

remain at the level of single-factor analysis and lack comprehensive

research that considers urban environments, social factors, and

other dimensions. Building upon these considerations, this study,

based on machine learning algorithms, integrates both the RF

and Support Vector Machine (SVM) algorithms to construct

a new multivariable model. This model aims to systematically

reveal the complex relationship between the layout of green

space and residents’ health in Wuhan’s urban areas. Through

nonlinear fitting and feature weight analysis, the model precisely

captures the interactions between green space and various health

indicators. Additionally, by optimizing kernel parameters and

selecting decision tree features, it enhances the explanatory power

of the relationship between health city indicators and green space,

enabling data-driven prediction and optimization. Ultimately,

the model provides a scientific basis for achieving health and

sustainable urban development.

2 Relevant ideas of urban green space
optimization based on ML from the
perspective of healthy city

2.1 Healthy city

According to the World Health Organization (WHO)

definition in 1994, a healthy city is one that places human health

at its core, ensuring a healthy living and working environment

for its citizens through systematic efforts in urban planning,

construction, and management. The goal is to achieve the organic

integration of healthy populations, environments, and societies

(11). In recent years, this concept has been widely adopted,

with its core focus on promoting comprehensive urban health

development through improvements in environmental quality,

the health of residents, and community cohesion (12, 13). The

development of a healthy city requires the coordination of multiple

sectors, including environmental protection, public health services,

the implementation of social and economic policies, as well as

community development and resident participation (14). For

example, increasing urban green spaces and public open areas

not only enhances residents’ physical and mental health but also

promotes community cohesion and social interaction (15). Studies

have shown that the development of healthy cities can improve

residents’ quality of life, foster social harmony, and promote

sustainable economic growth (16).

This study extracts key indicators from extensive research and

practice, categorizing them into three main domains: residents’

physical health, urban environmental quality, and community

cohesion and interaction. First, urban green spaces are closely

linked to residents’ physical and mental health. Contact with

natural environments has been shown to reduce psychological

stress, improve mental health, and increase the frequency of

physical activities (17). Second, optimizing urban environmental

quality has a direct impact on improving residents’ health.

Properly planned green spaces can reduce air and noise pollution,

thereby enhancing the overall environmental quality (18). Finally,

community cohesion plays a vital role in healthy cities. The

provision of green spaces and public areas not only strengthens

community interaction and a sense of belonging but also promotes

the integration and shared development of diverse cultures (19).

These factors are interwoven, collectively forming a comprehensive

system for healthy city development.
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2.2 Optimization of urban green space

The optimization of urban green space involves enhancing

both the quantity and quality of green areas through scientifically

informed planning andmanagement. This process aims to improve

the urban ecological environment and, consequently, the quality

of life for residents. Urban green spaces not only offer aesthetic

value and recreational opportunities but also play a crucial role in

climate regulation, air and soil purification, and water conservation

(20). For example, urban green spaces can significantly mitigate

the urban heat island effect by providing shade and evaporative

cooling, thus lowering local temperatures. Additionally, these

spaces contribute to improving air quality by absorbing carbon

dioxide and other pollutants (21). Optimizing the layout of

urban green spaces can bolster the stability and sustainability of

urban ecosystems, while also enhancing residents’ wellbeing and

overall health (22, 23). Research has demonstrated that green

spaces can substantially reduce the urban heat island effect, adjust

local temperatures, and promote evaporative cooling (24, 25).

Furthermore, green spaces improve air quality by capturing carbon

dioxide and other pollutants, which in turn reduces the incidence of

respiratory illnesses (26, 27). Properly optimizing the distribution

of urban green spaces contributes to ecosystem stability and

sustainability while simultaneously improving residents’ health and

happiness. Studies have shown that residents living in proximity

to green spaces report better mental health and more frequent

social interactions compared to those in areas without access

to green space (28, 29). Additionally, the rational allocation of

green spaces, along with efforts to increase their accessibility and

diversity, enables better fulfillment of the needs of various age

groups and social sectors. This promotes social equity and enhances

public health and wellbeing (30). Modern urban planning should

embrace a multi-center approach, creating self-sustaining urban

communities that reduce residents’ dependency on automobile

transport while improving overall health and safety (21). This

model has been successfully implemented in various global cities,

such as the “15-min city” concept in Paris, where residents canmeet

all their daily needs within a 15-min walk or bike ride (31). Through

these strategies, optimizing urban green spaces not only enhances

environmental quality but also provides residents with improved

health and social opportunities, thereby fostering the sustainable

development of the city as a whole.

2.3 The ML algorithm

Machine learning (ML), as a critical branch of artificial

intelligence, enables computers to learn fromdata and continuously

optimize their performance by analyzing data, recognizing

patterns, and building predictive models (32). Based on statistical

and mathematical principles, ML constructs mathematical models

to identify patterns in data, thereby automatically improving the

performance of computational systems (33). RF and SVM are

two classic machine learning algorithms that are widely applied

due to their excellent performance in classification and regression

tasks. The differences between these two algorithms are not

only reflected in their specific implementation mechanisms but

also in the types of scenarios they are best suited for. RF is

FIGURE 1

The implementation process of RF.

particularly suitable for datasets with large amounts of redundant

features and noise, as it can efficiently extract key features and

perform classification tasks. On the other hand, SVM excels

in solving nonlinear problems due to its ability to accurately

describe complex decision boundaries and optimize classification

margins. The two algorithms demonstrate highly complementary

characteristics when addressing multidimensional and complex

issues. RF offers stability and generalization ability, while SVM

focuses on optimizing classification performance for nonlinear

data. This complementary advantage provides a scientifically sound

and efficient solution for handling complex datasets.

RF is an ensemble learning method that performs classification

and regression tasks by constructing multiple decision trees.

The core concept of RF lies in ensemble learning, where the

fundamental unit is the decision tree. In essence, multiple weak

classifiers (decision trees) are combined to create a strong classifier,

thereby enhancing the overall performance of the model (34, 35).

The implementation process of RF is illustrated in Figure 1.

In RF, each decision tree is constructed using randomly

selected features and samples. This randomness reduces the

model’s variance and enhances its generalization ability (36). When

constructing each decision tree, RF ensures diversity by employing

bootstrap sampling and random feature selection, which helps

differentiate each tree within the ensemble (37, 38). The operational

principle of RF is illustrated in Figure 2

SVM is a powerful supervised learning method designed for

classification and regression tasks (39, 40). The core idea of SVM

is to maximize the margin between distinct sample points by

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1490857
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhou et al. 10.3389/fpubh.2025.1490857

FIGURE 2

Schematic diagram of RF implementation.

identifying an optimal hyperplane (41). In classification tasks, SVM

maximizes the distance between the nearest support vector and the

decision boundary (42). When the data is not linearly separable,

SVM employs a kernel function to map the data to a higher-

dimensional space, where an optimal hyperplane can be identified

in the nonlinear space (43).

The advantage of SVM lies in its strong generalization ability

and its adaptability to high-dimensional data. It is particularly

effective when dealing with small sample sets and nonlinear data.

The core principle of SVM is to identify the optimal classification

boundary by maximizing the margin between classes, thereby

improving the model’s robustness and classification accuracy (44).

The flowchart depicting the implementation process of SVM is

shown in Figure 3.

3 Multivariable model design of
Wuhan urban green space based on
the ML algorithm

Urban green spaces play a vital role in addressing climate

change. They serve as natural infrastructure for regulating

microclimates and mitigating the urban heat island effect.

Additionally, they help reduce carbon emissions and enhance

urban ecological resilience. Extreme climate events triggered

by climate change—such as heatwaves, droughts, and heavy

rainfall—have profoundly affected the stability and functionality

of green space systems. Specifically, rising temperatures intensify

FIGURE 3

Flow chart of SVM implementation.

evaporation and reduce soil moisture content, significantly

impacting the growth cycles and biodiversity of vegetation within

green spaces. Changes in precipitation patterns cause uneven

spatial and temporal distribution of rainfall. This increases the

complexity of water resource management in green spaces. As

a result, their ecological functions and residents’ quality of life

are affected. Moreover, extreme weather events such as heavy

storms and heatwaves are becoming more frequent. These events
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raise management costs and pose challenges to green space

infrastructure, plant growth, and ecosystem service functions.

From an ecosystem services perspective, the relationship

between urban green spaces and climate change is characterized by

multiple interactions. Urban green spaces can effectively mitigate

the negative impacts of climate change by expanding vegetation

coverage, enhancing soil water retention, improving air quality,

and regulating temperature and humidity. As the “carbon sinks”

of cities, green spaces absorb and store carbon dioxide, thereby

playing a crucial role in slowing climate change. However, climate

change itself imposes new challenges on green space systems. High

temperatures and drought put stress on plants in green spaces.

Some may experience growth stagnation, reduced adaptability, or

even death. This weakens their ability to sequester carbon and

provide ecological protection. Additionally, extreme climate events

such as heavy rainfall and flooding are becoming more frequent.

These events cause soil erosion and waste water resources in green

spaces. They may also lead to the collapse of ecological structures,

further increasing urban vulnerability to climate change.

This study employs a multivariable modeling approach to

explore the relationship between urban green spaces and healthy

cities. It integrates diverse data on climate, the environment, and

public health to reveal these complex interactions. The analysis

of green spaces in urban Wuhan incorporates multiple indicators,

including residents’ health, environmental quality, and community

interactions, to construct a comprehensive research framework. To

capture the nonlinear relationships among these multidimensional

data, this study utilizes two powerful machine learning algorithms:

RF and SVM. These algorithms were selected due to their superior

performance in handling complex datasets, uncovering latent

patterns, and optimizing predictive accuracy.

In terms of theoretical methodology, the RF algorithm offers

high tolerance and adaptability, while SVM excels in solving

nonlinear problems in high-dimensional spaces. Specifically, RF

learns from data by constructingmultiple decision trees, employing

bootstrap sampling and random feature selection during tree

generation. This enhances the model’s adaptability to complex

relationships while reducing the risk of overfitting due to data

noise. Furthermore, RF’s ensemble nature allows it to process

diverse input features, making it well-suited for heterogeneous

urban health and environmental data, ensuring more accurate and

stable predictions. Meanwhile, SVM achieves data classification

by identifying the optimal decision boundary that maximizes

the margin between support vectors and the hyperplane. When

handling nonlinear relationships, SVM employs kernel functions

to map data from lower-dimensional to higher-dimensional spaces,

enabling the construction of more precise classification models.

Notably, by optimizing kernel function parameters through grid

search and cross-validation, the model’s classification capability

in complex data environments can be further enhanced. This

advantage makes SVM particularly effective in analyzing the

multifaceted impacts of urban green spaces on healthy city

indicators, as it can identify subtle and latent associations.

The index data used in this study are sourced from publicly

available official datasets, including annual statistical reports,

environmental quality monitoring reports, and health survey

data published by the Wuhan Municipal Bureau of Statistics

and the Environmental Protection Bureau. As these datasets are

publicly accessible, ethical concerns are not involved. However,

potential sample selection biases may arise. For example, some

indices may not fully represent the spatial distribution of Wuhan

due to sampling being concentrated in specific urban districts.

Additionally, certain environmental quality data may be limited

by fixed monitoring schedules, which may hinder the capture of

dynamic trends. To mitigate the impact of these biases, all raw

data undergo a preprocessing stage, during which data cleaning

is performed to address missing values and outliers. For missing

data imputation, the k-nearest neighbors (k-NN) method based on

similar samples is employed. This approach fills in missing values

by calculating the mean of the nearest neighbors in the feature

space, effectively preserving the overall relationships within the

data. Specifically, for each missing value, the Euclidean distance

between the target sample and other samples is first computed.

The sample values of the k-nearest neighbors are then selected as

references and imputed according to a weighted similarity, thereby

retaining the intrinsic structural information of the dataset. For

outlier detection, the 3σ rule is applied. The mean and standard

deviation of each variable are calculated, and any values outside the

range defined by the mean ± three times the standard deviation

are identified as outliers and removed. This step prevents extreme

values from distorting the model analysis. Subsequently, the Min-

Max normalization method is used to standardize the data across

different dimensions, scaling all values to the [0, 1] range to ensure

consistency and comparability. To further optimize the dataset,

Principal Component Analysis (PCA) is employed to reduce

dimensionality, minimizing redundant information and enhancing

the efficiency and accuracy of the model. During the PCA process,

the number of principal components is selected based on a

cumulative variance contribution rate of 95%. This dimensionality

reduction not only improves data quality and consistency but also

provides a solid foundation for the subsequent machine learning

models. After preprocessing, the dataset is transformed such that

each sample contains a set of standardized features, effectively

reflecting the relationship between urban green space and healthy

city indices in Wuhan.

This study adopts a multi-dimensional and multi-level

approach to ensure a comprehensive and scientifically rigorous

analysis. The selection of indices is designed to accurately reflect

the real-world conditions and functional characteristics of urban

green space. In line with established research literature and

guidelines on urban greening and the development of healthy

cities, the chosen indices are both scientifically sound and

practically applicable. Specifically, fundamental indices such as

green area, vegetation coverage rate, and green coverage density

directly measure the extent and distribution of urban green space.

These indices are commonly employed in urban ecology and

environmental science research. Additional indices, such as the

length of green corridors and the number of parks, offer further

insights into the function and structure of green space, emphasizing

its connectivity and accessibility for residents. These factors are

significant in urban planning and design. Moreover, the garden

quantity index captures the actual use and perception of green

space by residents, making it a critical indicator for evaluating

the social benefits and community interactions facilitated by these
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TABLE 1 Indices of Wuhan.

Type Index Content

Indices of urban green space

in Wuhan

Green area The total area covered by green space in Wuhan includes parks, green belts, greenways, and other green

spaces.

Vegetation coverage The proportion of vegetation coverage in the urban area of Wuhan reflects the degree of vegetation

greening in the city.

Green coverage density It measures the distribution density of green space such as green space and green belt in Wuhan, that is,

the number of green coverage per unit area.

Green corridor length The total length of all kinds of green corridors in the urban area of Wuhan, including tree-lined roads and

riverside green belts, is an important channel connecting urban green spaces.

Number of parks The total number of parks in the urban area of Wuhan reflects the distribution of leisure and

entertainment space in the city.

Green coverage rate The proportion of green space (including green space, green belt, etc.) in the urban area of Wuhan is an

important index to evaluate the degree of urban greening.

Number of gardens The number of gardens within courtyards, communities, and public areas in Wuhan, such as community

and school gardens, provides greenery and venues for resident activities.

Health indices of Wuhan

residents

Health condition The overall health status of Wuhan residents, including physical and mental health.

Chronic disease incidence The chronic disease incidence among Wuhan residents, including hypertension, diabetes, cardiovascular

and cerebrovascular diseases, etc.

Average life span The average life expectancy of Wuhan residents reflects the overall health level and quality of life.

Health consciousness Wuhan residents’ awareness and concern about health problems, including the mastery of health

knowledge and health care awareness.

Urban environmental quality

index of Wuhan

Air quality index It reflects the concentration levels of various pollutants in the air of Wuhan, including PM2.5, PM10, sulfur

dioxide, nitrogen dioxide, etc. It has an important impact on residents’ health and environmental quality.

Noise level It measures the intensity and frequency of environmental noise in Wuhan, encompassing traffic,

industrial, and community noise. It impacts residents’ quality of life and physical and mental health.

Water quality index It is critical to reflect the concentration and water quality of various pollutants in Wuhan water. It includes

heavy metals, organic pollutants, microorganisms, and so on, for residents’ domestic water use and

ecological environment protection.

Soil pollution index It measures the concentration and distribution of various pollutants in the soil of Wuhan, including heavy

metals, organic pollutants, and pesticide residues. It has an important impact on the safety of agricultural

products and the protection of the ecological environment.

Light pollution index It reflects the night light intensity and light pollution degree in Wuhan, covering the number and intensity

of urban night lighting facilities. It has an impact on the quality of life of residents and the biological

ecological environment at night.

Community interaction index

of Wuhan

Frequency of community

activities

It reflects the frequency and participation of various community activities in the Wuhan community,

encompassing cultural and sports activities, voluntary services, social gatherings, etc.

Community organization

density

It measures the number and distribution density of various community organizations in the Wuhan

community, including community neighborhood committees, industry committees, and volunteer

organizations.

Community interaction

participation index

It reflects the communication and interaction among community residents in Wuhan, involving

neighborhood relations, participation in community activities, community information transmission, etc.

Utilization of community

public facilities

It shows the utilization degree of various public facilities in the Wuhan community, encompassing fitness

facilities, libraries, cultural activity centers, etc. It reflects the activity degree of the community and the

utilization efficiency of public resources.

spaces. The indices used in this study for Wuhan are summarized

in Table 1.

The selection of these indices aligns closely with the study

objectives. First, indices such as green area and vegetation

coverage directly reflect the scale and quality of urban green

space. These factors are crucial for improving residents’ health,

enhancing air quality, and regulating urban microclimates. Second,

indices such as green coverage density and green corridor length

provide insights into the distribution and connectivity of green

space, facilitating the creation of a cohesive green grid and

enhancing the overall functionality of the urban ecosystem.

The number of parks and gardens serves as a measure of

green space accessibility and utilization, which directly influences

residents’ outdoor activity levels and the extent of community

interaction. By examining these indices, the impact of green

space on residents’ health, urban environmental quality, and

community vitality can be thoroughly evaluated, providing a solid

scientific foundation for optimizing green space layout. Ultimately,
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TABLE 2 Optimization process of ML algorithms.

Algorithm Parameter Initial value Optimization process Optimal
parameter value

RF n_estimators 100 Start from 100, gradually increase, and select the

number that maximizes the model effect.

300

max_features Automatic Trying different feature numbers [including

sqrt(n_features) and log2(n_features)], and

selecting the best feature number.

sqrt

max_depth None Start with None and increase gradually until the

model effect is no longer improved.

20

min_samples_split 5 Step by step, select the number of segmentation

samples that can maximize the model effect.

2

SVM kernel Radial Basis Function (RBF) Trying different kernel functions (including RBF,

linear kernel and polynomial kernel) and choosing

the kernel function that is most suitable for the

data.

RBF

regularization parameter(C) 1 Through grid search or cross-validation, the

optimal C value is selected from a certain range.

1

gamma scale According to the different kernel functions, the

optimal gamma value is selected.

scale

epsilon 0.01 Choosing the optimal epsilon value from a certain

range makes the tolerance of the model to errors

more reasonable in different situations.

0.1

this approach supports the goal of building a healthy and

livable city.

In this study, the parameters of the ML algorithms are

optimized to ensure the model’s high accuracy and robustness.

The objective of parameter optimization is to enhance the

model’s adaptability and predictive performance by adjusting key

parameters in the algorithm, thereby achieving the study goal of

optimizing green space in Wuhan. The parameter optimization

process is informed by both the characteristics of the algorithms

and the specific nature of the data. Specifically, the two primary

ML methods used—RF and SVM—each require the optimization

of unique parameters. For RF, the focus is on parameters such as

n_estimators, max_features, max_depth, and min_samples_split,

which directly influence the model’s complexity and predictive

accuracy. The optimal combination of these parameters is identified

through a systematic adjustment process. For SVM, key parameters

including the kernel function, regularization parameter (C),

gamma, and epsilon value play a critical role in determining the

SVM’s ability to map and classify data in high-dimensional space.

The parameter optimization process for SVM involves grid search

and cross-validation, allowing for the selection of the most suitable

combination of parameters. The parameter optimization details for

both RF and SVM are summarized in Table 2.

In the design of the multivariate model, RF performs

random sampling and combines numerous features through

feature selection and predictive model construction. This approach

effectively identifies key features that significantly influence the

dependent variables, thereby enhancing the prediction accuracy

and stability of the model (45, 46). The primary mathematical

process involved is as follows:

• Decision Tree Segmentation Calculation

To implement RF, it is necessary to determine the influence

of each feature on the target variable through decision tree

segmentation. This is achieved by calculating the Information Gain

(IG), which quantifies the improvement in information provided

by a feature when dividing the data. The feature with the highest IG

is selected to split the data, thereby constructing the decision tree

nodes. The specific calculation is represented in Equation 1:

Gain(X,Y) = Entropy(X)−

n
∑

i=1

|Xi|

|X|
× Entropy(Xi) (1)

X refers to a feature set. Y represents the target variable. |Xi|

stands for the size of the i-th subset in feature X. |X| denotes

the total size of feature set X. Entropy(X) indicates the entropy of

feature set X. In this way, the optimal features can be selected for

segmentation to maximize the IG of the data.

• Information entropy calculation of decision tree nodes

The information entropy calculation at decision tree nodes

measures the uncertainty inherent in the data. Higher information

entropy indicates greater uncertainty, while a lower entropy

suggests less uncertainty. During the construction of a decision

tree, features that most effectively reduce information entropy are

selected, thereby minimizing data uncertainty and enhancing the

predictive power of the tree. The calculation of information entropy

is given by:

Entropy(X) = −

m
∑

i=1

pi × log2(pi) (2)

pi represents the proportion of class i on the node. By

calculating the information entropy, the effect of data segmentation

with different features can be evaluated, and the features that can

minimize the uncertainty can be selected for segmentation.
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• Output of decision tree leaf nodes

Once the decision tree is constructed, each leaf node generates

a predicted value, which is obtained by averaging the target variable

values of all samples within the node. This approach effectively

utilizes all available information in the leaf node to produce stable

prediction outcomes. The output of the decision tree leaf node is

calculated as follows:

ŷtree =
1

N

N
∑

i=1

yi (3)

N represents the sample number of leaf nodes. yi represents the

target variable value of sample i. Through this averaging method,

the final predicted value of each leaf node can be obtained.

• Output of RF

Building on this, the final prediction output of the RF is derived

by aggregating the predicted values from multiple decision trees.

Specifically, the RF output is the average of the predictions from

all trees, which serves to reduce the prediction error inherent in

individual decision trees and enhances the stability and accuracy

of the overall model. The RF output is represented by the

following equation:

ŷforest =
1

T

T
∑

t=1

ŷtreet (4)

T represents the number of trees in the RF. ŷtreet refers to

the predicted output of the t tree. Through this calculation, RF

can synthesize the prediction results of multiple decision trees and

provide a more stable and accurate prediction.

• Calculation of feature importance

In this study, RF determines the features that most influence the

model’s prediction outcomes by assessing the importance of each

feature. This process is carried out by aggregating the IG across

all decision trees. Calculating feature importance provides insights

into which variables contribute most to the model’s predictive

power. The calculation is expressed as follows:

Importance(Xi) =

T
∑

t=1

Gain(Xi,Yt) (5)

Xi represents the i-th feature. Yt refers to the target variable

of the t-th tree. The features that have a significant impact on the

prediction results can be identified by calculating the importance

of features, thus optimizing the model’s performance.

• Error calculation

Finally, the model’s prediction accuracy and goodness of fit are

evaluated through error analysis. Typically, the performance of the

RFmodel is measured by computing themean squared error (MSE)

between the predicted and actual values. The error calculation is

given by the following equation:

Errorforest =
1

T

T
∑

t=1

(ŷtreet − y)2 (6)

y represents the true value of the target variable. Error

calculation is used to assess the model’s prediction accuracy

and goodness of fit. Based on the aforementioned algorithm

and calculation process, RF is capable of capturing complex

nonlinear relationships in large-scale, multidimensional data,

thereby enhancing the model’s robustness and generalization

ability. As a result, RF provides a solid scientific foundation for

optimizing urban green space in Wuhan.

SVM operates by mapping the data into a high-dimensional

feature space to identify a hyperplane that maximizes the

margin between different categories, thereby facilitating effective

classification and prediction. In the design of amultivariablemodel,

SVM is particularly useful for uncovering nonlinear relationships

in the data, enabling effective classification and regression. This

improves the model’s ability to express and fit complex data

relationships. The core mathematical process is outlined as follows:

4 Calculation of the decision function
in a linear SVM classifier

SVM begins by determining the classification boundary

through the calculation of the linear decision function. This

decision function maps the input samples into a high-dimensional

space, where classification is based on the distance between the

samples and the decision hyperplane. The equation for the decision

function of a linear SVM is as follows:

ŷ(x) = wT · x+ b (7)

ŷ(x) represents the prediction category of the input sample x;

w and b refer to model parameters. Through calculation, SVM can

classify the input data into different categories.

• Calculation of objective function of linear SVM classifier

In linear SVM, the objective function is used to optimize

the classification hyperplane by maximizing the margin between

support vectors while minimizing classification errors. This

objective function incorporates both the classification margin and

an error term, which together enhance the model’s classification

performance. The equation is expressed as:

min
w,b

1

2
||w||2 + C

n
∑

i=1

max
(

0, 1− yi(w
T · xi + b)

)

(8)

xi and yi respectively represent training samples and their

corresponding categories. C stands for regularization parameter.

Thus, SVM can find an optimal hyperplane that balances the

classification interval and classification error.

• Calculation of decision function (kernel skill) of nonlinear

SVM classifier
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For data that is not linearly separable, SVM utilizes a kernel

function to map the data into a higher-dimensional space, where

it identifies the optimal hyperplane that maximizes the margin.

The use of kernel methods enables the handling of complex data

structures, thereby achieving more accurate classifications. The

decision function equation for nonlinear SVM is:

ŷ(x) =

nsv
∑

i=1

αiyiK(x, xi)+ b (9)

nsv represents the number of support vectors. αi represents the

Lagrangemultiplier of support vector.K(x, xi) represents the kernel

function. Through kernel function, SVM can classify in high-

dimensional space and deal with nonlinear problems.

• The objective function calculation of SVM under

kernel technique

In the kernel method, the objective function of SVM is

employed to optimize the margin between support vectors, thereby

enhancing classification performance by maximizing this margin.

The equation integrates the Lagrange multiplier of the support

vectors and the kernel function, enabling effective classification of

nonlinear data. The calculation is expressed as:

min
α

1

2

nsv
∑

i=1

nsv
∑

j=1

αiαjyiyjK(xi, xj)−

nsv
∑

i=1

αi (10)

The objective function calculation of SVM based on the kernel

technique can find the optimal hyperplane in high-dimensional

space and realize the accurate classification of complex data.

• The Karush-Kuhn-Tucker (KKT) condition of the dual

problem is as follows:

During the SVM optimization process, the KKT conditions

are applied to ensure the optimality of the solution. The KKT

conditions are crucial for solving optimization problems, as they

guarantee that the solution is globally optimal. The equation

representing the KKT conditions is as follows:



































αi ≥ 0

yi(w
T · xi + b)− 1 ≥ 0

αi[yi(w
T · xi + b)− 1] = 0

(11)

By satisfying the aforementioned conditions, SVM effectively

captures nonlinear relationships in complex, multidimensional

data, ensuring the optimal solution to the optimization problem

and enabling accurate classification and prediction.

In this study, the Analytic Hierarchy Process (AHP) is

employed to determine the weight of each index within

the composite index. First, a hierarchical structure model is

constructed, categorizing the indices into target, criterion, and

index layers. The target layer aims at optimizing urban green

space, while the criterion layer includes indices related to health,

environmental quality, and community interaction. The index

layer further refines these into specific quantitative metrics.

This hierarchical approach ensures a systematic and structured

determination of weights. In the operational process, professional

judgment and evaluation are used to conduct pairwise comparisons

of the indices at each level, determining their relative importance.

A pairwise comparison matrix is then constructed, where each

matrix element represents the relative importance ratio between

two indices. The weights are calculated using the feature vector

method, and the comparison matrix is normalized. The initial

weight for each index is derived by calculating the maximum

eigenvalue of the matrix and its corresponding eigenvector. To

ensure consistency within the comparison matrix, the Consistency

Ratio (CR) is calculated. The CR is determined by the ratio of the

consistency index to the random consistency index, as outlined in

Equation 12:

CR =
CI

RI
=

λmax − n

(n− 1)× RI
(12)

λmax is the largest eigenvalue of the comparison matrix. n

means the order of the matrix. RI refers to the random consistency

index, and CI denotes the consistency index. If the CR value is

less than 0.1, it is considered that the matrix has good consistency.

Otherwise, it is necessary to re-evaluate and adjust the element

values in the comparison matrix.

In this study, three feedback optimization iterations were

conducted. After the first optimization, the CR value was 0.15,

exceeding the acceptable threshold of 0.1. Consequently, the

results were returned to the expert group, with specific areas for

improvement identified, prompting a re-evaluation and re-scoring.

Following the second optimization, the CR value was reduced to

0.11. Although there was some improvement, the value still failed to

meet the consistency requirements, necessitating further feedback,

evaluation, and adjustment. After the third optimization, the CR

value was successfully reduced to 0.08, meeting the consistency

standard of <0.1. This ensured the consistency of the comparison

matrix. Through these three optimization iterations, the final

weights for each index were determined, accurately reflecting their

relative importance in the comprehensive evaluation. The weights

of each dependent variable index, categorized by type, are presented

in Table 3.

To comprehensively assess the optimization of urban green

space in Wuhan, this study introduces the calculation of a

comprehensive index, which encapsulates the collective impact

of several key factors on green space. This index reflects

the interrelationships and significance of environmental quality,

health, and community interaction indices. After determining the

weight of each index through the AHP, these weights are applied to

the actual data, enabling the quantification and holistic evaluation

of each factor’s contribution to urban green space. The calculation

of the comprehensive index is expressed in Equation 13:

SI =

∑n
i=1 wi∗(pi +

1
qi
)

∑m
j=1

∑l
k=1

(

xjk
∑l

k=1 xjk

)

∗(1+
yjk

∑l
k=1 yjk

)

(13)

Equation 13 integrates the scores and quantized values of the

independent variables and urban green space indices. It computes
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TABLE 3 Weight of each dependent variable index under each type.

Index Health
indices of
Wuhan
residents

Urban
environmental
quality index
of Wuhan

Wuhan
community
interaction

index

Green area 0.25 0.15 0.12

Vegetation

coverage

0.20 0.18 0.10

Green coverage

density

0.15 0.12 0.08

Green corridor

length

0.10 0.20 0.05

Number of

parks

0.08 0.14 0.20

Green coverage

rate

0.07 0.10 0.22

Number of

gardens

0.05 0.11 0.23

the comprehensive index by taking the weighted average of the

respective variables, alongside the normalized weighted sum of

the urban green space indices. The equation’s complexity arises

from the combination of polynomial and fractional operations,

reflecting the intricate relationships among multiple factors in the

comprehensive evaluation. Here, wi represents the weight of each

variable index, pi and qi denote the score and quantized value of

the independent variable, respectively. yjk indicates the quantitative

value of the urban green space index, while n and l correspond to

the number and classification of the independent variable indices.

xjk andm refer to the score and count of urban green space indices.

5 Verification and analysis of
multivariable models using ML
algorithms

5.1 Regression analysis and verification of
Wuhan residents’ health

The multivariate model’s verification and analysis results for

Wuhan residents’ health are revealed in Figure 4.

Figure 4 illustrates the regression results for the health

condition index, with a coefficient of 0.387, a t-value of 9.214,

and a p-value of 0.012. These values indicate that the health

condition index significantly and positively influences urban

green space. Similarly, the regression coefficient for average

life expectancy is 0.279, with a p-value of 0.047 (p < 0.05),

further demonstrating its significant positive effect on urban green

space development. Conversely, while chronic disease incidence is

statistically significant, its regression coefficient is −0.152, with a

p-value of 0.035 (p < 0.05). This suggests a negative relationship

between chronic disease incidence and urban green space. The

impact of health awareness, although characterized by a regression

coefficient of 0.211, appears less substantial, as its p-value exceeds

the threshold for statistical significance. These findings underscore

that enhancing residents’ health levels and increasing average

FIGURE 4

Verification results of multivariate model on residents’ health in

Wuhan.

life expectancy contribute positively to the development and

optimization of urban green spaces. Consequently, improvements

in urban green infrastructure have the potential to elevate overall

environmental quality and the quality of life for residents.

The regression analysis also highlights the critical role of

urban green spaces in health promotion, particularly in enhancing

life expectancy and overall health levels. However, the negative

association observed with chronic disease incidence reveals

potential regional disparities in the health benefits of green spaces,

which may be attributed to underlying socioeconomic factors.

Areas with high chronic disease prevalence are often characterized

by limited green space availability and inadequate infrastructure.

Residents in such areas, exposed to prolonged environmental

stressors, may exhibit diminished health benefits from green spaces

and an increased dependency on medical resources. Additionally,

individuals with chronic diseases may use green spaces less

frequently, further limiting the health-promoting effects of these

areas. The findings highlight the need for strategic optimization

of green space layouts to address disparities in accessibility and

equity, particularly for vulnerable populations. Efforts to increase

green coverage in densely populated areas, enhance infrastructure,

and incorporate health-oriented design principles can significantly

amplify the positive health impacts of green spaces. Such measures

are essential for fostering the holistic development of healthy and

sustainable urban environments.

5.2 Regression analysis and verification of
urban environmental quality in Wuhan

The multivariate model’s verification and analysis results for

urban environmental quality in Wuhan are illustrated in Figure 5.

Figure 5 illustrates the degree and direction of the impact

of Wuhan’s urban environmental quality indices on urban green
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FIGURE 5

Verification results of multivariate model on urban environmental

quality in Wuhan.

space. The regression analysis reveals positive coefficients for air

quality (0.324), water quality (0.265), and light pollution (0.198),

indicating a positive correlation between these indices and urban

green space. This suggests that improved environmental quality

is associated with an increase in urban green space. Conversely,

the regression coefficients for noise levels (−0.187) and soil

pollution (−0.143) demonstrate a negative relationship with urban

green space, signifying that deteriorating environmental conditions

adversely affect green space availability. The t-values for noise

levels (−4.429) and soil pollution (−5.684) further emphasize the

significant influence of these factors on urban green space. The

reliability of these results is supported by the 95% confidence

interval’s upper and lower bounds. These findings highlight the

importance of enhancing air quality, water quality, and minimizing

light pollution to support urban green space development.

Simultaneously, addressing noise pollution and mitigating soil

contamination are critical for improving overall environmental

quality and fostering the expansion and optimization of urban

green spaces.

A further analysis of these findings underscores not only the

value of green spaces in improving environmental quality but

also highlights their role in mitigating the urban heat island

effect from a climate change perspective. Specifically, vegetation

transpiration can reduce local urban temperatures, alleviating

the adverse health impacts of extreme heat events on residents.

Additionally, the soil and water retention functions of green spaces

help alleviate the pressure on urban water systems during extreme

rainfall events, demonstrating their critical regulatory role in the

context of climate-induced extreme weather. Moreover, increasing

ecological corridors and vegetation coverage in high-pollution

areas can effectively reduce noise diffusion and the risks of soil

contamination while enhancing the capacity for ecosystem services.

From the intersectional perspective of climate change and healthy

urban development, these measures provide actionable pathways

FIGURE 6

Verification results of multivariate model on community interaction

in Wuhan.

for improving environmental quality and practical evidence for

enhancing urban resilience.

Therefore, optimizing green space layouts should prioritize

reducing noise and soil pollution while improving air and water

quality indices. Through the planning of green buffer zones and

the implementation of soil remediation projects, green spaces

can simultaneously enhance environmental quality and ecosystem

services, contributing greater value to the sustainable development

of cities in the context of climate change.

5.3 Regression analysis and verification of
community interaction in Wuhan

The verification and analysis results of multivariate model on

Wuhan community interaction are indicated in Figure 6.

In Figure 6, the regression coefficients of community activity

frequency and community organization density are relatively high,

at 0.312 and 0.279, respectively, indicating that these factors have

a substantial influence on urban green space. Conversely, the

community interaction participation index and the utilization of

community public facilities exhibit lower coefficients of 0.198 and

0.143, respectively, suggesting a more limited impact. Additionally,

analysis of the standard error and t-values reveals that community

activity frequency and community organization density have low

standard errors and high t-values, underscoring the reliability and

statistical significance of their estimates. In contrast, the higher

standard errors and lower t-values associated with the community

interaction participation index and the utilization of public facilities

indicate that their estimates are less reliable and statistically

significant. Overall, the frequency of community activities and the

density of community organizations emerge as key drivers of urban

green space optimization, whereas the influence of community
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FIGURE 7

Performance verification analysis results of multivariate models.

interaction participation and public facility utilization remains

comparatively modest.

The findings further emphasize the significant positive impact

of community activity frequency and community organization

density, highlighting the pivotal role of green spaces within the

community ecosystem. These spaces not only facilitate resident

interactions and enhance social cohesion but also strengthen the

social value of urban green spaces. A deeper analysis reveals

that increased community activity frequency correlates with

more effective utilization of green spaces. Regular cultural and

sports events, as well as everyday neighborhood interactions,

contribute to fostering a strong sense of community belonging

and active engagement. In contrast, lower indices of community

interaction and public facility utilization suggest limited social

participation among residents in certain areas, potentially reflecting

inequities in the distribution of public resources. This shortfall

may diminish the role of green spaces in fostering community

vitality and improving residents’ quality of life. These findings

highlight deficiencies in the multifunctionality and equity of green

space planning, particularly concerning the alignment of resident

needs with spatial design. To address these issues, strategies

such as the equitable allocation of community public facilities,

increased investment in activity-oriented green spaces, and the

promotion of diverse community governance participation can

enhance the multifunctional potential of green spaces. These

measures would allow green spaces to contributemore effectively to

community ecosystems, achieving synergistic development across

social, ecological, and environmental dimensions.

5.4 Performance verification analysis of
multivariable models

The performance verification analysis results of multivariable

models are suggested in Figure 7.

FIGURE 8

Analysis results of economic benefits and social structure impact.

In Figure 7, an increase in the number of iterations corresponds

to a gradual rise in model complexity, from 0.85 to 0.92,

accompanied by a steady improvement in accuracy, which

increases from 0.92 to 0.95. These trends indicate a progressive

enhancement in the model’s fitting capability and predictive

performance. Simultaneously, the robustness index demonstrates

an improvement from 0.78 to 0.85, suggesting increased model

stability when applied to diverse datasets. These findings

underscore that, even after multiple iterations, the multivariate

model maintains high levels of accuracy and stability. Moreover,

the model exhibits adaptability to complex data structures and

variable environmental conditions, reinforcing its utility for

dynamic prediction scenarios.

5.5 Analysis of the influence of the
multivariate model on the economic
benefit and social structure of Wuhan

The multivariate model’s analysis results of the economic

benefits and social structure of Wuhan are depicted in Figure 8.

In Figure 8, the optimization of health indices resulted in

a 73% and 61% increase in the economic benefits and social

structure impacts, respectively, within Wuhan’s urban areas.

Similarly, the environmental quality indices improved by 68%

and 52%. These findings indicate that the optimization of green

spaces significantly drives urban economic development and

enhances social structures. Although the improvement rate of

community interaction indices is relatively lower, its positive

impact on economic and social structures reinforces the integral

role of green spaces in the comprehensive enhancement of

urban functions.

A deeper analysis reveals that green spaces mitigate urban

heat island effects, directly reducing the adverse impacts of high

temperatures on residents’ productivity and daily lives. This

contributes to a reduction in economic costs associated with energy

consumption and medical expenses. Moreover, green spaces play a

pivotal role in carbon sequestration by absorbing carbon dioxide,
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thereby providing crucial support for Wuhan’s transition to a

low-carbon economy. Additionally, rational green space layout

and optimized distribution improve community interaction and

social cohesion, making urban environments more adaptable to the

dynamic demands of a climate-change context.

At the intersection of climate change adaptation and healthy

city construction, the study demonstrates that integrating

multidimensional dynamic optimization models can better align

Wuhan’s green space planning with ecological, economic, and

social objectives. For high-density urban areas, priority should

be given to the development of climate-adaptive ecological buffer

zones. Enhancing vegetation diversity and improving green

space accessibility can further maximize the synergistic effects

of green spaces in improving resident wellbeing and promoting

social stability. This optimization pathway not only strengthens

the theoretical framework of the study but also provides robust

support for future policy implementation.

6 Discussion

6.1 Research contributions

The findings of this study not only demonstrate the high

applicability of the proposed model but also provide empirical data

to better understand the multidimensional impacts of green spaces

on urban health and environmental quality. These results hold

significant reference value for similar urban contexts. Domestically,

the study offers practical guidance for optimizing green space

layouts in rapidly urbanizing, densely populated mid-to-large

cities with limited green resources, such as Chongqing and

Nanjing. These cities face considerable ecological pressures and

an increasing demand for public health resources. By rationally

allocating green spaces, improvements in quality of life and

ecosystem service functions can be achieved to some extent.

Internationally, for rapidly developing cities in Southeast Asia,

such as Bangkok and Ho Chi Minh City, the study provides

data-driven optimization pathways to address challenges such as

uneven green space distribution, environmental pollution, and

public health pressures. Additionally, for mid-sized cities with

high population density, such as Budapest and São Paulo, as

well as resource-constrained smaller cities, the machine learning

techniques proposed in this study can precisely capture critical

indicators to support scientific decision-making. This study

deepens the understanding of healthy city metrics and offers

universal solutions for green space management and planning

across diverse global urban contexts. By doing so, it contributes

to advancing sustainable urban development and improving urban

resilience on a global scale.

The findings of this study are contextualized within the

framework of existing research. The observed positive effects

of health conditions and life expectancy closely align with the

conclusions of Wu (7), who demonstrated that green spaces

significantly enhance residents’ quality of life by improving

environmental quality and mental health. Similarly, the negative

correlation between green space availability and chronic disease

incidence supports the perspective that insufficient green spaces

exacerbate exposure to pollution, thereby contributing to adverse

health outcomes. Notably, the weaker influence of health

awareness, a phenomenon seldom explored in depth in the

literature, may be attributed to the underappreciation or limited

utilization of green spaces by the public. This finding offers a

promising avenue for future research to explore strategies for

fostering greater awareness and engagement with green spaces.

In terms of environmental quality, the results corroborate Tella

and Balogun’s (8) findings that noise pollution reduces the

attractiveness and functionality of green spaces. Additionally,

the significant negative impact of soil pollution on green

space expansion, as identified in this study, underscores the

critical need for ecological restoration strategies tailored to

urban contexts. These findings provide a robust foundation

for implementing targeted interventions, such as establishing

ecological barriers to mitigate noise pollution and employing

phytoremediation technologies to address soil contamination,

thereby enhancing the sustainability and functionality of green

spaces in Wuhan.

Considering these insights, and in light of Wuhan’s specific

urban dynamics, urban planners are encouraged to prioritize

key indices identified in this study. For instance, leveraging the

significant positive effects of health conditions and life expectancy

aligns with the principles of the “healthy city” concept and

can inform green space optimization strategies. In districts with

limited green resources, the development of community parks

and health trails can directly address residents’ health needs

and promote equitable access to green spaces. Furthermore, the

strong correlations between air and water quality indices and

environmental quality underscore the potential of green spaces to

mitigate pollution. Urban planners can integrate these findings into

the design of ecological barriers or vegetative buffers in areas with

high pollution levels to enhance the regulatory functions of green

spaces. Simultaneously, coordinated efforts in pollution control and

green space restoration initiatives should be promoted to achieve

synergistic benefits for the environment and public health.

When analyzed through the lens of academic advancements,

this study significantly contributes to the exploration of the

multifaceted functions of green spaces in the context of climate

change. For instance, Pinto et al. (47) highlighted the link between

urban heat island effects and extreme heat events, emphasizing the

necessity of nature-based solutions to mitigate these phenomena.

This study aligned closely with their perspective by demonstrating

how optimized green space layouts effectively reduced urban

heat island effects, providing region-specific insights for climate-

adaptive urban planning. Similarly, Cherif et al. (48), through

meta-analyses, revealed the temperature-regulating roles of green

spaces under varying climatic conditions. Building on this, the

findings of this study validated the substantial positive impact of

green spaces in mitigating environmental stressors such as high

pollution and noise levels, underscoring the regional specificity

of these benefits. Furthermore, Han et al. (49), employing spatial

econometric analyses, established that green spaces alleviated

pollutants such as PM2.5. This study expands on their work

by emphasizing the synergistic role of green ecosystems in

simultaneously improving environmental quality and enhancing

residents’ wellbeing, thereby enriching the theoretical framework

of green space ecosystem services. In summary, this study not

only addresses a critical gap in the intersection of urban health
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and climate change research but also provides multidimensional

data-driven insights to support policy formulation. It exemplifies

the integration of academic and practical value, advancing the

application of green spaces in building urban climate resilience

and offering actionable strategies for green space management in

diverse global urban contexts.

6.2 Limitations and future directions

Nevertheless, it is important to acknowledge certain

limitations in this study that may affect the generalizability

of the results. Firstly, the reliance on publicly available

datasets introduces potential biases in data completeness and

quality. For instance, the uneven spatial distribution of data

points may lead to the underrepresentation or omission of

certain areas, thereby weakening the model’s performance

in ensuring regional balance. Furthermore, the selection of

health indicators was limited to quantifiable data, and non-

quantifiable dimensions such as subjective wellbeing and

mental health were not incorporated, which may constrain

the comprehensive understanding of the social benefits of

green spaces. Secondly, the assumption of linear relationships

between variables oversimplifies the complexity of real-world

interactions. The effects of green spaces on multidimensional

indicators often exhibit non-linear characteristics; for example,

health indicators may show non-linear jumps under certain

threshold conditions, which linear analytical methods may fail

to capture comprehensively. Lastly, the study’s temporal and

spatial scope was somewhat fixed, failing to account for the

dynamic trends of green space usage across different seasons or

over long-term urban planning periods. This raises the need for

further research to evaluate the long-term effects of green spaces

more comprehensively.

To overcome these limitations, future research should explore

deeper advancements in data sources, methodological innovations,

and the expansion of analytical scope. First, real-time data

monitoring technologies should be integrated to enhance the

dynamic nature and precision of the data, alongside community-

based participatory approaches for data collection. This would

ensure the inclusion of residents’ subjective perceptions and

cultural aspects, capturing the social benefits of green spaces and

their adaptability to diverse population needs. Second, in terms of

methodological innovation, future studies should integrate deep

learning models or hybrid methods, applying non-linear analysis

techniques to explore the relationships between multidimensional

variables, thus providing a more comprehensive reflection of

complex dynamic interactions. Such techniques can identify

potential non-linear associations and multi-level mechanisms

between variables, offering stronger support for the accuracy and

interpretability of predictive outcomes. Furthermore, expanding

the temporal and spatial scope of analysis is a critical direction

for future development. For example, long-term data analysis

could capture the dynamic trends of green space across different

seasons and development stages, further revealing its potential

contribution to addressing climate change and optimizing urban

wellbeing (50). In summary, future research should drive the

integration of data, methods, and scope optimization, fostering a

deeper convergence between theory and practice in green space

studies, and providing a more comprehensive scientific foundation

for sustainable urban development.

7 Conclusion

This study explores the complex relationship between

the optimization of urban green spaces in Wuhan and the

multidimensional indices of a healthy city through the application

of a multivariate model. By integrating RF with SVM algorithms,

this study makes significant strides in quantifying the role of key

indices and uncovering their interaction mechanisms. The findings

demonstrate that green spaces are essential in improving residents’

health and extending life expectancy. Additionally, these spaces

play a crucial role in enhancing urban environmental quality and

fostering community interaction. This study not only enriches

the theoretical understanding of the interactive mechanisms

between green spaces and healthy city development, but also

provides critical empirical evidence to guide green space and

urban planning efforts in Wuhan. Through a systematic analysis

of indices such as environmental quality, community interaction,

and health conditions, the study emphasizes the irreplaceable

role of green spaces as a central element of urban resilience and

social wellbeing.

From a practical perspective, the findings offer valuable

decision-making support for urban planning in Wuhan

within the framework of a healthy city. Positive indices,

such as health conditions and life expectancy, highlight the

potential of green spaces to optimize the living environment

and underscore their importance in promoting ecosystem

sustainability and improving residents’ wellbeing. Furthermore,

this study outlines specific strategies for addressing negative

impacts such as noise and soil pollution, recommending

the construction of ecological barriers and the promotion

of phytoremediation technologies. These strategies provide

practical pathways for balancing green space development with

urban growth objectives. Additionally, the model architecture

and empirical methods utilized in this study demonstrate

strong generalizability, offering a reference framework and

practical guidance for other cities facing similar challenges in

green space optimization. Moving forward, the development

and optimization of green spaces should not only focus on

enhancing ecological and health benefits, but also on integrating

them more deeply into social and cultural dimensions. This

approach aims to fully harness the multifaceted contributions

of green spaces to urban health, ecological balance, and

social development.
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