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Objective: To develop a machine learning (ML)-based admission screening 
model for hospital-acquired (HA) influenza using routinely available data to 
support early clinical intervention.

Methods: The study focused on hospitalized patients from January 2021 to 
May 2024. The case group consisted of patients with HA influenza, while the 
control group comprised non-HA influenza patients admitted to the same 
ward in the HA influenza unit within 2 weeks. The 953 subjects were divided 
into the training set and the validation set in a 7:3 ratio. Feature screening was 
performed using least absolute shrinkage and selection operator (LASSO) and 
the Boruta algorithm. Subsequently eight ML algorithms were applied to analyze 
and identify the optimal model using a 5-fold cross-validation methodology. 
And the area under the curve (AUC), area under the precision-recall curve (AP), 
F1 score, calibration curve and decision curve analysis (DCA) were applied to 
comprehensively assess the predictive effectiveness of the selected models. 
Feature factors were selected and feature importance’s were assessed using 
SHapley’s additive interpretation (SHAP). Furthermore, an interactive web-based 
platform was additionally developed to visualize and demonstrate the predictive 
model.

Results: Age, pneumonia on admission, Chronic renal failure, Malignant tumor, 
hypoproteinemia, glucocorticoid use, admission to ICU, lymphopenia, BMI were 
identified as key variables. For the eight ML algorithms, ROC values ranging from 
0.548 to 0.812 were observed in the validation set. A comprehensive analysis 
showed that the XGBoost model predicted the highest accuracy (AUC: 0.812) 
with an F1 score of 0.590 and the highest A p value (0.655). Evaluating the 
optimal model, the AUC values were 0.995, 0.826, and 0.781 for the training, 
validation and test sets. The XGBoost model showed strong robust. SHapley’s 
additive interpretation (SHAP) was utilized to analyze the contribution of 
explanatory variables to the model and their correlation with HA influenza. In 
addition, we developed a practical online prediction tool to calculate the risk of 
HA influenza occurrence.

Conclusion: Based on the routine data, the XGBoost model demonstrated 
excellent calibration among all ML algorithms and accurately predicted the risk 
of HA influenza, thereby serving as an effective tool for early screening of HA 
influenza.
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Introduction

Influenza is one of four categories of respiratory infectious 
diseases with potential pandemic risk. There are one billion cases of 
seasonal influenza worldwide each year, and it is the leading cause of 
lower respiratory tract infections worldwide (1, 2). Influenza causes 
significant morbidity and mortality in the United  States and has 
pandemic potential. The burden of influenza has been on the rise after 
the COVID-19 pandemic. The interim estimated burden of influenza 
for the 2023–2024 influenza season indicated that between 35 and 65 
million illnesses, 390,000 and 830,000 hospitalizations, and 25,000 and 
72,000 deaths occurred that season (3). Additionally, studies have 
revealed that there are an average of 88,100 excess influenza-associated 
respiratory disease deaths per year in China, accounting for 8.2% of 
respiratory disease deaths (4).

Hospital-acquired (HA) influenza has been shown to be associated 
with high mortality, leading to prolonged hospitalization and 
increased healthcare costs. Accumulating evidence showed that HA 
influenza may contribute to 11.38% of influenza cases (4)with 
mortality rates reaching as high as 18.8% (5) and severe illness 
incidence peaking at 39.2% (6). Furthermore, several studies have 
reported outbreaks of influenza in hospitals and in-ward transmission 
(7–9). HA influenzas represent the primary public health emergencies 
associated with hospital-acquired infections in China (10). However, 
current hospital infection surveillance systems primarily concentrate 
on detection of bacteria, overlooking the target monitoring of HA 
influenza and frequently underestimating the incidence of HA 
influenza. Therefore, the aim of this study was to promptly identify 
patients at high risk of HA influenza so as to lower the risk of 
nosocomial infection outbreaks and early implement specific 
intervention strategies to reduce the incidence of HA influenza.

Although there have been numerous studies on the 
epidemiological characteristics and risk factors of HA influenza (11–
14), the existing prediction model research is still limited. Additionally, 
an increasing number of studies (15–17) indicated that ML algorithms 
possess numerous advantages in model construction. Based on the 
routine data of hospital admission, this study aims to explore the 
feature factors of HA influenza. By comparing the performance of 
multiple ML prediction models, we  dedicate to constructing the 
optimal model and develop a practical prediction tool for early 
screening of HA influenza. This initiative aims to serve as a guide for 
monitoring HA influenza within healthcare facilities.

Materials

Study design

A retrospective, observational, single-centre study was conducted 
in Zhengzhou Central Hospital Affiliated to Zhengzhou University 
from January 2021 to May 2024. The sample consisted of patients aged 
18 years and older, who had hospitalized for more than 7 days. The 
case group consisted of HA influenza patients, and the control group 

consisted of non-HA influenza patients who were admitted to the 
same ward in the HA influenza unit within 2 weeks. Finally, a total of 
953 eligible subjects were included. Clinical information’s of subjects 
were collected through the hospital infection real-time monitoring 
system, hospital information system (HIS), and Laboratory 
Information System (LIS).

Patient selection

Case group inclusion criteria: (a) HA influenza cases diagnosed 
7 days or more after admission with no evidence of influenza infection 
at the time of admission, (b) HA influenza cases with positive PCR 
results, (c) HA influenza cases meeting the diagnostic criteria for 
hospital-acquired infections (18) who were admitted to the hospital 
for more than 48 h. Control group inclusion criteria: patients who 
were admitted to the same ward in the HA influenza unit within 
2 weeks (1 week before or 1 week after). Exclusion criteria: (a) patients 
with missing data and duplicate data, (b) patients’ 
hospitalization≤7 days, or (c) patients age < 18 years.

Methods

Predictor variables

Information on patients with HA influenza was identified through 
the China Disease Control and Prevention Information System 
(CDCIS) and the Nosocomial infection surveillance system (NISS), 
and the HIS system retrieved and retrospectively analyzed the clinical 
data of all subjects. Specific inclusion data included information on 
gender, age, underlying diseases (hypertension, diabetes mellitus, 
chronic obstructive pulmonary disease, coronary heart disease, 
chronic renal failure), malignant tumors, immunosuppression, 
hematological disorders, cerebrovascular disorders, autoimmune 
disorders, lymphopenia, pregnancy, pneumonia on admission, 
glucocorticoid application, nutritional risk screening (NRS) score, and 
admission to ICU. Laboratory indicators include: white blood cell 
count, neutrophil count, procalcitonin, erythrocyte sedimentation 
rate, platelet count. Nutritional risk screening was conducted 
according to the NRS-2002 Nutritional Risk Screening scale. The test 
and examination data were derived from the first 48 h after the 
patient’s admission to the hospital.

Calculation of sample size

The study involved 24 risk factors. According to EPP Principle 
(19), 5–10 positive patients were required for each risk factor in 
the modeling set. The number of positive patients should 
be between 120 and 240. Considering selection bias, the control 
group was selected for patients admitted to the same ward in the 
same ward of HA influenza within 2 weeks, which made it 
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impossible to use EPP principle for reference estimation. The study 
indicated that the number of patients admitted to the same ward 
in the HA influenza unit within 2 weeks (1 week before or 1 week 
after) is 1–5 times higher than HA influenza patients, resulting in 
a maximum total sample size of 1,434. Larger sample sizes 
enhanced the generalization ability of predictive models. 
Consequently, the available data sample sizes in this study 
were 953.

Model construction and evaluation

Feature factors screening
In this study, feature strategies of the wrapper-based Random 

Forest Boruta algorithm and the embedded Lasso regression technique 
were employed. The optimal subset determined by the two methods 
was considered as the key factors.

ML model construction and development
A variety of ML algorithm models were used for comprehensive 

analysis, and the optimal model was selected and constructed. The 
details were as follows:

Data set partitioning: To construct the predictive model, the 
dataset was randomly split into a 70% training subset and a 30% test 
subset. In the stage of model training, bootstrap resampling technique 
(a 5-fold cross-validation method) was used to optimize the model 
parameters and prevent the occurrence of model overfitting. The 
training set was randomly divided into five groups. Four groups were 
randomly selected for training in each iteration of the five-fold cross-
validation as the training set, and the remaining group was considered 
as the validation set. In the stage of model assessment, the test set was 
used to evaluate the predictive performance of the model.

Selection of classification algorithm: Eight ML algorithm models 
were used for comprehensive analysis to compare the importance of 
each index in the training and validation sets of different models. The 
construction methods of prediction model include extreme gradient 
boosting (XGBoost), logistic regression (LR), light gradient boosting 
machine (LightGBM), random forest (RF), adaptive boosting 
(AdaBoost), support vector machine (SVM), k-nearest neighbors 
(KNN), and gaussian naive bayes (GNB).

Model training: Grid search method was used for constant 
adjusting to get optimal hyperparameters, models were retrained on 
the entire training set to derive the final model. Parameter values for 
ML models are shown in Supplementary Table 1.

Performance index: AUC value, accuracy, sensitivity, specificity, 
positive predictive value, negative predictive value, and F1 score.

Model comparison: The ROC comparison of each model was 
performed using DeLong test.

Considering performance indexes, we used the receiver operating 
characteristics (ROC) curve, calibration curve and precision-recall 
(PR) curve to evaluate the predictive performance of the models. The 
optimal model was finally screened. ROC curves were employed to 
assess the diagnostic efficacy of the model in the training set and 
validation set. A calibration curve was then plotted to evaluate the 
predictive effectiveness of the model. Learning curves were employed 
to evaluate the model’s fit and stability in the training and validation 
sets. Decision curve analysis (DCA) was used to assess the predictive 
efficiency and clinical applicability of the model.

SHAP interpretability analysis

After the key factors have been identified, the significance of those 
were evaluated using the SHapley’s Additive Interpretation (SHAP) 
approach. The SHAP is a technique employed to interpret predictions 
generated by ML models, especially those that are complex and consist 
of a large number of features (20). The fundamental principle involved 
the computation of the incremental impact of individual features on 
the model’s output, enabling interpretation of the model’s behavior at 
both a global and local scale. Features with higher absolute SHAP 
values were identified as the most closely aligned with the model’s 
predictive scores.

Statistical analysis

Continuous variables were expressed as mean ± standard 
deviation or median ± interquartile range and were analyzed using the 
unpaired t test or Mann–Whitney U test. Categorical variables were 
expressed as numbers and percentages and analyzed using the 
Chi-square test or Fisher exact test. Differences with p < 0.05 were 
considered statistically significant. Statistical software used included 
R (version 4.2.2), and Python (version 3.7).

The construction and evaluation of the models were carried out 
using Python 3.7 with package “xgboost 1.2.1” for xgboost, package 
“lightgbm 3.2.1” for lightgbm, and package “sklearn 0.22.1” for the 
remaining models. ROC curves, PR curves, and learning curves were 
plotted using the “sklearn 0.22.1” package, and SHAP analyses were 
performed using the “shap 0.39.0”package. LASSO regression analysis 
was performed using the glmnet package (version 4.1.7) in R, and the 
Boruta algorithm was applied using Boruta (version 8.0.0) in 
R. Similarly, the online prediction tool was constructed based on 
Shiny package in R.

Results

Demographic and clinical characteristics

A total of 5,063 patients with influenza were monitored, and 239 
patients with HA influenza, representing 4.7% of the total. Of the total 
number of cases, 112 were male and 127 were female. The mean age 
of the patients was 46.23 ± 11.21 years. Among the HA influenza 
subtypes, influenza A accounted for 63.4%, influenza B accounted for 
26.4% and unclear classification accounted for 10.2%. The top five 
departments in terms of proportion are respiratory (30/12.64%), ICU 
(28/11.72%), nephrology (22/9.21%), hematology (18/7.53%) and 
urology (15/6.28%). Furthermore, 118 cases of HA influenza were 
documented in real-time hospital infection surveillance system, 
representing only 49.4% of cases were reported.

Comparison of baseline characteristics

The baseline characteristics for the case group and control group 
were shown in Table 1. Compared to the control group, patients with 
HA influenza were more likely to be older and to have a higher BMI 
or nutritional risk. There were more patients diagnosed with 
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TABLE 1 Comparison of baseline characteristics between the case group and control group.

Factors Missing 
data

Category Total 
(n = 953)

Control 
(n = 714)

Case 
(n = 239)

Statistic p*

Age (years) (%) 0 (0%) <60 724 (76) 564 (79) 160 (67) 14.233 <0.001

≥60 229 (24) 150 (21) 79 (33)

Gender (%) 0 (0%) Female 292 (30.6) 226 (31.7) 66 (27.6) 1.374 0.241

Male 661 (69.4) 488 (68.3) 173 (72.4)

Pneumonia on admission 

(%)
0 (0%) No 832 (87.3) 644 (90.2) 188 (78.7) 21.494 <0.001

Yes 121 (12.7) 70 (9.8) 51 (21.3)

Hypertension (%) 0 (0%) No 292 (30.6) 207 (29.0) 85 (35.6) 3.641 0.056

Yes 661 (69.4) 507 (71.0) 154 (64.4)

Diabetes (%) 0 (0%) No 592 (62.1) 444 (62.2) 148 (61.9) 0.005 0.943

Yes 361 (37.9) 270 (37.8) 91 (38.1)

COPD (%) 0 (0%) No 871 (91.4) 652 (91.3) 219 (91.6) 0.023 0.880

Yes 82 (8.6) 62 (8.7) 20 (8.4)

CHD (%) 0 (0%) No 822 (86.3) 617 (86.4) 205 (85.8) 0.062 0.803

Yes 131 (13.7) 97 (13.6) 34 (14.2)

CRF (%) 0 (0%) No 829 (87) 637 (89.2) 192 (80.3) 12.478 <0.001

Yes 124 (13) 77 (10.8) 47 (19.7)

MT (%) 0 (0%) No 868 (91.1) 664 (93) 204 (85.4) 12.871 <0.001

Yes 85 (8.9) 50 (7) 35 (14.6)

Hypoproteinemia (%) 0 (0%) No 837 (87.8) 645 (90.3) 192 (80.3) 16.754 <0.001

Yes 116 (12.2) 69 (9.7) 47 (19.7)

CVD (%) 0 (0%) No 882 (92.5) 661 (92.6) 221 (92.5) 0.003 0.956

Yes 71 (7.5) 53 (7.4) 18 (7.5)

AD (%) 0 (0%) No 928 (97.4) 702 (98.3) 226 (94.6) 9.903 0.002

Yes 25 (2.6) 12 (1.7) 13 (5.4)

Pregnancy (%) 0 (0%) No 906 (95.1) 674 (94.4) 232 (97.1) 2.729 0.099

Yes 47 (4.9) 40 (5.6) 7 (2.9)

Glucocorticoid use (%) 0 (0%) No 816 (85.6) 628 (88) 188 (78.7) 12.566 <0.001

Yes 137 (14.4) 86 (12) 51 (21.3)

NRS (%) 0 (0%) <3 771 (80.9) 598 (83.8) 173 (72.4) 14.979 <0.001

≥3 182 (19.1) 116 (16.2) 66 (27.6)

Hemopathy (%) 0 (0%) No 921 (96.6) 693 (97.1) 228 (95.4) 1.523 0.217

Yes 32 (3.4) 21 (2.9) 11 (4.6)

Admission to ICU (%) 0 (0%) No 864 (90.7) 662 (92.7) 202 (84.5) 14.214 <0.001

Yes 89 (9.3) 52 (7.3) 37 (15.5)

Lymphopenia (%) 0 (0%) No 917 (96.2) 699 (97.9) 218 (91.2) 22.020 <0.001

Yes 36 (3.8) 15 (2.1) 21 (8.8)

BMI (kg/m2) (IQR) 0 (0%) 25.712 (23.875, 

27.548)

25.528 (23.459, 

27.344)

25.952 (24.382, 

27.778)

−3.174 0.002

PCT (μg/L) (IQR) 0 (0%) 0.235 (0.200, 

0.263)

0.238 (0.193, 

0.263)

0.230 (0.205, 

0.263)

0.352 0.725

WBC count (*109/L)(IQR) 0 (0%) 7.050 (6.250, 

8.371)

7.050 (6.270, 

8.300)

7.000 (5.970, 

8.580)

0.521 0.602

ESR (mm/h) (IQR) 0 (0%) 13.000 (6.000, 

29.000)

12.000 (6.000, 

29.000)

14.000 (6.000, 

25.000)

−0.505 0.613

NEUT count (*109/L) (IQR) 0 (0%) 4.360 (3.460, 

6.040)

4.298 (3.460, 

5.988)

4.470 (3.510, 

6.079)

−0.552 0.581

PLT count (*109/L) (IQR) 0 (0%) 212.000 (173.000, 

249.000)

216.000 (176.000, 

249.000)

201.000 (164.000, 

245.000)

1.827 0.068

* p value < 0.05 was considered significant. The statistics were obtained by Mann Whitney-U test or Chi-square test. Data were shown as number (percentage) or median (IQR, interquartile 
range). COPD, chronic obstructive pulmonary disease; CHD, coronary heart disease; CRF, chronic renal failure; MT, malignant tumor; CVD, cerebrovascular disease; AD, autoimmune 
disease; NRS, nutritional risk screening; ESR, erythrocyte sedimentation rate; PLT, platelet; WBC, white blood cell; PCT, procalcitonin; NEUT, neutrophil.
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pneumonia, chronic kidney failure, malignancy, hypoproteinemia, 
autoimmune disease, and lymphocytopenia on admission in the case 
group. At the same time, a considerable number of patients in the case 
group had been admitted to ICU. In addition, laboratory-related 
factors were not statistically significant between the two groups 
(p > 0.05).

Feature selection

A total of 953 patients were divided into 667 cases in the training 
group and 286 cases in the testing group in the ratio of 7:3. Statistical 
analysis showed no significant difference was between the two groups 
(all p > 0.05), as shown in Supplementary Table 2.

The Boruta algorithm (an extension of the RF algorithm) was 
utilized to identify the actual set of features by accurately estimating 
the significance of each feature (21). The Boruta algorithm identified 
19 key factors including age, gender, BMI, pneumonia on admission, 
diabetes, COPD, CHD, CRF, MT, hypoproteinemia, CVD, AD, etc. In 
contrast, variables were analyzed by LASSO regression that can 
compress variable coefficients to prevent overfitting and solve serious 
covariance problems (22). The results showed that 24 independent 
factors were screened and finally simplified to 10 key factors, namely 
age, BMI, CRF, MT, CVD, pneumonia on admission, lymphopenia, 
hypoproteinemia, glucocorticoid use, admission to ICU.

By the screening results from the LASSO regression and the 
Boruta algorithm, we  identified a common subset of key factors 
selected by both methods (Figure  1). Finally, age, pneumonia on 
admission, CRF, MT, hypoproteinemia, glucocorticoid use, admission 
to ICU, lymphopenia, BMI were identified as feature factors used for 
model construction.

Comparison of multiple classification 
models

The XGBoost, LR, LightGBM, RF, AdaBoost, SVM, KNN and GNB 
models were trained and validated. The models were evaluated using 
AUC values (23), which demonstrated that RF exhibited the highest 
performance in the training set, with AUC value of 0.996 and F1 score 
of 0.960. While XGBoost demonstrated the highest performance in the 
validation set, with AUC value of 0.812 and F1 score of 0.590 (Table 2). 
The AUC values focused on the predictive accuracy of the models and 
failed to more effectively filter optimal models. Consequently, calibration 
curves and the area under the PR curve were examined. The calibration 
curves in the validation set demonstrated the highest accuracy of 
XGBoost model, accompanied by the highest AP value of 0.655 
(Figure 2). The results obtained from the training and validation sets 
suggested that the RF model might be overfitting, while the XGBoost 
model exhibited relatively greater stability on the validation set. A 

FIGURE 1

Screening process of feature variables from LASSO regression analysis and Boruta algorithm. (a,b) Factor screening based on the LASSO regression 
model, with the left dashed line indicating the best lambda value for the evaluation metrics (lambda.min) and the right dashed line indicating the 
lambda value for the model where the evaluation metrics are in the range of the best value by one standard error (lambda.1se); (c) Boruta algorithm 
screening variable trajectories; (d) The common subset of Boruta and LASSO.
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comprehensive analysis further indicated that the XGBoost model 
demonstrated the most optimal performance across all evaluated metrics.

Construction and evaluation of the optimal 
model

A 5-fold cross-validation was performed on the training set. 
The results indicated that the average AUC value for the training 
set was 0.995, while the average AUC value for the validation set 
was 0.826. Additionally, the AUC value of the test set was 0.781 
(Figures 3a-c). The AUC values of the training set, validation set, 
and test set eventually stabilized around 0.8, demonstrating 
accurate model predictions. When the performance of the 
validation set under the AUC metric is lower than that of the test 
set or the ratio is less than 10%, the model can be considered 
successfully fitted (24). The learning curves suggested that the 
training and validation sets exhibit strong fitting capabilities and 
high stability (Figure 3d). The calibration curve confirmed the 
model’s good accuracy and discriminative ability, while the 
decision curve analysis demonstrated that the predictive model 
got high predictive value and clinical significance (Figures 3e,f ). 
Furthermore, the confusion matrix results revealed differences in 
the model’s performance across different datasets. In the training 
set (Figure 3g), the true positive rate (sensitivity) was 96.1%, and 
the true negative rate (specificity) was 96.4%. In the test set 
(Figure  3h), the true positive rate was 59.5%, and the true 
negative rate was 84.9%. These findings indicated that the 
XGBoost model is fully applicable for classification modeling of 
the dataset.

Model interpretation

Initially, 24 independent variables were screened and finally 
simplified to 9. We used SHAP analysis to visualize the interpretation 
of feature factors. 9 most important features in our model were 
showed in Figure  4a. Within each feature significance line, the 
attribution of all patients to the outcome was plotted with dots of 
different colors, where red dots indicated high risk values and blue 
dots indicated low risk values. Patients with increased BMI, age 
(>60 years), pneumonia on admission, ICU admission, glucocorticoid 
use, presence of chronic renal failure, lymphopenia, malignant tumor 
or hypoproteinemia were at high risk for HA influenza.

Figure 4b shows the ranking of the 9 feature factors assessed by 
mean absolute SHAP values, with the X-axis SHAP values indicating 
the importance of the predictive model. In addition, we provided two 
typical examples to illustrate the interpretability of the model. For 
each patient, the model generates a predictive value, expressed as a 
SHAP score, which quantifies individual risk. A patient with a 
relatively low SHAP score of 0.35 (Figure 4c) is at a low risk of HA 
influenza. In contrast, another patient with a significantly higher 
SHAP score of 0.56 (Figure 4d) faces a high risk of HA influenza.

Model presentation

A visualization and online prediction model was constructed at 
http://www.xsmartanalysis.com/model/list/predict/model/html?mid
=23476&symbol=2Hb17hd417409jS1AR84, researchers can analyze 
and verify the performance of the model online. A screenshot of the 
presentation of the generic model is shown in Figure 5. A Patient aged 

TABLE 2 Predictive performance of eight ML algorithms in the training and validation sets of the HA influenza screening model.

Classification 
models

AUC Cutoff Accuracy Sensitivity Specificity Positive 
predictive 

value

Negative 
predictive 

value

F1 
scoring

Training set

XGBoost 0.992 0.300 0.958 0.955 0.959 0.887 0.985 0.920

LR 0.686 0.235 0.674 0.647 0.683 0.403 0.857 0.494

LightGBM 0.957 0.315 0.896 0.878 0.902 0.758 0.957 0.811

RF 0.996 0.435 0.980 0.961 0.986 0.960 0.987 0.960

AdaBoost 0.815 0.494 0.735 0.747 0.732 0.480 0.897 0.584

KNN 0.890 0.400 0.824 0.778 0.839 0.623 0.918 0.691

SVM 0.575 0.254 0.761 0.247 0.927 0.530 0.792 0.331

GNB 0.661 0.090 0.614 0.715 0.582 0.356 0.864 0.474

Validation set

XGBoost 0.812 0.300 0.800 0.622 0.852 0.573 0.883 0.590

LR 0.641 0.235 0.640 0.561 0.668 0.373 0.815 0.445

LightGBM 0.747 0.315 0.772 0.575 0.829 0.496 0.870 0.532

RF 0.752 0.435 0.787 0.502 0.875 0.553 0.850 0.525

AdaBoost 0.727 0.494 0.682 0.641 0.693 0.399 0.861 0.489

KNN 0.711 0.400 0.730 0.532 0.787 0.418 0.854 0.466

SVM 0.548 0.254 0.740 0.201 0.930 0.505 0.770 0.281

GNB 0.647 0.090 0.609 0.680 0.582 0.372 0.836 0.479
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≥60 years, with a BMI of 28, a malignant tumor, and lymphopenia, 
have a 73.3% probability of developing HA influenza, placing them in 
the high-risk group. Early prevention measures and timely 
interventions should be implemented to mitigate this risk.

Discussion

It has been proposed that standardized surveillance of HA 
influenza and effective establishment of a respiratory protection 
system can reduce the infection and mortality rates of HA influenza 
(6). In this study, HA influenza patients accounted for about 5% of all 
influenza patients. However, according to the Real-Time Hospital 
Infection Surveillance System, only about 50% of the HA influenza 
cases were documented, indicating that nearly half of the cases were 
not officially reported. This also highlights the critical importance of 
standardized HA influenza surveillance in hospital governance. 

Although the system is essential, assessing its effectiveness and 
achieving optimal results remains challenging. In our study, 
we developed and validated several widely-used machine learning 
(ML) algorithms, constructed an HA influenza prediction model 
using routinely collected data, and created a quantifiable, online 
prediction tool. This facilitates early intervention, thereby reducing the 
infection rate and lowering the morbidity and mortality rates 
associated with HA influenza.

This study employed two feature selection methods to screen out 
9 feature factors including age, pneumonia on admission, CRF, MT, 
hypoproteinemia, glucocorticoid use, admission to ICU, lymphopenia, 
BMI from 24 clinical variables. Several studies (25, 26) have identified 
age (≥65 years) and presence of underlying disease to be important 
characteristics of HA influenza. Meanwhile, a case–control study 
conducted in a Chinese population demonstrated that lymphopenia, 
hypoproteinemia, and pleural effusion serve as independent risk 
factors for patients at high risk of HA influenza A (27). Additionally, 

FIGURE 2

Construction and comparison of multiple ML algorithms models. (a) The ROC curve analysis in training set. (b) The ROC curve analysis in validation set. 
(c) Calibration curve of ML models in validation sets. (d) PR curves of ML models in validation sets.
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a large cross-sectional study (12) analyzed the features of HA influenza 
over a 10-year period and revealed that immunodeficiency, ICU 
admission, recurrent bacterial infections, and respiratory distress were 
strongly correlated with HA influenza when compared to community-
acquired influenza. Similarly, another study confirmed a significant 
association between HA influenza and increased hospitalization rates 
as well as in-hospital mortality in intensive care units (ICUs) (28). 
Furthermore, hypoalbuminemia, which frequently arises from a 
combination of inflammation and insufficient protein and caloric 
intake in patients with chronic conditions such as chronic renal 
failure, is strongly associated with the development of HA influenza.

Machine learning is a method that leverages data to train a model 
and then uses the model to make predictions, mainly including 
supervised learning, unsupervised learning, and reinforcement 
learning. Compared with classical statistical regression models, ML 
algorithms exhibit numerous advantages, such as being less 
constrained by strict assumptions regarding variable distributions and 
numbers, as well as demonstrating greater robustness to missing data 
(29). XGBoost can efficiently deal with missing data and construct 

accurate predictive models (30). LightGBM demonstrates outstanding 
performance when processing extremely large structured datasets, 
featuring exceptionally high training speed. However, its performance 
is sensitive to the number of features and sample size (31). Random 
Forest (RF) achieves high classification accuracy but demands 
substantial computational resources (32). Another example is the 
TAN Bayesian network, which effectively utilizes all variables and 
their interaction information to depict the conditional dependency 
network between the dependent variable and predictor variables. As 
variable information increases, the conditional probabilities among 
independent variables are dynamically updated via reverse inference, 
enabling real-time model adjustment and enhancing prediction 
efficacy (33). Using four ML algorithms to construct a prediction 
model for HA influenza, a study found that the random forest model 
performed the best in predicting HA influenza, with an AUC of 83.3%, 
and also pointed out that living in a double room was the most 
important predictor of HA influenza (34).

In feature selecting, univariable selection methods are generally 
not recommended because they fail to account for the association 

FIGURE 3

Construction and evaluation of XGBoost model. (a–c) ROC curve, including training set (a), validation set (b), and test set (c); (d) XGBoost classifier 
learning curve; (e) Calibration curve of the model; (f) DCA diagram of the model; (g) Confounding matrix for the training set; (h) Confounding matrix 
for the test set.
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FIGURE 4

SHAP analysis of the XGBoost model. (a) SHAP dendrogram of features. (b) Importance ranking plot of features. (c,d) Interpretability analysis of 2 
independent samples.

FIGURE 5

Online prediction model for HA influenza and individual patient risk presentation.
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between predictors and could lead to loss of valuable information. 
Actually, selecting only features that exhibit apparent linear 
interactions for feature selection prior to machine learning (ML) 
training inherently possesses certain limitations. Some existing feature 
selection methods include filter methods, wrapper methods, 
embedded methods, etc. Nonlinear feature selection methods, such as 
random forest model, can automatically capture nonlinear 
relationships in data. The complex relationship between features and 
target variables is found by constructing decision tree structure 
through recursive partition of features. While for small sample data 
sets, wrapper methods (recursive feature elimination, RFE) or 
embedded methods (Lasso regression) often yield superior outcomes 
by integrating model performance during feature selection. Ideally, an 
prediction model should incorporate multiple ML algorithms and 
be optimized according to specific clinical requirements. The model 
should possess good generalizability, high predictive efficacy, strong 
adaptability and practicality. Additionally, it should be validated by a 
multicenter large-sample prospective clinical cohort study.

Despite the results that some published studies selected 
community-acquired influenza (CAI) patients as controls (25), our 
study selected controls who were hospitalized in the same department 
and during the same time period without acquiring HA influenza, 
thus the comparability between the case group and the control group 
can be ensured. Furthermore, as recommended by the BMJ Predictive 
Model Guidelines (35), valid internal validation is more reliable than 
a meaningless and misleading external validation. To be exact, more 
rigorous internal validation was performed in this study.

However, our study has some limitations. First, the sample size 
of this study was relatively small and the data were obtained from a 
single institution rather than a multicenter study. Therefore, the 
generalizability of these findings is limited. And despite restrictions 
to control selection bias and the high degree of consistency achieved 
in the reproducibility analyses of the training and test sets, some 
unavoidable bias may still occur due to the uncertainty of 
segmentation. In addition, certain indicators, such as influenza 
vaccination status, were not included in the analysis. Longitudinal or 
prospective case–control studies are necessary to further elucidate the 
relationship between HA influenza and risk factors. Although this 
study employs eight ML methods, the emergence of the Tabular 
Prior-data FittedNetwork (TabPFN) (36) compels us to reassess and 
validate predictive performance of traditional ML models.

Conclusion

In summary, this study aimed to construct a prediction model 
based on multiple ML algorithms, with the XGBoost model 
demonstrating superior performance. Additionally, we successfully 
developed a simple, practical and personalized online risk assessment 
tool. Developing a screening model can effectively assist clinicians in 
formulating more precise prevention and treatment strategies, as well 
as identifying and intervening in the occurrence of HA influenza. The 
subsequent step will involve integrating additional data to enhance 
the performance of model. This also necessitates conducting more 
extensive research and involving a broader population to further 
validate the model’s performance.
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