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Objectives: DNA methylation (DNAm) is a sensitive biomarker of aging-

related processes, and novel epigenetic-based “clocks” can estimate accelerated

biological aging. Cadmium (Cd) can alter cellular processes that promote

aging and disrupt global methylation patterns. However, few studies have

investigated the association between blood Cd and accelerated aging. We

aimed to investigate the association between blood Cd and four DNAm-based

epigenetic age accelerations in individuals over 50 in the United States, using

data from the National Health and Nutrition Examination Survey (NHANES).

Methods: DNAm-epigenetic biomarkers and blood Cd data from the NHANES

database (1999–2002) were retrieved for this study. We evaluated four epigenetic

ages: HorvathAge, HannumAge, PhenoAge, and GrimAge. Age acceleration was

calculated by extracting the residuals from the regression of chronological age

on each epigenetic age measure. We used weighted linear regression models

and subgroup analyses to investigate the associations between blood Cd levels

and these age accelerations, adjusting for potential confounding factors.

Results: Higher blood Cd levels (≥0.5 µg/dl) were significantly associated with

increased age acceleration for PhenoAge (β = 1.37, P = 0.017) and GrimAge

(β = 1.31, P = 0.003) in adjusted models. A significant association was also

observed for HannumAge (β = 0.94, P = 0.016), although this association was

not significant for continuous Cd levels (P = 0.111). No significant associations

were found for HorvathAge. Subgroup analyses indicated consistent associations

across demographic and lifestyle subgroups, with no significant interactions.

Conclusions: In this study, after adjusting for confounders, blood Cd levels were

positively associated with PhenoAge acceleration and GrimAge acceleration in

people over 50 in the United States. These results may be useful in proposing

interventions in environmental exposures to slow the aging process and prevent

age-related diseases.
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1 Introduction

The aging population is a worldwide concern, leading to a heavy

burden of chronic diseases and considerable social and economic

expenses (1). However, chronological age is not a perfect indicator

of biological aging (2). Individuals of the same chronological

age can have significantly different risks for age-related diseases

and mortality, which may reflect variations in their biological

aging processes (3). DNA methylation (DNAm)-based epigenetic

clocks have emerged as novel indicators of biological age and are

correlated with mortality risk (4).

Increasing evidence suggests that several manifestations of

aging are epigenetic (5–7). Epigenetic processes can result in lasting

modifications to gene activity and phenotype, without changing the

DNA sequence (8). DNAm, the most extensively studied epigenetic

modification, typically involves the addition of a methyl group

to cytosine-guanine dinucleotides (CpG sites). DNAm profiles

reflect the influence of both external and internal factors (9).

Oligonucleotide arrays covering extensive CpG sites, combined

with mathematical algorithms, are used to assess DNAm age

through epigenetic clocks (10, 11). Using DNAm age can uncover

physiological variations among individuals who share the same

chronological age. When DNAm age surpasses chronological age,

it is referred to as epigenetic age acceleration (EAA) (12).

Furthermore, DNAm patterns are influenced by external

stimuli (13). Cadmium (Cd) is a ubiquitous environmental

pollutant known for its toxic effects on various biological systems

(14–16). The main sources of Cd exposure include tobacco smoke,

air pollution, occupational settings, and diet (leafy and root

vegetables, grains, and organ meats) (17). Exposure to Cd has been

identified as a major contributor to the development of various

age-related diseases, such as osteoarthritis, cardiovascular diseases,

and diabetes (18–21). Cd initiates age-related cellular processes,

including gene-specific and global methylation disturbances (22).

DNAm may be sensitive to Cd-related changes in oxidative

stress (OS) (23, 24) and inflammatory environments (25). Studies

have shown that Cd can competitively replace essential zinc

ions in DNA methyltransferases (DNMTs), thereby inhibiting

DNMT activity. This inhibition may lead to alterations in DNAm

patterns, including global DNA hypomethylation and gene-specific

hypermethylation at promoter regions (26). When specific CpG

sites are affected, the DNAm age estimated from these sites could

potentially change, which might indicate an impact of Cd exposure

on biological aging.

Although numerous epigenetic clocks have been developed,

HannumAge, HorvathAge, PhenoAge, and GrimAge stand out as

widely recognized first- and second-generation epigenetic clocks

(3, 10, 11, 27). HannumAge and HorvathAge were created by

identifying sets of CpGs whose DNAm changed with chronological

age (10, 11). PhenoAge is a distinct measure of biological age and

is composed of age and nine clinical biomarkers (3). GrimAge is

a composite marker that combines seven sets of CpGs to estimate

the concentration of different plasma proteins (27). These clocks

are distinguished by their robustness, extensive validation across

diverse populations, and strong associations with various age-

related diseases, highlighting their reliability in capturing biological

aging processes. Due to the limited studies on the association

between DNAm and Cd exposure in adults in the US, we conducted

FIGURE 1

The study flowchart.

a cross-sectional study using the National Health and Nutrition

Examination Survey (NHANES) database. This study aimed to

assess the association between blood Cd levels and EAA using

DNAm data.

2 Materials and methods

2.1 Study population

The NHANES is a nationwide survey that uses a complex

multistage probability sampling design. Written informed consent

was obtained from all participants, and the study protocol was

approved by the National Center for Health Statistics Research

Ethics Review Board. We selected the 1999–2000 and 2001–2002

cycles because DNAm-based epigenetic biomarkers for American

adults were only available for these periods.

The study included 21,004 individuals from NHANES 1999–

2002. Patients with missing data on epigenetic biomarkers (n =

18,472), blood Cd (n = 2), or covariates (n = 572) were excluded.

Therefore, the final analysis included 1,958 eligible individuals

(Figure 1).

2.2 Measurement of blood Cd levels

Blood Cd levels were measured using atomic absorption

spectrometry with a PerkinElmer SIMAA 6,000 simultaneous

multi-element atomic absorption spectrometer with Zeeman

background correction.

2.3 DNAm—Epigenetic biomarkers

DNAm was measured from purified blood samples of

these participants using the Illumina EPIC BeadChip. A

methylation data matrix was generated, pre-processed, and

normalized. DNAm-derived epigenetic biomarkers that
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predict chronological age, phenotypic age, telomere length,

pace of aging, mortality, and mitotic cell turnover were

identified. See the DNAm Arrays and Epigenetic Biomarkers

data files for further details. Four biomarkers were selected:

HorvathAge, HannumAge, PhenoAge, and GrimAge. Age

acceleration was calculated by extracting residuals from

the chronological age regression for each epigenetic age

measure (28).

2.4 Covariates

The following covariates were included in the study.

Chronological age (years) and body mass index (BMI, kg/m2)

were treated as continuous variables and analyzed in their

original scale without log transformation or normalization.

Sex was classified as male or female; race was self-reported

and classified into predefined categories (e.g., non-Hispanic

White, non-Hispanic Black, Mexican American, and others).

Smoking status was categorized into three groups: never, former,

or current smoker. Alcohol consumption was dichotomized

based on lifetime intake: fewer than 12 drinks or at least 12

drinks. Educational attainment was classified into three levels:

<9 years, 9–12 years, and more than 12 years of education.

Marital status was categorized as married or living with

a partner, widowed/divorced/separated, or never married.

Physical activity was assessed objectively and classified into four

categories: mainly sitting, walking around, light load activities,

or heavy load activities. Comorbidities were defined as self-

reported physician-diagnosed diabetes, hypertension, stroke,

or malignancy.

2.5 Statistical analysis

All models were analyzed in relation to accelerated epigenetic

age, rather than chronological age, to better estimate the effects

of blood Cd levels on biological aging. NHANES-recommended

weights were used in this study. Continuous variables are described

as mean (standard deviation) or median (interquartile range),

whereas categorical variables are represented as proportions (%),

as appropriate. Blood cadmium levels were analyzed both as

continuous variables and as categorical variables (dichotomized

at the median of 0.5 µg/l). Differences between groups were

assessed using the χ² test for categorical variables or by

Student’s t-test or Mann–Whitney U-test for continuous variables.

The initial unadjusted model included blood Cd levels as the

independent variable and the four age accelerations as dependent

variables. The fully adjusted model included chronological age,

sex, race, BMI, drinking and smoking status, highest degree

obtained, marital status, and comorbidities as confounders.

Additional subgroup analyses were performed to explore potential

heterogeneity, and potential interactions were evaluated using

likelihood ratio tests. All analyses were performed using R

Statistical Software (version 4.2.2, http://www.R-project.org, The

R Foundation) and Free Statistics analysis platform (version 2.0,

Beijing, China) (29).

3 Results

This study included 1,958 participants, with a mean

chronological age of 63.72 years. Participants were stratified

into two groups based on blood Cd levels: <0.5 µg/dl (n = 845)

and ≥0.5 µg/dl (n = 1,113). The mean age of the low-Cd group

was 62.62 years, whereas that of the high-Cd group was 64.62 years.

Table 1 summarizes the baseline characteristics of participants

stratified by high and low blood Cd levels. Those with higher

Cd levels were typically older (64.62 vs. 62.62 years), were

more likely to be female (42.34% vs. 50.04% male), and had

lower educational levels (28.89% with <9 years vs. 20.48%).

They also had lower poverty income ratios (median 2.67 vs.

3.77), lower BMI (27.97 vs. 29.37 kg/m²), and were more

likely to be current smokers (26.30% vs. 2.26%). Additionally,

higher Cd levels were associated with a higher prevalence

of stroke (5.43% vs. 2.84%) and malignancy (20.36% vs.

12.90%).

Table 2 presents the epigenetic age characteristics by blood

Cd levels in a weighted sample of 1,958 participants. The table

demonstrates that higher blood Cd levels (≥0.5 µg/dl) are

associated with significantly higher epigenetic ages across all

measures (HorvathAge, HannumAge, PhenoAge, and GrimAge)

compared to lower Cd levels (<0.5 µg/dl), with P-values <0.001.

For age acceleration metrics, significant differences were observed

in PhenoAge (P < 0.001), GrimAge (P < 0.001), and HannumAge

(P < 0.001), while HorvathAge showed a marginally significant

difference (P = 0.035). See Supplementary Table 1 for unweighted

analyses and Supplementary Figure 1 for the distributions of EAA

metrics.

We conducted further linear regression analyses to explore the

relationship between blood Cd levels and EAAs (Table 3). Higher

blood Cd levels (≥0.5 µg/dl) were significantly associated with

increased age acceleration in PhenoAge and GrimAge, both in

non-adjusted and adjusted models. Specifically, in the adjusted

models, participants with blood Cd levels ≥0.5 µg/dl exhibited

greater PhenoAge acceleration (β = 1.37, 95% CI: 0.34–2.40, P =

0.017) and GrimAge acceleration (β = 1.31, 95% CI: 0.65–1.96,

P = 0.003) compared to those with lower Cd levels (<0.5 µg/dl).

Similarly, continuous blood Cd levels were positively associated

with PhenoAge acceleration (β = 1.36, 95% CI: 0.16–2.56, P =

0.032) and GrimAge acceleration (β = 2.14, 95% CI: 1.19–3.09, P=

0.002) after adjusting for covariates. For HannumAge, higher blood

Cd levels (≥0.5 µg/dl) were significantly associated with increased

age acceleration in the adjusted model (β = 0.94, 95% CI: 0.25–

1.64, P= 0.016), although the association with continuous Cd levels

was not statistically significant (β = 0.78, 95% CI: −0.24–1.80, P

= 0.111). In contrast, no significant associations were observed

between blood Cd levels and HorvathAge acceleration in either

continuous or categorical analyses (all P > 0.05).

Subgroup analyses were conducted to examine whether the

association between blood cadmium levels (binary: <0.5 µg/dl

vs. ≥0.5 µg/dl) and EAAs (Figure 2). The results indicated that

the association was consistent across subgroups defined by age,

sex, BMI, and smoking status, with no significant interactions

observed (P for interaction >0.05 for all subgroups). For drinking

status, the association between blood cadmium levels and GrimAge
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TABLE 1 Participants characteristics by blood cadmium category, weighteda.

Variables Total n = 1,958 Blood cadmium, µg/dl P-value

<0.5 n = 845 ≥0.5 n = 1,113

Age, year 63.72 (10.17) 62.62 (9.68) 64.62 (10.47) 0.001

Sex, male 1,005 (45.80) 456 (50.04) 549 (42.34) 0.003

Race

Mexican American 546 (3.38) 223 (3.27) 323(3.48) 0.410

Other Hispanic 118 (5.42) 53 (5.85) 65 (5.07)

Non-Hispanic white 834 (80.23) 364 (80.26) 470 (80.21)

Non-Hispanic black 395 (7.77) 182 (8.12) 213 (7.48)

Others 65 (3.20) 23 (2.50) 42 (3.77)

Education level, year

<9 848 (25.12) 331 (20.48) 517 (28.89) 0.004

9–12 416 (27.34) 176 (25.88) 240 (28.52)

>12 694 (47.55) 338 (53.64) 356 (42.59)

Marital status

Married or living with a partner 1,275 (68.95) 598 (75.69) 677 (63.46) <0.001

Widowed/divorced/separated 610 (27.88) 213 (21.54) 397 (33.05)

Never married 73 (3.17) 34 (2.77) 39 (3.49)

Poverty income ratio 3.18 (1.63, 5.00) 3.77 (1.89, 5.00) 2.67 (1.38, 5.00) <0.001

BMI, kg/m2 28.60 (6.04) 29.37 (6.32) 27.97 (5.73) 0.007

Physical activities

Mainly sit 531 (27.18) 193 (22.42) 338 (31.05) 0.026

Walk around 1,128 (55.06) 522 (59.68) 606 (51.30)

Light load 233 (14.60) 101 (15.08) 132 (14.22)

Heavy load 66 (3.16) 29 (2.83) 37 (3.43)

Smoking status

Never 903 (44.02) 521 (58.83) 382 (31.95) <0.001

Former 776 (40.47) 311 (38.90) 465 (41.75)

Current 279 (15.51) 13 (2.26) 266 (26.30)

Drinking status

No 336 (15.28) 164 (16.55) 172 (14.24) 0.450

Yes 1,622 (84.72) 681 (83.45) 941 (85.76)

Hypertension 1,206 (56.98) 520 (57.59) 686 (56.48) 0.692

Diabetes 457 (16.47) 221 (17.67) 236 (15.50) 0.362

Stroke 98 (4.26) 40 (2.84) 58 (5.43) 0.008

Malignancy 274 (17.01) 96 (12.90) 178 (20.36) 0.001

BMI, body mass index.
aData are presented as unweighted number (weight percentage) for categorical variables, weighted mean (standard deviation) or weighted median (Q1, Q3) for continuous variables.

acceleration showed a nominal P-value of 0.018. However, after

applying multiple test corrections, this interaction was no longer

statistically significant. These findings suggest that the relationship

between blood Cd levels and EAAs is generally stable across various

demographic and lifestyle subgroups, with no robust evidence of

effect modification by the factors examined.

4 Discussion

This cross-sectional study examined the association between

blood Cd levels and four DNAm-based EAAs in adults aged

>50 years in the United States. Among the 1,958 participants,

higher blood Cd levels were associated with PhenoAge and
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TABLE 2 Epigenetic age characteristics by blood cadmium category, weighteda.

Variables Total n = 1,958 Blood cadmium, µg/dl P-value

<0.5 n = 845 ≥0.5 n = 1,113

Epigenetic age

HorvathAge 65.26 (9.20) 64.20 (8.76) 66.12 (9.46) <0.001

HannumAge 64.85 (9.88) 63.34 (9.41) 66.09 (10.08) <0.001

PhenoAge 53.38 (10.93) 51.32 (10.56) 55.06 (10.95) <0.001

GrimAge 64.18 (8.93) 61.51 (8.30) 66.35 (8.83) <0.001

Age acceleration

HorvathAge 0.12 (5.05) −0.10 (4.93) 0.31 (5.15) 0.035

HannumAge −0.28 (5.08) −0.90 (4.93) 0.23 (5.15) <0.001

PhenoAge −0.30 (6.49) −1.43 (6.21) 0.63 (6.56) <0.001

GrimAge −0.26 (4.86) −2.10 (3.51) 1.25 (5.28) <0.001

aData are presented as weighted mean (standard deviation).

TABLE 3 Linear regression models between blood cadmium with epigenetic age acceleration, weighted.

Variable Non-adjusted Modela Adjusted Modelb

β (95% CI) P-value β (95% CI) P-value

HorvathAge

Blood Cd (continuous) 0.25 (−0.27, 0.77) 0.336 0.14 (−0.67, 0.94) 0.694

Blood Cd ≥0.5 µg/dl 0.41 (0.03, 0.79) 0.035 0.34 (−0.23, 0.92) 0.192

HannumAge

Blood Cd (continuous) 0.90 (0.08, 1.72) 0.032 0.78 (−0.24, 1.80) 0.111

Blood Cd ≥0.5 µg/dl 1.13 (0.56, 1.69) <0.001 0.94 (0.25, 1.64) 0.016

PhenoAge

Blood Cd (continuous) 2.02 (0.79, 3.24) 0.002 1.36 (0.16, 2.56) 0.032

Blood Cd ≥0.5 µg/dl 2.06 (1.16, 2.96) <0.001 1.37 (0.34, 2.40) 0.017

GrimAge

Blood Cd (continuous) 4.68 (3.28, 6.08) <0.001 2.14 (1.19, 3.09) 0.002

Blood Cd ≥0.5 µg/dl 3.35 (2.56, 4.14) <0.001 1.31 (0.65, 1.96) 0.003

Cd, cadmium; BMI, body mass index.
aNo covariates adjusted.
bAdjusted for sex, age, BMI, race, smoking status, drinking status, marital status, education level, physical activity, poverty income ratio, diabetes, stroke, malignancy, and hypertension.

GrimAge acceleration, after adjusting for demographic factors

and comorbidities. A subgroup analysis confirmed the stability of

these associations.

Aging is associated with a global decrease in DNAm and

a localized increase in methylation at CpG islands and specific

promoters (30–32). Increasing evidence suggests numerous links

between age and DNAm, leading to the development of molecular

epigenetic clocks that represent the biological age (33, 34). These

clocks have been developed using different methodologies and have

varying levels of evidence supporting their validity as biomarkers of

age-related health decline (28). PhenoAge (3) and GrimAge (27),

which are second-generation clocks, outperformed HorvathAge

and HannumAge in predicting health decline and mortality (12,

27, 35, 36). GrimAge stands out as the most powerful epigenetic

indicator of mortality because it is uniquely crafted to forecast

adult mortality (27). The inconsistent associations between blood

Cd levels and different epigenetic clocks may be attributed to

the differences in the design and sensitivity of these clocks. First-

generation clocks may be less effective in detecting age-related

decline because they do not incorporate clinical biomarkers in their

derivation. As a result, they might be less sensitive to capturing

EAA caused by external exposures, particularly HorvathAge,

which is most closely related to chronological age. This could

explain the lack of significant associations with HorvathAge in

our study. Additionally, DNAmHannum is based on 71 CpG

sites, while DNAmHorvath includes 353 CpGs, DNAmPhenoAge

includes 513 CpGs, and DNAmGrimAge includes 1,030 CpGs.

The number of CpG sites included in these clocks may influence

their sensitivity to reflect underlying aging processes and biological

responses to Cd exposure. These factors may explain why blood
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FIGURE 2

Subgroup analysis of the association between blood cadmium levels (binary) and epigenetic age acceleration based on DNA methylation (A)

HorvathAge; (B) HannumAge; (C) PhenoAge; (D) GrimAge. Adjusted for sex, age, body mass index, race, smoking status, drinking status, marital

status, education level, physical activity, poverty income ratio, diabetes, stroke, malignancy, and hypertension.

Cd levels were not associated with HorvathAge acceleration

but were positively associated with HannumAge, PhenoAge, and

GrimAge acceleration.

Few studies have examined the association between epigenetic

acceleration and Cd exposure. Before the release of the NHANES

DNAm data, Zhang et al. (37) calculated PhenoAge using the

NHANES database and found a positive association between

urinary Cd levels and PhenoAge in fully adjusted models

[2.13 years per 1 ng/g urinary Cd, (1.67, 2.58)]. However, the

relationship between Cd exposure and PhenoAge acceleration
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has not been investigated. Notably, a study investigating the

relationship between Cd levels and HorvathAge and HannumAge

in non-smoking women in northern Thailand found that the

high urinary Cd group had lower HorvathAge and HannumAge

accelerations than the low urinary Cd group, contrary to the

expected age acceleration effect (22). In our results, blood Cd levels

were not significantly associated with HorvathAge acceleration

or HannumAge acceleration, and smoking status did not affect

the association between blood Cd levels and PhenoAge or

GrimAge acceleration.

However, mechanisms underlying the association between Cd

exposure and EAA remain unclear. Cd toxicity is believed to occur

throughmechanisms such as OS, DNA damage, and cell death (38),

which are associated with telomere shortening, a key mechanism

of cellular and organismal aging (39–42). Experimental studies

have shown that Cd promotes OS by catalyzing the production of

reactive oxygen species and interfering with antioxidant responses

(43, 44). Additionally, Cd can trigger the release of inflammatory

cytokines (45). Inflammation, in turn, may hasten the shortening

of leukocyte telomeres by enhancing cell turnover, promoting

replicative senescence, and causing OS (46). When telomeres reach

a critically short length, cellular senescence is initiated, leading to a

loss of the cell’s ability to divide (47).

The strengths of this study include the use of four epigenetic

age measures, which provide a comprehensive assessment of EAA.

This approach enhanced the robustness and credibility of our

results when analyzing the association between blood Cd levels

and EAA. Additionally, we used the NHANES database, which

employs a sophisticated multistage probability sampling design,

to ensure the selection of a representative sample from a non-

institutionalized civilian population. Consequently, extrapolating

our weighted results to the entire non-institutionalized civilian

population of the United States is considered highly reliable.

This study has several limitations. First, the cross-sectional

nature restricted our ability to establish a causal relationship

between blood Cd levels and the acceleration of epigenetic

age. Longitudinal studies are required to establish the temporal

relationships and causality. Second, the study population was

limited to a specific demographic group, which may have affected

the generalizability. Third, although we adjusted for several

potential confounders, residual confounding factors could not be

entirely ruled out. Finally, the measurement of blood Cd levels at a

single time point may not accurately reflect the long-term exposure.

Repeated measurements over an extended period would provide a

more comprehensive assessment of Cd exposure.

5 Conclusion

This study revealed that higher blood Cd levels were positively

associated withHannumAge, PhenoAge, andGrimAge acceleration

in U.S. adults aged > 50 in the United States, even after adjusting

for confounders. These findings indicate that Cd exposure could

potentially impact the biological aging process in a measurable

way. Further investigation is warranted in the future to examine

longitudinal Cd exposure and biological aging outcomes.
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