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Background: It is uncertain if exposure to BPA and its substitutes has an impact 
on renal function, including N-acetyl-β-D-glucosaminidase (NAG), which is an 
early marker for kidney injury. We aimed to (1) Estimate the daily intakes (DIs) of 
BPA and its substitutes using individual urinary levels and conduct the cumulative 
risk assessment of bisphenols. (2) Assessed the association between exposure to 
BPA and its substitutes with various renal function indices using a dose-based 
and cumulative risk assessment approach.

Methods: We recruited 366 participants, and three bisphenols (BPA, 
bisphenol F, and bisphenol S) were analyzed through ultraperformance liquid 
chromatography–tandem mass spectrometry. DI levels were calculated for 
each bisphenol. Hazard index (HI) values were calculated for determining 
cumulative risk. Using the renal function index, we  measured the serum and 
urinary level (e.g., microalbumin, NAG). The NAG/Creatinine ratio (> 4 IU/g 
creatinine) and other renal functions indexes based on clinical cut-off points to 
defined abnormality.

Results: After adjustment for covariates, increased NAG/Creatinine ratios were 
associated with higher DIs of BPA, showing a dose-response trend (Adjusted 
Odds Ratio [AOR] tertile2: 3.58, 95% CI = 1.52–8.44; AOR tertile3: 7.34, 95% CI = 2.26–
23.81; Ptrend < 0.001). Notably, the HI of bisphenols was positively associated with 
NAG/Creatinine in adults (AOR tertile2= 2.18, 95% CI = 1.10–4.34; AOR tertile3= 4.27, 
95% CI = 2.14–8.51) after adjusted for covariates.

Conclusion: We found a sensitive risk factor for abnormal NAG/creatinine levels 
after exposure to BPA and its substitute. Further mechanistic studies are needed 
to clarify these associations.
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1 Introduction

Chronic kidney disease (CKD) is a significant global health issue 
contributing to increased morbidity (1). Bisphenol A (BPA), an 
endocrine-disrupting chemical widely used in polycarbonate plastics 
and epoxy resins (2), applied in products such as thermal paper, toys, 
tableware, medical devices, polycarbonate bottles, food packaging, 
and cosmetic and personal care products (PCPs) (54). Notably, BPA 
concentrations in Taiwanese adults were nearly six times higher than 
in other countries, with levels of 7.96 μg/L in Taiwan, compared to 
1.24 μg/L in the USA and 1.49 μg/L in Korea (3). BPA plays a crucial 
role in CKD progression as it is eliminated through the kidneys (4, 5).

Exposure to BPA triggers inflammation, leading to kidney injury, 
glomerular damage, tubular cell harm, and fibrosis. These 
nephrotoxicants enter cells via endocytosis, causing lipid peroxidation, 
mitochondrial dysfunction, DNA damage, and increased reactive 
oxygen species. This results in mutations, impaired cellular 
proliferation, and protein alterations, ultimately leading to renal 
damage (55). BPA adversely affects albumin-to-creatinine ratio (ACR) 
and estimated glomerular filtration rate (eGFR) (6), as confirmed by 
meta-analyses (6, 7). Despite restrictions on BPA use in many countries, 
substitutes like bisphenol F (BPF) and bisphenol S (BPS) have emerged, 
raising concerns due to their structural similarity and widespread 
application (8). Studies indicate BPS and BPF may pose toxicity risks 
comparable to or greater than BPA (9, 10), yet research on their impact 
on renal function remains limited (11, 12). Understanding the 
relationship between these substitutes and renal function is crucial.

Most human population studies have focused on the ACR (13) or 
on estimating functional parameters (e.g., eGFR) as outcomes of 
kidney diseases (7). However, the results for eGFR vary depending on 
the equations applied [e.g., Chronic Kidney Disease Epidemiology 
Collaboration [CKD-EPI] and Modification of Diet in Renal Disease 
[MDRD-4] equations (11)]. Although urinary N-acetyl-β-
glucosaminidase (NAG) is crucial for estimating tubular injury (14, 
15) and it has been identified as a sensitive determinant of CKD (16) 
and type 2 diabetes mellitus [DM (17)], whether exposure to BPA and 
its substitutes is associated urinary NAG levels remains unclear.

Given the limited literature on how exposure to BPA and its 
substitutes affects various renal indices in the general population, the 
present study aim to estimate the daily intakes of BPA and its substitutes 
using individual urinary levels and conduct the cumulative risk 
assessment of bisphenols. Using a cumulative risk assessment approach 

to assess the association between exposure to BPA and its substitutes 
with various renal function indices (e.g., ACR, eGFR, and NAG).

2 Methods

2.1 Study population

Participants were recruited from the Taiwan Environmental 
Survey for Toxicants 2013 (18–22) in the present cross-sectional study. 
The final study population comprised 271 adults (≥18 years) and 95 
minors (<18 years).

2.2 Analytical method for detecting 
bisphenol

The analytical method used in the present study is described in 
detail in our previous study (19, 23). After >8 h of fasting, spot urine 
samples were also collected from the participants in the early morning 
during their visit. These samples were temporarily stored in 
polypropylene containers and subsequently transferred to amber glass 
bottles (prewashed with acetonitrile) and stored at −80°C 
until analysis.

2.3 DI estimation and cumulative risk 
assessment of BPA and its substitutes

The DI and cumulative risk assessment for BPA and its substitutes 
utilized methodologies detailed in our previous publications (3) 
(Specific calculation formulas are provided in the 
Supplementary Table S1).

2.4 Measurement of renal function and 
other parameters in serum and urine

We assessed various parameters related to renal function, 
including those obtained from urine and serum samples. The serum 
levels of blood creatinine, blood uric acid, and blood urea nitrogen 
(BUN) were determined. Additionally, concentrations of creatinine, 
microalbumin, protein, NAG, and uric acid in urine samples were 
measured. Upon collection in the morning, each participant’s blood 
and urine samples underwent centrifugation for 20 min at 4°C and 
were then stored at −80°C until analysis. All analyses were conducted 
in a blinded and randomized manner by a technician from a 
laboratory accredited by the Taiwan Accreditation Foundation (No. 
1673) (18).

The ACR was determined by dividing the microalbumin level by 
the urinary creatinine concentration. The NAG-to-creatinine ratio 
(NAG/creatinine) was calculated by dividing the urine NAG level by 
the urinary creatinine concentration. eGFR was calculated using 

Abbreviations: BPA, Bisphenol A; BPF, Bisphenol F; BPS, Bisphenol S; CKD, Chronic 

kidney disease; ACR, Albumin-to-creatinine ratio; eGFR, Estimated glomerular 

filtration rate; NAG, N-acetyl-β-d-glucosaminidase; NAG/creatinine, N-acetyl-β-

d-glucosaminidase to creatinine ratio; BUN, Blood urea nitrogen; CCr, Creatinine 

clearance rate; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; 

MDRD-4, Modification of Diet in Renal Disease; T2DM, Type 2 diabetes mellitus; 

DIs, Daily intakes; HQ, Hazard quotients; HI, Hazard index; EFSA, European Food 

Safety Authority; TDIs, Tolerable daily intakes; DEHP, Diethyl hexyl phthalate; BfR, 

The German Federal Institute for Risk Assessment.
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CKD-MDRD equation (24, 25) and the CKD-EPI equation (25, 26). 
Estimated creatinine clearance rate (CCr) was calculated using the 
Cockcroft–Gault formula (Supplementary Information: The formula 
of related renal functions, Supplementary Table S1).

Based on the Centers for Disease Control and Prevention (27), 
participants with fasting plasma glucose levels above 126 mg/dL were 
considered to have type 2 DM. According to the CKD Guideline (28) 
and the recommended clinical cut-off points for microalbumin 
(1.9 mg/dL), urine protein (14 mg/dL), ACR (30 mg/g creatinine), 
BUN (20 mg/dL), NAG/creatinine (4 IU/g creatinine) (29), and eGFR 
(90 mL/min/1.73 m2). Participants were also stratified into normal or 
abnormal groups indicative of early renal impairment (30).

2.5 Statistical analysis

BPA levels and renal function indicators were compared across 
different age groups using Mann–Whitney U or Kruskal-Wallis tests. 
The natural logarithms for urinary bisphenol levels and renal function 
indices were used to ensure that the normality assumption was met. 
The detectable rate was determined by dividing the number of urine 
samples in which the bisphenol level exceeded the detection limit by 
the total number of urine samples analyzed. The summary metric for 
BPs (ΣBPs) was calculated by summing the molar concentrations of 
the measured BPs (31). All bisphenols measurements, including the 
molar sum, were divided by urinary creatinine to adjust for 
urine dilution.

Urinary bisphenol levels, including DI, were categorized into 
tertiles (0–2), and p-trend tests were conducted to assess dose–
response relationships with renal function indices. Covariates were 
selected on the basis of literature findings, their data availability, and 
their statistical significance in our models. After adjustment, we used 
multiple linear regressions and logistic regression models to investigate 
the associations between bisphenol levels and renal function indices 
in various models. All statistical analyses were performed using SAS 
(version 9.4; SAS Institute, Cary, NC, USA). A p value of <0.05 was 
regarded as significant.

Additionally, through the use of the mgcv R-package, 
log-transformed parameters were incorporated into generalized 
additive model (GAM)-penalized regression splines to determine the 
nonlinear associations with the risk pertaining to renal function 
indices. The optimal number of knots and the smoothing parameter 
were selected efficiently by conducting generalized cross-
validation (32).

3 Results

3.1 Population characteristics

Table  1 summarizes the general and sociodemographic 
characteristics of the participants. The distribution of sexes was 
relatively even, with 128 men (47.2%) and 143 women (52.8%) in the 
adult group, and 55 boys (57.9%) and 40 girls (42.1%) in the minor 
group. Analysis revealed that males had a significantly higher 
frequency of abnormalities in urine protein levels (>14 mg/dL) and 
eGFR (<90 mL/min/1.73 m2) compared to females (urine protein: 
11.7% vs. 2.1%, p = 0.002; eGFR: 50.0% vs. 37.1%, p = 0.035). 

Conversely, abnormalities in NAG/creatinine were more prevalent in 
females than males (44.4% vs. 35.4%). In contrast, abnormalities in 
renal function indices among minors were extremely rare (e.g., 
abnormal eGFR: 0%), and no significant sex differences were 
observed. Therefore, the investigation into the association between 
urinary bisphenol levels and renal function indices was limited to 
adults (Supplementary Table S2).

3.2 Distribution of urinary bisphenol levels 
and renal function index

The detection rate for BPA and its substitutes was 100% in all 
urine samples. Notably, the median levels for BPA and its substitutes 
were significantly higher in the adults than in the minors (BPA, 9.45 
vs. 4.08 μg/g creatinine; BPF, 9.63 vs. 6.63 μg/g creatinine; BPS, 2.43 
vs. 1.67 μg/g creatinine; ΣBPs, 0.10 vs. 0.06 nmol/g creatinine; all 
p < 0.001). We also performed comprehensive estimations of DI levels 
for BPA, BPF, and BPS. In the adults, the median DI level was 2.29 ng/
kg/day for BPA, 2.35 ng/kg/day for BPF, and 0.58 ng/kg/day for 
BPS. These levels were significantly higher than those in the minors 
(p < 0.001), with median DI levels of 0.60 ng/kg/day for BPA, 0.77 ng/
kg/day for BPF, and 0.24 ng/mL for BPS. Furthermore, the median HI 
values for BPA and its substitutes were significantly higher in the 
adults than in the minors (1.29 × 10−3 vs. 4.1× 10−4, p < 0.001; Table 2).

Relative to the minors, the adults exhibited significantly higher 
median levels of blood BUN (13.10 vs. 10.30 mg/dL), blood creatinine 
(0.79 vs. 0.62 mg/dL), urine NAG (2.63 vs. 1.58 IU/L), ACR (4.55 vs. 
3.21 mg/g), and NAG/creatinine (3.35 vs. 1.59 IU/g). By contrast, the 
median levels of urine creatinine (81 vs. 99 mg/dL), urine protein (3.8 
vs. 5.5 mg/dL), uric acid (32.8 vs. 42.2 mg/dL), eGFR (94.50 vs. 
166.48 mL/min/1.73 m2), and CCr (104.34 vs. 132.21 mL/min) were 
significantly lower in the adults than in the minors (Table 2).

3.3 Association between bisphenol levels 
and renal function index

The DI levels for BPA and its substitutes were significantly and 
positively associated with the ACR and NAG/creatinine levels (ACR, 
[BPA, r = 0.25; BPF, r = 0.26; BPS, r = 0.26]; NAG/creatinine, [BPA, 
r = 0.42; BPF, r = 0.38; BPS, r = 0.35]; all p < 0.05). Additionally, the 
DI levels for BPA and its substitutes were significantly and negatively 
associated with urine protein levels and eGFR (urine protein, [BPA, 
r = −0.39; BPF, r = −0.42; BPS, r = −0.42]; eGFR, [BPA, r = −0.33; 
BPF, r = −0.20; BPS, r = −0.22]; all p < 0.05) (Supplementary Figure S1).

Supplementary Tables S3, S4 reveal that higher HI values were 
linked to lower urine protein (β = −0.66, p < 0.001) and NAG 
(β = −0.25, p < 0.001) levels, but higher ACR (β = 0.39, p < 0.001) and 
NAG/creatinine (β = 0.32, p < 0.001) levels. Overall, while exposure 
to BPA and its substitutes appears to mildly affect renal function, no 
association with eGFR was observed.

Higher bisphenol DI levels were associated with lower NAG levels 
(p-trend <0.001), but higher NAG/creatinine ratios (p-trend <0.001) 
among adults. Specifically, adults in the highest DI tertile exhibited 
notably elevated NAG/creatinine compared to those in the lowest 
tertile (Supplementary Tables S5, S6, Figure 1). These findings indicate 
that higher bisphenol exposure levels were linked to increased 
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abnormalities in renal function indices, particularly NAG/creatinine, 
in adults.

After adjustments for type 2 DM, BMI age and sex, we discovered 
that the adjusted odds ratio (AOR) for the adults in the highest tertile 
(T3) of BPA DI had a 7.34 times higher risk (AOR = 7.34, 95% 
confidence interval [CI] = 2.26–23.81) of having abnormal NAG/
creatinine compared with those in the lowest tertile. Furthermore, 
those in the second tertile (T2) had a 3.58 times higher risk 
(AOR = 3.58, 95% CI = 1.52–8.44; Table  3, Figure  2) of having 
abnormal NAG/creatinine compared with those in the lowest tertile. 

No similar trend was identified for the other renal function indices. 
This finding indicates that the risk of having abnormal NAG/
creatinine increased by 4 to 7 times with BPA DI, with a dose–
response relationship. Although, the third tertile of urinary BPS and 
BPS DI levels associated with abnormality urine proteins (BPS: 
AOR = 12.23, 95% CI = 1.61–93.16; BPS DI: AOR = 7.24, 95% 
CI = 1.00–52.24), however, the 95% CI was rather wide and existed 
uncertainty relationships, because there was so scanty data on the 
abnormality protein (n = 18). We also discovered that urinary BPS 
level in the higher tertile (tertile 2 and 3) of BPS DI had a 5.53 to 5.98 

TABLE 1 Characteristics of the study population (N = 366).

Characteristics Item Children/Adolescents (<18 years, 
N = 95)

Adults (≥18 years, n = 271)

n % n %

Gender Girl/Female 40 42.1 143 52.8

Boy/Male 55 57.9 128 47.2

Age (years) 7–12/18–40 49 51.6 64 23.6

12–18/40–65 46 48.4 127 46.9

65 and older - - 80 29.5

Region Northern Taiwan 31 32.6 84 31.0

Central Taiwan 15 15.8 37 13.7

Southern Taiwan 22 23.2 77 28.4

Eastern Taiwan 12 12.6 46 17.0

Remote island 15 15.8 27 10.0

Marriage status Single 94 99.0 46 17.0

Married 1 1.0 197 72.7

Divorce/widowed 0 0 28 10.3

Education ≦Elementary school 49 51.6 74 27.3

Junior high school 29 30.5 39 14.4

Senior high school 17 17.9 63 23.2

≧College/graduates 0 0 95 35.1

Annual family income (USD)a Below 15,625 37 42.1 151 58.1

More than 15,625 51 57.9 109 41.9

Cigarette smokingb Yes/No 2/93 2.1/97.9 65/205 24.1/75.9

Passive smokerc Yes/No 49/45 52.1/47.9 135/135 50.0/50.0

Incense sticksd Yes/No 29/66 30.5/69.5 147/123 54.4/45.6

PCPs usagee Yes/No 83/11 88.3/11.7 197/69 74.1/25.9

Alcohol consumptionf Yes/No 1/93 1.1/98.9 35/232 13.1/86.9

Tea drinkingg Yes/No 46/49 48.4/51.6 156/114 57.8/42.2

Coffee drinkingh Yes/No 6/89 6.3/93.7 114/157 42.1/57.9

Betel nut chewingi Yes/No 1/94 1.1/98.9 18/253 6.6/93.4

Pesticide use at homej Yes/No 26/69 27.4/72.6 65/206 24.0/76.0

aThe currency exchange rate of converting USD to new Taiwan dollar is 1:32.
bSubjects who self-reported consuming at least one cigarette per day.
cSubject who self-reported as lifelong nonsmokers (never-smokers) but involuntary inhalation of smoke from cigarettes or other tobacco.
dSubject who self-reported as having burnt incense at home ≥ weekly basis over the past 5 years.
eSubject who self-reported using at least one kind of PCPs, including body wash, lotion, perfume, and nail polishes.
fSubject consuming at least one bottle of alcohol drink per week.
gSubjects consuming at least one cup of tea or coffee per week.
hSubject chewing at least one betel nut per week.
iSubject chewing at least one betel nut per week.
jSubject who self-reported using household pesticides to control pests.
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times higher risk of abnormal ACR compared with those in the lowest 
tertile (p < 0.05).

In the highest tertile of BPS DI (third tertile), the risk of 
having an abnormal eGFR CKD-EPI was 4.06 times higher 
(AOR = 4.06, 95% CI = 0.97–17.07, p < 0.1) 
(Supplementary Table S7); this finding was inconsistent to that 
obtained using the eGFRCKD-MDRD, which is based on the 
CKD-MDRD equation, no significant differences were observed 
(AOR = 2.50, 95% CI = 0.82–7.56; Table 3). Furthermore, when 
early CKD was defined on the basis of abnormalities in eGFR 
(depend on CKD-MDRD equation), we found that urinary BPA 
levels increased the risk of early CKD by 2.50 times (AOR = 2.50, 
95% CI =1.19–5.24, 2nd tertile) and 2.55 times (AOR = 2.55, 95% 

CI =1.09–5.95, 3rd tertile), but no significant differences were 
observed depend on CKD-EPI equation (Supplementary Table S7).

We found that excluding patients with DM or adjusting for this 
condition did not alter the strength of association between the risks of 
abnormal NAG/creatinine, whereas highest cumulative HI was 
significantly positively associated with abnormal NAG/creatinine 
(models 1–3) (Supplementary Figure S2). After adjustment for 
covariates, the AOR for adults in the highest tertile of HI value, 
compared to the lowest tertile group, showed a 4.27 times higher risk 
(95% CI = 2.14–8.51) of abnormal NAG/creatinine, followed by the 
second tertile (T2) with a 2.18 times higher risk (95% CI = 1.10–4.34), 
suggesting that the cumulative risk of bisphenol exposure increases 
the risk of renal tubular damage (Table 3, Figure 2). Our study also 

TABLE 2 Median and geometric mean levels of bisphenols and renal function index among Taiwanese adults and children/adolescents.

Variables Children/Adolescents (<18 years, N = 95) Adults (≥18 years, N = 271) p b

<LOD a GM Median <LOD a GM Median

(Interquartile 
range)

(Interquartile 
range)

Bisphenols (μg/g creatinine)  

BPA
0 4.17 4.08 (2.68, 11.27) 0 9.79 9.45 (5.73, 18.26) <0.001

BPF 0 6.85 6.63 (3.60, 12.04) 0 9.87 9.63 (5.58, 17.84) <0.001

BPS 0 1.73 1.67 (1.00, 3.18) 0 2.36 2.43 (1.34, 4.35) <0.001

ΣBPs (nmol/g creatinine) 0.06 0.06 (0.03, 0.11) 0.11 0.10 (0.06, 0.20) <0.001

Daily intake of bisphenols (ng/kg/day)

BPA 0.57 0.60 (0.33, 0.99) 2.35 2.29 (1.26, 4.24) <0.001

BPF 0.94 0.77 (0.48, 1.82) 2.37 2.35 (1.30, 4.36) <0.001

BPS 0.24 0.24 (0.14, 0.34) 0.57 0.58 (0.34, 1.05) <0.001

HI 

Renal function factor
4.68 × 10−4

4.1 × 10−4 (2.55 × 10−4, 

8.77 × 10−3)
1.35 × 10−3

1.29 × 10−3 (8.13 × 10−4, 

2.45 × 10−3)
<0.001

Blood c

BUN (mg/dL) 10.31 10.30 (8.50, 12.50) 13.17 13.10 (10.10, 16.30) <0.001

Creatinine (mg/dL) 0.62 0.62 (0.51, 0.74) 0.80 0.79 (0.66, 0.96) <0.001

Uric acid (mg/dL) 5.65 5.65 (5.00, 6.80) 5.85 6.00 (4.80, 7.00) 0.311

eGFR (mL/min/1.73m2) 172.53 166.48 (128.60, 213.03) 93.31 94.50 (82.22, 110.06) <0.001

CCr (mL/min) 136.13 132.21 (108.42, 166.85) 101.61 104.34 (79.66, 132.89) <0.001

Urine d

Creatinine (mg/dL) 102.52 99.00 (70.10, 148.21) 78.92 81.00 (48.00, 122.00) 0.001

Microalbumin (mg/dL) 0.37 0.25 (0.25, 0.50) 0.43 0.25 (0.25, 0.64) 0.343

pH 6.16 6.50 (6.00, 6.50) 6.03 6.50 (5.00, 6.50) 0.130

Protein (mg/dL) 5.66 5.50 (3.40, 8.80) 3.59 3.80 (2.30, 6.50) <0.001

Uric acid (mg/dL) 40.17 42.20 (24.20, 68.10) 32.03 32.80 (22.20, 50.60) 0.003

NAG (IU/L) e 1.47 1.58 (0.79, 3.27) 2.63 2.63 (1.64, 4.49) <0.001

ACR (mg/g) 3.60 3.21 (2.07, 5.10) 5.40 4.55 (2.78, 7.44) 0.001

NAG/creatinine (IU/g) e 1.42 1.59 (1.01, 2.45) 3.32 3.35 (2.00, 5.88) <0.001

GM, geometric mean; LOD: limit of detection; p, p-value; ΣBPs: the bisphenol weighted molar sum; BUN, blood urea nitrogen; eGFR, Estimated glomerular filtration rate based on CKD- 
MDRD equation; CCr, creatinine clearance; NAG, N-acetyl-beta-D-glucosaminidase; ACR, microalbumin-to-creatinine ratio; NAG/creatinine, NAG-to-creatinine ratio.
aThe limits of detection (LOD) for BPA, BPF and BPS were 0.08, 0.07 and 0.10, respectively.
bMann–Whitney U test calculated for the difference in means between adults and minors.
cSample size of children and adolescent population = 74, sample size of adult population = 266.
dSample size of children and adolescent population = 95, Sample size of adult population = 271.
eSample size of children and adolescent population = 92, Sample size of adult population = 269.
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examined the relationship between the cumulative risk of HI 
calculated based on different tolerable daily intakes (TDIs) and the 
NAG/creatinine. The cumulative HI for bisphenols were significantly 
and positively associated with NAG/creatinine, especially the highest 
tertile of HI, the risk of having an abnormal NAG/creatinine were 3.33 
to 4.27 times higher (Model 1: AOR = 4.27, 95% CI = 1.19–8.51; 
Model 2: AOR = 4.27, 95% CI = 2.14–8.51; Model 3: AOR = 3.33, 95% 
CI = 1.70–6.52) (Supplementary Table S8, Figure 3).

The GAM model and the penalty spline method were applied to 
determine any significant departure from linearity in this relationship 
(Supplementary Figure S3). The results revealed that BPA DI and HI 
values were associated abnormal NAG/creatinine (Psmooth  < 0.001). 
Furthermore, a similar trend was identified between the BPS 
concentration/DI and renal function indexes, i.e., abnormalities in the 
early CKD (depend on CKD-MDRD equation) (Psmooth < 0.05).

4 Discussion

We identified a significant dose–response relationship between 
increasing BPA DI and the likelihood of elevated NAG/creatinine 
levels in Taiwanese adults aged 18 years and older. Notably, we also 
discovered that HI value was significantly and positively associated 
with NAG/creatinine after adjustment for significant covariates.

Studies have reported inconsistent findings regarding the 
associations between BPA exposure and renal function. Notably, 
most clinical markers of renal function are based on the ACR or 
eGFR. An increase in the urinary BPA concentration is 
significantly associated with an increase in the ACR (6, 33) and a 
decrease in eGFR (6). By contrast, a positive association between 
urinary BPA levels and eGFR was reported in female adults from 
the general population in the United States (5) and in patients 
with CKD (8). A possible explanation for this association is that 
declining renal function increases the difficulty of eliminating 
BPA, resulting in BPA accumulation and a vicious cycle of BPA 
accumulation, especially in individuals with an eGFR of 60 mL/
min/1.73 m2 (34). In the U.S. National Health and Nutrition 

Examination Survey from 2003 to 2016, analysis of data from 
12,000 adults based on BPA/creatinine quartiles showed 
significantly higher ACR in groups with higher urinary BPA levels 
compared to those with the lowest levels (7). A similar trend was 
revealed in the BPA substitutes and renal function; the results 
revealed that individuals with higher urinary BPS levels exhibited 
higher ACR and eGFR (11), whereas those with higher urinary 
BPF levels exhibited lower eGFR. These findings were similar to 
those of the present study; that is, urinary BPS levels are positively 
associated with an abnormal ACR. In contrast to the findings 
related to BPA, which showed a significant increase in urea 
nitrogen, serum creatinine, 24-h proteinuria, and the urine 
protein-to-creatinine ratio, as well as a significant reduction in 
creatinine clearance, our study revealed a different outcome. 
Higher BPS concentrations were associated with an increased risk 
of proteinuria abnormalities (7). However, few study has assessed 
the association between bisphenol DI and renal function. 
We  confirmed a significant positive association between BPA 
exposure and the risk of having higher NAG/creatinine in adults. 
Furthermore, the highest BPS DI was associated with an increased 
risk of abnormalities in protein and eGFR by CKD-EPI equation. 
Due to the short half-life of bisphenols, relying solely on a single 
urinary marker may not adequately reflect renal function. Hence, 
we assessed both short-term (concentration and DI) and long-
term (cumulative risk) exposures to bisphenol to comprehensively 
examine the relationships between bisphenol exposure and renal 
function indices.

Studies examining eGFR by applying various equations (e.g., 
CKD-EPI or MDRD-4) have obtained inconsistent results (26). 
Nevertheless, eGFR is a crucial basis for diagnosing CKD (28). In 
Taiwan, MDRD equations are used to calculate eGFR as part of efforts 
for the prevention and treatment of CKD (35), and numerous 
Taiwanese studies have applied the CKD-MDRD equation to calculate 
eGFR (7, 36). In the present study, we discovered that BPS DI levels 
were positively associated with abnormalities in eGFR when the 
CKD-EPI equation was applied; however, no significant differences in 
eGFR were identified when the CKD-MDRD equation was applied. 
Additionally, the urinary BPA levels increased the early CKD when 
early CKD (60 ≤ eGFR<90 mL/min/1.73 m2) depend on CKD-MDRD 
equation, whereas there was no significant difference between urinary 
BPA levels and early CKD depend on CKD-EPI equation. This finding 
is similar to that of Moreno-Gómez-Toledano et al. (7), who identified 
a significant difference between higher levels of urinary BPA and 
lowest level only when the CKD-EPI equation was applied (i.e., a 
significant difference was not identified when the CKD-MDRD 
equation was applied). Therefore, relying only on clinical indicators 
such as eGFR and ACR is insufficient as part of efforts for 
CKD prevention.

Urinary NAG is widely used as a valuable biomarker of both 
acute kidney injury and CKD (37). Furthermore, urinary NAG is 
a sensitive indicator of proximal tubular cell injury (38), and an 
increase in the urinary NAG concentration suggests injury to the 
proximal tubule. Given the fundamental roles of NAG, it is an 
essential contributor to chronic diseases such as diabetes (39), 
resulting in diabetic nephropathy (40). Notably, NAG levels are 
already elevated in patients with diabetes who have a normal 
albumin level and a normal eGFR (41). In the present study, after 
adjustment for covariates (including DM), high BPA DI increased 

FIGURE 1

Schematic representation of the results obtained in the parameters 
related to renal function according to the daily intake of bisphenols 
tertiles in adults (BPA: [T1 < 1.11; T2 = 1.11–2.83; T3 > 2.83]; BPF: 
[T1 < 1.24; T2 = 1.24–2.80; T3 > 2.80]; BPS: [T1 < 0.41; T2 = 0.41–
0.81; T3 > 0.81]). All results were expressed as median. Kruskal–Wallis 
test followed by Dunn’s multiple comparisons test. *, p < 0.05; **, 
p < 0.01; ***, p < 0.001.
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TABLE 3 Association between bisphenols levels and the risk of higher renal function indexes in adults (n = 271).

Analyte Microalbumin a Protein b ACR c

Case/ N 
(%)

AOR 
(95% CI)

p Case/ N 
(%)

AOR 
(95% CI)

p Case/ N 
(%)

AOR 
(95% CI)

p

Model 1 d

BPA

<6.38 12/90 (13.3) 1 - 5/90 (5.6) 1 - 9/90 (10) 1 -

6.38–10.12
7/91 (7.7)

0.67 (0.21, 

2.13)

0.496
5/91 (5.8)

0.79 (0.17, 

3.72)

0.768
5/91 (5.5)

0.67 (0.17, 

2.60)

0.566

>10.12
9/90 (10)

0.54 (0.14, 

2.13)

0.379
8/90 (9.5)

0.69 (0.12, 

3.94)

0.675
8/90 (8.9)

0.49 (0.11, 

2.09)

0.334

BPF

<6.13 10/90 (11.1) 1 - 6/90 (6.7) 1 - 7/90 (7.8) 1 -

6.13–10.13
9/91 (9.9)

0.73 (0.22, 

2.39)

0.602
6/91 (7.1)

0.35 (0.07, 

1.64)

0.181
7/91 (7.7)

0.61 (0.15, 

2.43)

0.480

>10.13
9/90 (10)

1.03 (0.27, 

3.85)

0.969
6/90 (7.1)

0.36 (0.07, 

1.88)

0.225
8/90 (8.9)

0.62 (0.14, 

2.70)

0.523

BPS

<1.58 9/91 (9.9) 1 - 3/91 (3.4) 1 - 5/91 (5.5) 1 -

1.58–2.48
10/91 (11)

1.48 (0.44, 

4.99)

0.528
5/91 (5.6)

2.14 (0.37, 

12.22)

0.393
9/91 (9.9)

5.53 (1.16, 

26.44)

0.032*

>2.48
9/89 (10.1)

1.94 (0.46, 

8.25)

0.368
10/89 (12.4)

12.23 (1.61, 

93.16)

0.016*
8/89 (9)

5.98 (1.04, 

34.21)

0.045*

Model 2 e

BPA DI

<1.64 16/90 (17.8) 1 - 9/90 (10) 1 - 9/90 (10) 1 -

1.64–3.61 6/91 (6.6)
0.32 (0.09, 

1.19)

0.089
6/91 (6.7)

0.44 (0.11, 

1.86)

0.266
5/91 (5.5)

0.29 (0.06, 

1.39)

0.121

>3.61 6/90 (6.7)
0.24 (0.04, 

1.47)

0.122
3/90 (3.8)

0.17 (0.02, 

1.49)

0.109
8/90 (8.9)

0.22 (0.03, 

1.53)

0.126

BPF DI

<1.61 13/90 (14.4) 1 - 7/90 (7.8) 1 - 8/90 (8.9) 1 -

1.61–3.46 9/91 (9.9)
0.98 (0.30, 

3.18)

0.970
8/91 (9)

1.36 (0.35, 

5.25)

0.652
6/91 (6.6)

0.58 (0.15, 

2.28)

0.439

>3.46 6/90 (6.7)
0.63 (0.09, 

4.58)

0.648
3/90 (3.8)

0.37 (0.04, 

3.63)

0.396
8/90 (8.9)

0.55 (0.07, 

4.17)

0.559

BPS DI

<0.41 14/90 (15.6) 1 - 7/90 (7.8) 1 - 5/90 (5.6) 1 -

0.41–0.81 6/91 (6.6)
0.81 (0.23, 

2.87)

0.744
5/91 (5.6)

1.30 (0.30, 

5.53)

0.727
7/91 (7.7)

4.28 (0.91, 

20.19)

0.066†

>0.81 8/90 (8.9)
2.37 (0.36, 

15.56)

0.370
6/90 (7.5)

7.24 (1.00, 

52.24)

0.050*
10/90 (11.1)

14.40 (1.52, 

136.46)

0.020*

Model 3 e

HI e

<0.001 14/90 (15.6) 1 - 8/90 (8.9) 1 - 7/90 (7.8) 1 -

0.001–0.002 8/91 (8.8)
0.53 (0.19, 

1.46)

0.218
7/91 (7.9)

0.98 (0.32, 

3.01)

0.965
7/91 (7.7)

1.09 (0.33, 

3.59)

0.892

>0002 6/90 (6.7)
0.40 (0.13, 

1.22)

0.107
3/90 (3.8)

0.45 (0.11, 

1.93)

0.284
8/90 (8.9)

1.37 (0.42, 

4.50)

0.600

AOR, Adjusted Odds ratio; ACR, microalbumin-to-creatinine ratio; p, p-value; a Microalbumin > 1.9 mg/dL; b Urine protein > 14 mg/L; c ACR > 30 mg/g; d Adjustment of age, 

sex, type 2 DM, urine creatinine and BMI; e Adjustment of age, sex, type 2 DM, and BMI; †, p < 0.1;*, p < 0.05; **, p < 0.01; ***, p < 0.001.

(Continued)
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a high risk of NAG/creatinine abnormalities, namely BPA still 
dominated bisphenol exposure in our study despite restrictions on 
its use and production (42), possibly because Taiwan banned only 
BPA used in baby bottles. Nevertheless, researchers are yet to 
explore the relationship between bisphenol exposure and 
abnormal NAG/creatinine levels; most research has focused only 
on the association between phthalate exposure patterns and renal 
impairment and has reported that high-molecular-weight 
phthalate pattern scores were positively associated with NAG 
levels in adults in Shanghai (43). Additionally, an increase in two 

ubiquitous chemicals (urinary melamine and estimated diethyl 
hexyl phthalate [DEHP] intake) together may be  positively 
associated with an increase in urinary NAG/creatinine levels in 
pregnant women in Taiwan (44). This finding is similar to our 
findings; that is, bisphenols and phthalates exhibit similar 
properties, and both may cause renal tubular injury. In conclusion, 
BPA exposure does not appear to be  related to glomerular 
filtration rate, with a significant association found only with its 
substitute BPS. This suggests that BPA exposure is more likely to 
cause renal tubular injury. Given the high BPA exposure in the 

TABLE 3 (Continued)

Analyte NAG/Creatinine a eGFR b Early chronic kidney disease c

Case/ N 
(%)

AOR (95% 
CI)

p Case/ N 
(%)

AOR (95% 
CI)

p Case/ N 
(%)

AOR (95% 
CI)

p

Model 1 d

BPA

<6.38 32/89 (36) 1 - 33/88 (37.5) 1 - 25/88 (28.4) 1 -

6.38–10.12 35/91 (38.5) 1.49 (0.71, 3.10) 0.288 40/90 (44.4) 1.91 (0.90, 4.07) 0.092 37/90 (41.1) 2.59 (1.23, 5.45) 0.012**

>10.12 41/89 (46.1) 1.92 (0.83, 4.43) 0.128 42/88 (47.7) 1.66 (0.70, 3.94) 0.252 39/88 (44.3) 2.63 (1.12, 6.15) 0.026*

BPF

<6.13 35/90 (38.9) 1 - 35/87 (40.2) 1 - 30/87 (34.5) 1 -

6.13–10.13 35/90 (38.9) 0.92 (0.44, 1.91) 0.812 38/90 (42.2) 1.01 (0.48, 2.14) 0.971 32/90 (35.6) 0.99 (0.48, 2.07) 0.985

>10.13 38/89 (42.7) 0.85 (0.38, 1.92) 0.701 42/89 (47.2) 1.21 (0.52, 2.80) 0.658 39/89 (43.8) 1.36 (0.60, 3.06) 0.459

BPS

<1.58 37/90 (41.1) 1 - 37/88 (41.6) 1 - 34/89 (38.2) 1 -

1.58–2.48 38/91 (41.8) 1.08 (0.52, 2.25) 0.828 38/89 (42.7) 0.82 (0.39, 1.74) 0.611 32/89 (36) 0.59 (0.28, 1.24) 0.162

>2.48 33/88 (37.5) 0.66 (0.29, 1.52) 0.328 40/88 (45.5) 0.98 (0.42, 2.32) 0.968 35/88 (39.8) 0.62 (0.27, 1.42) 0.255

Model 2 e

BPA DI

<1.64 19/89 (21.1) 1 - 32/88 (36.4) 1 - 27/88 (30.7) 1 -

1.64–3.61 36/91 (40) 3.58 (1.52, 8.44) 0.004** 41/90 (45.6) 1.57 (0.68, 3.59) 0.290 35/90 (38.9) 1.58 (0.71, 3.52) 0.260

>3.61 53/89 (59.6) 7.34 (2.26, 23.81) 0.001*** 42/88 (47.7) 0.97 (0.30, 3.12) 0.960 39/88 (44.3) 1.55 (0.51, 4.71) 0.443

BPF DI

<1.61 25/90 (27.8) 1 - 36/89 (40.5) 1 - 30/89 (33.7) 1 -

1.61–3.46 35/91 (38.5) 0.99 (0.45, 2.20) 0.981 38/89 (42.7) 0.88 (0.39, 1.98) 0.751 34/89 (38.2) 1.08 (0.50, 2.34) 0.848

>3.46 48/88 (54.6) 0.78 (0.26, 2.39) 0.666 41/88 (46.6) 0.73 (0.23, 2.27) 0.586 37/88 (42.1) 0.90 (0.30, 2.66) 0.845

BPS DI

<0.41 28/90 (31.1) 1 - 33/89 (37.1) 1 - 30/89 (33.7) 1 -

0.41–0.81 29/89 (32.6) 0.51 (0.22, 1.15) 0.105 39/89 (43.8) 1.19 (0.53, 2.67) 0.679 33/89 (37.1) 0.85 (0.39, 1.84) 0.675

>0.81 51/90 (56.7) 0.82 (0.29, 2.33) 0.709 43/88 (48.9) 2.50 (0.82, 7.56) 0.106 38/88 (43.2) 1.31 (0.46, 3.69) 0.611

Model 3 e

HI e

<0.001 21/90 (23.3) 1 - 35/89 (39.3) 1 - 29/89 (32.6) 1 -

0.001–0.002 35/90 (28.9) 2.18 (1.10, 4.34) 0.027* 36/89 (40.5) 1.17 (0.59, 2.35) 0.653 32/89 (36) 1.28 (0.65, 2.50) 0.478

>0002 32/89 (58.4) 4.27 (2.14, 8.51) <0.001*** 44/88 (50) 1.53 (0.76, 3.07) 0.236 40/88 (45.5) 1.74 (0.89, 3.42) 0.108

AOR, Adjusted Odds ratio; p, p-value; eGFR, Estimated glomerular filtration rate; NAG/Creatinine, N-acetyl-β-D-glucosaminidase to creatinine ratio; a NAG/

Creatinine > 4 IU/g; b eGFR < 90 mL/min/1.73 m2 and eGFR based on CKD- MDRD equation; c 60 ≤ eGFR < 90 mL/min/1.73 m2 and eGFR based on CKD- MDRD 

equation; d Adjustment of age, sex, type 2 DM, and BMI; †, p < 0.1;*, p < 0.05; **, p < 0.01; ***, p < 0.001.
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Taiwanese population (3), it is crucial to pay close attention to the 
potential impact of kidney damage in the future.

Limited studies provide dose- or risk-based predictors for 
extrapolating the adverse renal effects of bisphenol exposure. 
Uncertainty in risk assessment arises from factors like exposure 
scenario characterization, parameter estimates, and model 
predictions (45). Variations in TDI based on different health 
effects for the same chemical substance lead to diverse hazard risk 
calculations. Therefore, we propose a reference range for uncertain 
risk scenarios. Based on European Food Safety Authority (EFSA)'s 
TDI for BPA, focused on renal toxicity (46), we utilized HI values 
to evaluate cumulative bisphenol exposure and its association with 
reduced renal function indices in Taiwanese adults, consistent 
with our previous approach (18). After adjusting for covariates 
such as DM, our analysis indicated that higher HI values were 

associated with increased risk of abnormal NAG/creatinine, 
aligning with EFSA’s TDI (47) and contrasting with The German 
Federal Institute for Risk Assessment, BfR’s TDI (48), which 
underestimated this risk. BPA is recognized as a biomarker of 
renal disease with nephrotoxic effects reported (46, 49, 50). 
However, studies on the nephrotoxicity of BPA substitutes at 
human exposure levels are sparse. For BPF and BPS, TDIs were 
calculated assuming their renal effects are similar to BPA (31, 51). 
More research on the nephrotoxic effects of various BPA 
substitutes is essential to mitigate uncertainty in risk assessment. 
As international BPA regulations vary and remain controversial, 
the EFSA CEP Panel identified BPA’s effect on Th17 cell percentage 
as the critical effect. After dose conversion to HED, the lowest 
BMDL of 8.2 ng/kg bw per day was used for risk assessment, with 
default UFs of 2.5 and 10 applied for inter-species toxicodynamic 

FIGURE 2

Association between (A) urinary measurement of daily bisphenols intake and the risk of higher NAG-to-creatinine ratio; (B) the HI and renal function 
indexes. Abnormality: Microalbumin>1.9 mg/dL; Urine protein >14 mg/L; Albumin-to-creatinine ratio (ACR) >30 mg/g; N-acetyl-β-D-glucosaminidase 
to creatinine ratio (NAG/Creatinine) > 4 IU/g; Estimated glomerular filtration rate (eGFRCKD-MDRD/EPI) < 90 mL/min/1.73 m2 and eGFR based on CKD- 
MDRD, CKD-EPI equation, respectively; Early Chronic Kidney Disease (Early CKDCKD-MDRD/EPI): 60 ≤ eGFR <90 mL/min/1.73 m2 and eGFR based on CKD- 
MDRD and CKD-EPI equation, respectively; Adjustment of age, sex, type 2 DM, and BMI. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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and intra-human variability (47). The BfR disagrees with the 
EFSA’s new TDI, citing methodological discrepancies, particularly 
the lack of evidence that increased Th17 cells in mice cause 
adverse effects (48). Despite this, we recommend that countries 
set region-specific BPA management or restriction guidelines 
based on local exposure situations and economic conditions. 
Additionally, more stringent regulations for BPA substitutes 
should be introduced step by step.

The present study has several limitations. Firstly, its cross-
sectional design hinders establishing causality despite associations 
found between BPA and its substitutes with renal function indices. 
Secondly, potential alternative explanations for our results cannot 
be ruled out due to unmeasured confounding factors like phthalates, 
melamine, and other metals in our regression models (18, 51, 52). 
Thirdly, using single spot urine samples instead of 24-h collections 
may introduce bias in assessing associations of BPA and its substitutes 
with renal biomarkers, although some studies suggest single spot 
samples can indicate long-term exposure when exposure levels are 
stable (53). To mitigate this, we  employed multiple exposure 
indicators (DI and HI value) and designed our questionnaire to assess 
exposure frequency assuming participants had similar lifestyles and 
dietary habits. Fourthly, using serum creatinine to adjust for renal 
function indices like eGFR or ACR may be limited by differences in 
serum creatinine levels based on individual characteristics such as 
age, sex, or race/ethnicity. Finally, the toxicity of BPA substitutes 
regarding human exposure and renal damage effects remains 
understudied, with TDIs for BPF and BPS assumed based on their 
similarity to BPA’s renal effects in HI evaluations from prior research. 
Prospective studies are needed to conclusively determine whether 
BPA and its substitutes are nephrotoxic.

Although our study population was smaller compared to other 
human biomonitoring datasets, we  found significant positive 
associations between higher BPA DI and the cumulative risk of 

bisphenols with increased NAG/creatinine levels in adults. 
Elevated NAG/creatinine levels indicate a higher risk of renal 
tubular injury and early-stage kidney disease. Comprehensive or 
mechanistic studies are needed to further elucidate this 
association. Incorporating other renal function indicators such as 
NAG/creatinine as clinical diagnostic markers in future studies is 
recommended. Besides, we also suggest that the sample size of 
participants be  continuously increased and future long-term 
follow-up studies be  conducted to establish a clearer 
causal relationship.
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FIGURE 3

Association between the HIBPs and NAG-to-creatinine ratio. HI is the 
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on EFSA (46) TDI of BPA (4,000 ng/kg/ay), TDI of 4,000 (ng/kg bw /
day) for BPF (56); TDI of 4,400 (ng/kg bw /day) for BPS; Model 2: 
based on EFSA (47) TDI of BPA (0.2 ng/kg/day) and assume the BPA 
TDI equal to BPF and BPS; Model 3: based on BfR (48) TDI (200 ng/
kg/day) and assume the BPA TDI equal to BPF and BPS; Adjustment 
of age, sex, type 2 DM and BMI in all models; *, p < 0.05; **, p < 0.01; 
***, p < 0.001.
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