
TYPE Original Research

PUBLISHED 03 June 2025

DOI 10.3389/fpubh.2025.1507400

OPEN ACCESS

EDITED BY

Alessandra Pulliero,

University of Genoa, Italy

REVIEWED BY

Rossella Murtas,

ATS Milan Metropolitan City, Italy

Sabrina Macêdo,

Federal University of Rio Grande do

Norte, Brazil

*CORRESPONDENCE

Hua Cao

13569951310@163.com

†These authors have contributed equally to

this work and share first authorship

RECEIVED 07 October 2024

ACCEPTED 15 May 2025

PUBLISHED 03 June 2025

CITATION

He X, Cheng Z and Cao H (2025) The impact

of ambient temperature on frailty progression

in older adults: Evidence from a longitudinal

study in China.

Front. Public Health 13:1507400.

doi: 10.3389/fpubh.2025.1507400

COPYRIGHT

© 2025 He, Cheng and Cao. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

The impact of ambient
temperature on frailty
progression in older adults:
Evidence from a longitudinal
study in China

Xin He†, Zhangbo Cheng† and Hua Cao*

Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China

Background: The aging population and frailty-related diseases pose significant

public health challenges. This study examined the relationship between ambient

temperature and frailty progression in older adults using data from the China

Health and Retirement Longitudinal Study (CHARLS).

Materials and methods: Data from 6,187 participants (2015–2018) were

analyzed using a standardized Frailty Index (FI). Participants were categorized

into the Frailty Progress Rapid Group (FPRG) and Non-Frailty Rapid Progression

Group (NFPRG) based on FI changes. Temperature data from 121 Chinese

cities were analyzed using logistic regression and subgroup analyses to explore

potential modifiers.

Results: The Lowest Daily Average Temperature (TLDAT) and Average Annual

Temperature (AAT) showed a negative association with frailty progression. The

relationship between The Highest Daily Average Temperature (THDAT) and frailty

progression was non-linear, with a turning point at 31.8◦C. Subgroup analyses

revealed that higher THDAT had a stronger impact on frailty progression in

individuals with lower education and those living in rural areas.

Conclusion: Older adults benefit from environments with a TLDAT above

−9◦C, a THDAT below 31.8◦C, and an AAT above 17◦C. Public health strategies

should consider temperature thresholds alongside sociodemographic factors

like education and residence, which influence frailty progression.

KEYWORDS

frailty progression, ambient temperature exposure, older adults, longitudinal cohort

study, temperature thresholds

1 Introduction

The global acceleration of population aging has introduced significant socioeconomic

challenges, with age-related health conditions placing an especially heavy burden on

healthcare systems (1, 2). Among various geriatric syndromes, frailty—defined as a state

of diminished physiological reserve and increased vulnerability to external stressors—has

emerged as a critical predictor of adverse health outcomes (3). This multidimensional

construct encompasses limitations in activities of daily living, physical functioning,

chronic disease burden, and mental health status (4). The Frailty Index (FI), originally

conceptualized by Rockwood and Mitnitski (5) through the deficit accumulation model,

is now widely recognized as the gold standard for assessing frailty severity. By

systematically aggregating health deficits across diverse domains, the FI facilitates precise
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risk stratification and enables longitudinal monitoring of functional

decline in older adults (6, 7).

While genetic predisposition and clinical comorbidities

undoubtedly contribute to frailty development, accumulating

evidence highlights environmental factors as modifiable

determinants (8–10). Recent epidemiological studies have

demonstrated associations between air pollutants—including

PM2.5, nitrogen dioxide (NO2), and ozone—and accelerated

declines in physical function (11, 12). Notably, the Global Burden

of Disease Study identified non-optimal ambient temperatures as

a major contributor to global mortality, particularly among

older populations (13). Although seminal work by Mou

et al. (10) revealed links between extreme temperatures and

cardiometabolic multimorbidity, important knowledge gaps

remain regarding the long-term effects of ambient thermal

exposure on frailty progression (10). Existing research has largely

concentrated on acute temperature–mortality relationships,

leaving the chronic impact of temperature on functional capacity

insufficiently explored.

To address this gap, we conducted a nationwide longitudinal

study using data from the China Health and Retirement

Longitudinal Study (CHARLS) from 2015 to 2018. By integrating

high-resolution meteorological data from 121 Chinese cities with

detailed health assessments. We aimed to: (1) quantify the

association between ambient temperature (including extreme lows,

highs, and annual averages) and frailty progression; (2) identify

optimal thermal thresholds for promoting healthy aging; and (3)

evaluate whether sociodemographic characteristics modify these

associations. Our findings provide critical insights for developing

climate-responsive public health strategies aimed at preserving

functional independence in aging populations.

2 Method

2.1 Data source and participants

Data used in this study were obtained from the China

Health and Retirement Longitudinal Study (CHARLS), a nationally

representative longitudinal cohort initiated by Peking University

in 2011. The study targets the middle-aged and older adults

population in China and employs a multi-stage, stratified

cluster sampling strategy. Survey content includes psychological

health, chronic disease status, and socioeconomic indicators

of participants (14–16). To date, five Waves of data have

been collected: 2011 (Wave 1), 2013 (Wave 2), 2015 (Wave

3), 2018 (Wave 4), and 2020 (Wave 5), with response rates

consistently exceeding 80%. Ethical approval for data collection

was granted by the Biomedical Ethics Review Committee of Peking

University (IRB00001052-1015), and all participants provided

written informed consent. The CHARLS dataset is publicly

available at http://charls.pku.edu.cn/en.

For this study, we used data from Wave 3 (2015) and Wave 4

(2018). A total of 6,187 participants were included after applying

inclusion and exclusion criteria. The detailed screening process is

presented in Figure 1. Only participants aged 45 years and above

were included, consistent with the CHARLS study design.

FIGURE 1

The flow chart of participant selection. CHARLS, China Health and

Retirement Longitudinal Study; FI, Frailty Index; WBC, White Blood

Cell; LDL, Low Density Lipoprotein.

2.2 Calculation of the FI

The FI used in this study was constructed based on the deficit

accumulation model proposed by Rockwood and Mitnitski (5),

and further refined using the practical framework introduced

by Theou et al. (17). This version of the FI is widely used in

geriatric research due to its flexibility, strong predictive validity,

and applicability across different datasets and populations. This

scale mainly includes 37 variables, including 5 aspects (Activities

of daily living Instrumental activities of daily living, Physical

functional limitations, Chronic disease, Mental health), These

variables can reflect the “deficits” of participants’ physical functions

from different aspects. According to Theou et al. (17), a frailty

index with 30 or more variables across multiple domains ensures

robustness and validity. Therefore, 37 variables were chosen based

on data availability and domain coverage (17). In addition, the

selection of variables was guided by previous FI studies using

CHARLS and other large aging cohorts, ensuring comparability and

methodological consistency.

We constructed a 37-item Frailty Index (FI)

following the deficit accumulation approach, as shown in

Supplementary Table S1. Each item was recoded such that “0”

indicated no deficit and “1” indicated the presence of a deficit.

For variables with ordinal responses (e.g., mental health items),
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intermediate values of 0.33 and 0.67 were used to reflect partial

deficits based on the degree of symptom severity or frequency.

Positively framed items such as “feel happy” were reverse-coded to

maintain consistency across all items.

The FI score for each participant was calculated as the sum

of non-missing item scores divided by the total number of items

(n = 37), resulting in a continuous variable ranging from 0 to

1. FI values were computed separately for 2015 and 2018. The

difference between FI2018 and FI2015 was then used to quantify

frailty progression. Participants with an FI increase >0.1 were

classified as having rapid frailty progression (Frailty Progress Rapid,

FPR), while others were classified as having non-rapid progression

(Non-Frailty Rapid Progression, NFRP). These groups are hereafter

referred to as the Frailty Progress Rapid Group (FPRG) and the

Non-Frailty Rapid Progression Group (NFPRG).

We defined rapid frailty progression (FPR) as an increase in

FI >0.1 between 2015 and 2018. This threshold was chosen to

reflect clinically meaningful changes in frailty status over a 3-year

period. While some prior studies have modeled frailty progression

as a continuous outcome [e.g., (18, 19)], or have considered any

increase in frailty scale scores as indicative of progression [e.g.,

(20)]. Our use of a fixed threshold enabled binary classification and

clearer group comparisons.

To ensure the robustness of this threshold, sensitivity analyses

were conducted using alternative cutoffs (1FI > 0.05 and 1FI

> 0.15), and the associations between temperature and frailty

progression remained consistent across these definitions, as shown

in Supplementary Table S2.

2.3 Temperature data

Meteorological data were obtained from the China

Meteorological Administration’s Land Data Assimilation

System (CLDAS v2.0), integrating multi-source observations

with high-resolution spatial (0.0625◦ × 0.0625◦) and temporal

(hourly) precision. We acquired 4-year daily and annual average

temperature records (2015–2018) for participants’ residential cities

through standardized measurements at municipal meteorological

stations. Three temperature metrics were derived: (a) the lowest

daily average temperature (TLDAT) across the study period, (b)

the highest daily average temperature (THDAT), and (c) the

multi-year average annual temperature (AAT). Data completeness

exceeded 95%, with limited gaps (<5%) addressed via spatial

interpolation from adjacent stations. Geospatial distribution

patterns of these thermal metrics across China are illustrated

in Supplementary Figures S1–S3, reflecting substantial regional

climatic heterogeneity.

2.4 Covariates

The covariates included in the regression models were

derived from participants’ 2015 data and covered three

domains: (1) Demographic and socioeconomic factors: age,

sex, body mass index (BMI; overweight vs. non-overweight),

education level (literacy vs. illiteracy), marital status (married

vs. others), place of residence (urban vs. rural), smoking

status (yes/no), and alcohol consumption (yes/no); (2)

Routine blood parameters: white blood cell count (WBC)and

platelet count (PLT); (3) Lipid metabolism indicators: total

cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and

triglycerides (TG).

In this study, participants were classified as illiterate or literate

depending on whether they had completed formal schooling.

Marital status was divided into married and others based on

whether the respondent was currently married and cohabiting.

Residence was categorized as urban or rural based on the

administrative classification recorded in the CHARLS dataset. BMI

was grouped into overweight (>24) and non-overweight (≤24)

categories according to Chinese criteria.

2.5 Statistical analysis

Participant characteristics were summarized using appropriate

descriptive statistics. Continuous variables were assessed for

normal distribution using Shapiro-Wilk tests, with results

presented as mean ± standard deviation for parametric data or

median (interquartile range) for non-parametric distributions.

Categorical variables were reported as frequencies and percentages.

Temperature metrics (TLDAT, THDAT, AAT) were initially

analyzed as continuous variables, with subsequent quartile

categorization (Q1–Q4) applied to variables demonstrating

univariate significance (P < 0.05). Group comparisons between

Frailty Progression Rapid Group (FPRG) and Non-Frailty Rapid

Progression Group (NFPRG) employed Student’s t-tests for

normally distributed continuous variables, Wilcoxon rank-sum

tests for skewed data, and χ² tests for categorical variables, as

detailed in Table 1.

Logistic regression models evaluated associations between

temperature metrics and frailty progression risk (as shown

in Table 2), calculating adjusted odds ratios (ORs) with 95%

confidence intervals (CIs). Three sequential models were

developed: (1) unadjusted model; (2) demographic-adjusted model

(age, sex, BMI, residence); (3) fully adjusted model incorporating

demographic, clinical, and laboratory covariates. Restricted

cubic spline regression with three knots (25th, 50th, and 75th

percentiles) was employed to explore nonlinear relationships

between continuous temperature exposures and outcomes, with

the resulting curves illustrated in Figure 2.

Stratified analyses examined effect modification by sex,

BMI status, drink, smoke, education level, marital status,

and urban-rural residence. Interaction terms were incorporated

into adjusted models, with likelihood ratio tests evaluating

subgroup heterogeneity. Sensitivity analyses tested the robustness

of the 0.1 FI change threshold using alternative cutoffs (1FI

>0.05 and >0.15), confirming consistent temperature effects

across definitions.

All statistical analyses were performed using R version 4.1.2

(R Core Team, 2021) and SPSS version 26.0(IBM Corp., Armonk,

NY, USA). A P-value <0.05 was considered statistically significant,

including adjustments for multiple comparisons where applicable

(21, 22).
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TABLE 1 Baseline characteristics of participants in 2015 (CHARLS).

Variables Overall (n = 6,187) NFPRG(n = 5,309) FRPG (n = 878) P SMD

White Blood Cell

(×1000)

5.73 (4.80, 6.90) 5.73 (4.80, 6.90) 5.72 (4.80, 6.97) 0.171 0.083

Platelets

(×109/L)

201 (160, 243) 201 (159, 242) 202 (161, 248) 0.785 0.785

LDL(mg/dL) 101.158 (83.398, 119.884) 101.158 (83.012, 119.691) 102.317 (83.784, 121.911) 0.253 0.041

Triglycerides(mg/L) 116.814 (84.513, 171.681) 115.929 (84.071, 170.796) 123.009 (87.611, 183.186) 0.022 0.083

Total Cholesterol(mg/dL) 181.853 (161.004, 206.178) 181.467 (160.232, 205.792) 185.328 (163.803, 209.653) 0.010 0.094

AAT(◦C) 16.903 (13.502, 18.983) 16.903 (13.930, 19.068) 16.356 (12.442, 18.86) <0.001 0.139

THDAT (◦C) 31.476 (30.760, 32.565) 31.476 (30.760, 32.565) 31.333 (30.730, 32.565) 0.007 0.094

TLDAT (◦C) −7.212 (−15.068,2.454) −7.212 (−14.540, 2.454) −7.985 (−15.986,2.454) <0.001 0.129

Age(year) 60 (53–66) 59 (52–65) 62 (55–67) <0.001 0.254

Gender

Male (%) 3,018 (48.78) 2,661 (50.12) 357 (40.66) <0.001 0.191

Female (%) 3,169 (51.22) 2,648 (49.88) 521 (59.34)

BMI

Non-overweight (%) 3,177 (51.35) 2,731 (51.44) 446 (50.80) <0.001 0.019

Overweight (%) 3,010 (48.65) 2,578 (48.56) 432 (49.20)

Marriage

Others (%) 1,308 (21.14) 1,144 (21.55) 164 (18.68) 0.060 0.072

Married (%) 4,879 (78.86) 4,165 (78.45) 714 (81.32)

Residence

Urban (%) 5,011 (80.99) 4,285(80.71) 726 (82.69) 0.182 0.051

Rural (%) 1,176 (19.01) 1,024 (19.29) 152 (17.31)

Education

Illiteracy (%) 3,827 (61.86) 3,200 (60.28) 627 (71.41) <0.001 0.236

Literacy (%) 2,360 (38.14) 2,109 (39.72) 251 (28.59)

Drink

No (%) 3,304(53.40) 2,805 (52.83) 499(56.83) 0.03 0.080

Yes (%) 2,883(46.60) 2,504(47.17) 379 (43.17)

Smoke

No (%) 3,520(56.89) 2,992 (56.36) 528 (60.14) 0.04 0.077

Yes (%) 2,667 (43.11) 2,317 (43.64) 350 (39.86)

Baseline characteristics of participants in 2015, stratified by the Frailty Progression Rapid Group (FPRG) and Non-Frailty Progression Rapid Group (NFPRG). Continuous variables are

presented as median (interquartile range, IQR), and categorical variables are presented as number (percentage). The statistical significance (P-value) for comparisons between the two groups

was calculated using the appropriate tests. Standardized Mean Differences (SMD) are also presented to assess the magnitude of differences between groups. Key variables include white blood

cell count (WBC), platelets, low-density lipoprotein (LDL), triglycerides, total cholesterol, and ambient temperature measures (AAT, THDAT, TLDAT). LDL, Low-density lipoprotein; BMI,

Body mass index; AAT, Average annual temperature (2015–2018); THDAT, Highest daily average temperature (2015–2018); TLDAT, Lowest daily average temperature (2015–2018).

3 Results

3.1 Participant selection

Our study included 25,504 participants who underwent

the baseline (2015) survey. Considering the study objectives,

we excluded the following participants: (1) those lacking age

information and those under 45 years of age; (2) those lacking

information related to FI and other informations at baseline; (3)

those who were not followed up;4) those lacking information

related to FI and other informations during follow-up surveys.

Detailed inclusion and exclusion processes are shown in Figure 1.

To assess potential selection bias, we compared key baseline

characteristics between included (n = 6,187) and excluded (n

= 19,317) participants, as shown in Supplementary Table S3.

Although some variables showed statistically significant differences

(P < 0.05)—likely due to the large sample size—their standardized

mean differences (SMDs) all remained below 0.1, indicating that
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TABLE 2 Multivariate logistic regression analyses of Temperature data

and FRPG.

Variable Model 1 Model 2 Model 3

OR (95%CI) OR (95%CI) OR (95%CI)

AAT(◦C)

Continuous

(per 1◦C)

0.953 (0.934,0.973) 0.955 (0.936,0.975) 0.962 (0.943,0.983)

Q1 (Reference)

Q2 0.717 (0.586,0.876) 0.698 (0.572,0.853) 0.706 (0.579,0.860)

Q3 0.704 (0.575,0.862) 0.709 (0.580,0.866) 0.726 (0.596,0.884)

Q4 0.638 (0.520,0.784) 0.654 (0.534,0.800) 0.706 (0.579,0.860)

P for trend <0.001 <0.001 <0.001

TLDAT(◦C)

Continuous

(per 1◦C)

0.983 (0.974, 0.992) 0.984 (0.975, 0.993) 0.987 (0.978, 0.996)

Q1(Reference)

Q2 0.727 (0.594, 0.890) 0.705 (0.577, 0.862) 0.722 (0.592, 0.880)

Q3 0.689 (0.561, 0.847) 0.692 (0.565, 0.848) 0.710 (0.581, 0.866)

Q4 0.704 (0.574, 0.863) 0.720 (0.590, 0.880) 0.776 (0.638, 0.944)

P for trend 0.003 0.006 0.005

THDAT(◦C)

Continuous

(per 1◦C)

0.936 (0.867, 1.010) 0.942 (0.873, 1.016) 0.953 (0.885,1.027)

Q1(Reference)

Q2 0.978 (0.803, 1.191) 0.966 (0.792, 1.180) 0.994 (0.817, 1.210)

Q3 0.767 (0.622, 0.944) 0.746 (0.606, 0.919) 0.781 (0.636, 0.960)

Q4 0.912 (0.748, 1.112) 0.890 (0.727, 1.090) 0.920 (0.754, 1.123)

P for trend 0.088 0.122 0.211

Model 1: unadjusted.

Model 2: adjusted for gender, BMI, education, marriage, residence.

Model 3: adjusted for variables in Model 2 plus age, WBC, Platelets, LDL, Triglycerides, Total

Cholesterol, drink and smoke.

AAT, Average Annual Temperature (2015–2018);

TLDAT, Lowest Daily Average Temperature (2015–2018);

THDAT, Highest Daily Average Temperature (2015–2018);

WBC, White Blood Cell; LDL, Low-Density Lipoprotein; Residence: Urban/Rural.

the magnitude of these differences was minimal. Consequently, any

residual selection bias is expected to be small, and our included

sample broadly represents the target population.

3.2 Participant characteristics

A comparative analysis of baseline characteristics (Table 1)

revealed that participants in the Frailty Progress Rapid Group

(FPRG) were generally older (median age 62 vs. 59 years, P <

0.001, SMD= 0.254) and had a higher proportion of females (59.34

vs. 49.88%, P < 0.001, SMD = 0.191). Although the median BMI

was only slightly higher in FPRG (P < 0.001, SMD = 0.019),

total cholesterol (P = 0.010, SMD = 0.094) and triglycerides (P

= 0.022, SMD = 0.083) were also elevated compared to NFPRG.

Additionally, FPRG showed a greater percentage of illiterate

individuals (71.41 vs. 60.28%, P < 0.001, SMD = 0.236) and had

slight but significant differences in drinking and smoking status

(P = 0.03 and P = 0.04, respectively). In contrast, no statistically

significant differences were observed for white blood cell count,

platelet count, or LDL levels.

From an environmental standpoint, FPRG participants tended

to live in regions with significantly lower average annual

temperatures (AAT, P < 0.001, SMD = 0.139), highest daily

average temperatures (THDAT, P = 0.007, SMD = 0.094), and

lowest daily average temperatures (TLDAT, P < 0.001, SMD =

0.129), suggesting that cooler climatic conditions may contribute

to accelerated frailty progression.

These findings collectively indicate that older age, female

gender, higher lipid profiles, and residence in cooler regions are

associated with rapid frailty progression, supporting the notion

that both biological and environmental factors can significantly

influence frailty trajectories in older adults.

3.3 Relationship between temperature data
and FPR

Our multivariate analysis revealed significant associations

between some thermal exposure metrics and frailty progression

(Table 2). After adjusting for all covariates, each 1 ◦C increase

in annual average temperature (AAT) was associated with a 12%

reduction in the odds of rapid frailty progression (OR = 0.88,

95%CI: 0.83–0.94), and higher minimum temperatures (TLDAT)

likewise conferred a protective effect (OR = 0.91 per 1 ◦C, 95%CI:

0.86–0.96). Quartile-based analyses for AAT and TLDAT also

showed statistically significant, nearly linear trends (P-trend< 0.01

for both).

In contrast, for THDAT, the quartile-based trend test was not

statistically significant (P-trend > 0.05), suggesting no clear linear

dose-response across THDAT quartiles. However, restricted cubic

spline (RCS) models (Figure 2) revealed a significant non-linear

relationship (P-nonlinear = 0.008), characterized by a J-shaped

curve and a turning point at ∼31.8 ◦C. Below this threshold,

each 1 ◦C increase was associated with a 9% lower risk of frailty

progression (OR = 0.91, 95%CI: 0.87–0.96), but above 31.8 ◦C,

the frailty risk rose by 13% per 1◦C increase (OR = 1.13, 95%CI:

1.05–1.21). These findings indicate that older adults experience a

protective effect of moderate warmth, yet extreme heat may sharply

exacerbate frailty progression.

3.4 Subgroup analysis

We conducted subgroup analyses to examine whether the

association between temperature and frailty progression was

consistent across different populations (Supplementary Figures S4–

S6). Stratified analyses were performed based on gender, BMI,

marital status, residence, drink, smoke, and education level.

The results indicated that the negative associations between

AAT and TLDAT and frailty progression remained consistent

across most subgroups, with all interaction terms showing P >
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FIGURE 2

Dose-response association between Weather and FRP. AAT, Average

annual temperature (in 4 years); TLDAT, The lowest daily average

temperature (in 4 years) THDAT, The highest daily average

temperature (in 4 years); X-axis: Ambient temperature (TLM, ◦C). Left

Y-axis: Number of observations (histogram showing temperature

distribution). Right Y-axis: Odds ratio (OR) of frailty progression with

95% confidence interval (trend line).

0.05. This suggests that the effects of these temperature variables

on frailty progression were stable across different groups. However,

the interaction terms for education level and place of residence

with THDAT were significant (P < 0.05). Individuals with

lower education levels or those living in rural areas were more

vulnerable to extreme temperatures, likely due to limited access

to climate-responsive resources, while urban populations were

less affected.

These findings highlight that the impact of temperature

on frailty progression is modulated by factors such as BMI,

education level, and residence. Public health interventions should

consider these factors to better mitigate the adverse effects of

temperature extremes.

4 Discussion

As population aging accelerates and climate variability

becomes more pronounced, safeguarding the health and functional

independence of older adults has become increasingly urgent.

Frailty, a multidimensional syndrome characterized by reduced

physiological reserve, is particularly sensitive to environmental

stressors such as temperature extremes. While numerous studies

have linked ambient temperature to mortality and specific

chronic conditions in older populations, the long-term relationship

between temperature exposure and frailty progression remains

insufficiently explored, especially in China. By utilizing nationally

representative longitudinal data from the China Health and

Retirement Longitudinal Study (CHARLS) and incorporating

precise meteorological records, our study offers novel insights into

how different dimensions of ambient temperature affect frailty

trajectories over time (23).

Temperature data was matched with participant city

information in the database. This study primarily extracted

baseline data of relevant participants from 2015 and 2018

and quantified the frailty of each participant using the Frailty

Index (FI). We quantified the degree of frailty development by

calculating the difference in FI between participants in 2018

and 2015. We divided participants into two groups: the Frailty

Progress Rapid Group (FPRG) and the Non-Frailty Rapid

Progression Group (NFPRG), based on their degree of frailty

progression. The differences in relevant indicators between the

two groups were then confirmed using statistical methods, which

allowed us to explore further the impact of temperature on

frailty progression.

We first confirmed through the analysis of baseline data that

compared to NFPRG, FPRG participants were older, had higher

total cholesterol, higher BMI, and had a higher probability of

rapid frailty progression in females and rural populations. This is

similar to the results of previous cross-sectional studies, but we

have confirmed that these factors are the reasons for the faster

progression of the FI index in themiddle-aged and older adults (24–

26). In terms of temperature data, we obtained the lowest monthly

temperature (TLDAT), highest monthly temperature (THDAT),

and average annual temperature (AAT) of the participant’s city

over the past 4 years through investigation. We confirmed through

baseline analysis that FPRG had higher TLDAT, THDAT, and AAT.

We transformed the continuous variables THDAT, TLDAT,

AAT, and quartiles into level variables, and further confirmed

through multiple logistic regression models that these different

levels of temperature data have distinct effects on FPR, with

statistical significance (P < 0.05). Further dose-response analysis

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1507400
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


He et al. 10.3389/fpubh.2025.1507400

indicated a linear relationship (P for non-linear > 0.05) between

AAT, TLDAT, and FPR. As shown in Figure 2, when AAT

exceeds 17◦C, excessive AAT has a hazardous effect on FPR

in the older adults. Similarly, when TLDAT exceeds −9◦C, the

protective effect of AAT on the physical “deficiency” of the

older adults tends to stabilize. This suggests that the protective

effect of temperature on aging bodily functions is effective

within a certain range, and when it exceeds this range, the

effect diminishes.

In our analysis, THDAT exhibited different patterns compared

to AAT and TLDAT. While a quartile-based trend test did

not reach statistical significance (P-trend > 0.05), the restricted

cubic spline (RCS) analysis uncovered a marked non-linear (J-

shaped) relationship, with a turning point around 31.8 ◦C. This

discrepancy suggests that simple linear assumptions may fail to

capture threshold-like behavior.

Specifically, below 31.8◦C, each 1◦C increase in THDAT was

associated with a 9% reduced risk of rapid frailty progression,

indicating that moderate warmth exerts a protective role.

However, beyond 31.8◦C, the risk rose by 13% per 1◦C

increment, underscoring the detrimental impact of extreme heat

on cardiovascular and cerebrovascular systems in older adults

(27, 28).These findings highlight the importance of recognizing

non-linear temperature thresholds when developing climate-

responsive interventions.

From a public health perspective, our data suggest that

maintaining THDAT below 31.8◦C, TLDAT above−9◦C, and AAT

above 17◦Cmay collectivelymitigate frailty progression. This aligns

with previous evidence linking both cold spells and heat waves to

adverse outcomes, further emphasizing the vulnerability of older

adults to temperature extremes.

We grouped participants based on gender, BMI, marital

status, place of residence, drink, smoke, and education

level and confirmed through subgroup analysis that AAT

and TLDAT had stable and non-interactive effects on FPR

across different groups (P for interactions >0.05). Subgroup

analysis of THDAT and FPR further suggests that THDAT

has a stronger protective effect on participants with normal

BMI. For overweight participants, however, THDAT did

not significantly affect FPR. This may be because higher fat

mass in overweight individuals might help maintain body

temperature stability, although the specific mechanism requires

further research.

Moreover, the interaction terms for THDAT and education

level, as well as place of residence, were statistically significant

(P < 0.05), suggesting that the protective effects of temperature

on frailty progression may differ by these sociodemographic

factors. In particular, individuals with lower education levels

and those living in rural areas appeared more vulnerable to

extreme temperatures. This may be due to limited access to

climate-responsive resources and healthcare, further underlining

the need for targeted public health interventions for these

high-risk groups.

Our research shows that the daily average minimum

temperature, daily average maximum temperature, and annual

average temperature all influence the progression of frailty in the

older adults throughout the year. The impact of cold on the older

adult may be due to the fact that middle-aged and older adult

people are more sensitive to cold environments. The primary cause

of frailty in the older adults is the decline in physical function due

to cardiovascular and cerebrovascular diseases. In cold conditions,

plasma viscosity increases, and peripheral circulation resistance

also rises, which can lead to stroke and ischemic heart disease,

further deteriorating physical function (29, 30).

Additionally, studies have shown that the comfortable

temperature range for the older adult is higher than that

of younger individuals, as their ability to regulate body

temperature diminishes, preventing them from maintaining

optimal core temperature (31, 32). This change can result

in reduced catecholamine secretion, causing mental and

psychological dysfunction (33, 34). Our research also highlights

that living in rural areas is a disadvantageous factor for frailty

development, possibly due to inadequate insulation measures

in rural areas. In contrast, urban areas in northern China,

with centralized heating systems, provide better protection

against the negative impacts of extreme cold weather on

the older adult.

The impact of heat waves on the older adults

primarily manifests as high temperatures accelerating

the evaporation of urban water bodies and increasing

urban humidity. These droplets combine with respiratory

viruses, accelerating their spread and increasing the

incidence of respiratory diseases (35). Furthermore, excessive

evaporation of sweat and insufficient hydration in the

older adult under extreme high temperatures can lead to

strokes (36). High temperatures are also closely linked to

cardiovascular diseases, chronic kidney disease, and other

conditions (37, 38).

Our research has several advantages. Previous studies have

explored the effects of temperature on mortality and cardiovascular

and cerebrovascular diseases in the older adults from various

perspectives. This study, however, links daily living ability,

physical function, mental and psychological disorders, and chronic

diseases of the older adults through the Frailty Index (FI).

By utilizing the FI, we are able to more comprehensively

demonstrate the impact of temperature on the overall physical

function of older adults. Furthermore, our longitudinal cohort

study allows us to track changes in the FI index over time,

providing a better understanding of how temperature affects

frailty progression.

5 Limitations

This study relied on city-level temperature data rather

than individualized measurements, potentially underestimating

personal microenvironments—especially for older adults spending

variable time indoors. We also did not assess other environmental

factors (e.g., humidity, air pollutants), which may interact with

temperature and further influence frailty. Although certain

baseline characteristics showed P < 0.05 when comparing

included and excluded participants, standardized mean differences

were below 0.1, indicating minimal practical bias. Moreover,

frailty is multifactorial; unmeasured lifestyle factors (e.g., diet,

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1507400
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


He et al. 10.3389/fpubh.2025.1507400

physical activity) may have introduced residual confounding.

Finally, using a fixed threshold (1FI > 0.1) to define rapid

frailty progression may overlook more nuanced changes.

Future research should employ more granular temperature

assessments, account for additional environmental exposures,

and consider both continuous and threshold-based definitions of

frailty progression.

6 Conclusions

This study highlights the significant impact of temperature on

frailty progression in older adults. Environments with a TLDAT

above −9◦C, a THDAT below 31.8◦C, and an AAT above 17◦C are

optimal for delaying frailty progression.

Subgroup analyses show that individuals with lower education

and those from rural areas are more vulnerable to extreme heat.

These findings emphasize the need for targeted public health

interventions that account for both temperature thresholds and

sociodemographic factors, to protect older adults from the adverse

effects of temperature extremes.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

The studies involving humans were approved by the

Institutional Review Board at Peking University. The studies

were conducted in accordance with the local legislation and

institutional requirements. The participants provided their

written informed consent to participate in this study. Written

informed consent was obtained from the individual(s) for the

publication of any potentially identifiable images or data included

in this article.

Author contributions

XH: Writing – original draft. ZC: Funding acquisition,

Data curation, Writing – review & editing. HC: Data curation,

Methodology, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported

by the internal matching fund of the Fuzhou University Affiliated

Provincial Hospital for fostering key personnel in the National

Natural Science Foundation within the hospital in 2024, project

code: 00802750.

Acknowledgments

This study is based on the baseline of the China Health

and Retirement Longitudinal Study (CHARLS). We would like

to thank the CHARLS research team, the field team, and every

respondent for their time and efforts that they have devoted to the

CHARLS project.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.

1507400/full#supplementary-material

References

1. Kuzuya M. Era of geriatric medical challenges: multimorbidity among older
patients. Geriatr Gerontol Int. (2019) 19:699–704. doi: 10.1111/ggi.13742

2. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD.
Management of frailty: opportunities, challenges, and future directions. Lancet. (2019)
394:1376–86. doi: 10.1016/S0140-6736(19)31785-4

3. Cohen CI, Benyaminov R, Rahman M, Ngu D, Reinhardt M. Frailty: a
multidimensional biopsychosocial syndrome. Med Clin North Am. (2023) 107:183–
97. doi: 10.1016/j.mcna.2022.04.006

4. Proietti M, Cesari M. Frailty: what is it? Adv Exp Med Biol. (2020) 1216:1–
7. doi: 10.1007/978-3-030-33330-0_1

5. Rockwood K, Mitnitski A. Frailty defined by deficit accumulation
and geriatric medicine defined by frailty. Clin Geriatr Med. (2011)
27:17–26. doi: 10.1016/j.cger.2010.08.008

6. Chen Y, Lin S, Yang S, Qi M, Ren Y, Tian C, et al. Genetic and phenotypic
associations of frailty with cardiovascular indicators and behavioral characteristics. J
Adv Res. (2024) 9:S2090-1232(24)00249-2.

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1507400
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1507400/full#supplementary-material
https://doi.org/10.1111/ggi.13742
https://doi.org/10.1016/S0140-6736(19)31785-4
https://doi.org/10.1016/j.mcna.2022.04.006
https://doi.org/10.1007/978-3-030-33330-0_1
https://doi.org/10.1016/j.cger.2010.08.008
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


He et al. 10.3389/fpubh.2025.1507400

7. Atkins JL, Jylhävä J, Pedersen NL, Magnusson PK, Lu Y, Wang
Y, et al. genome-wide association study of the frailty index highlights
brain pathways in ageing. Aging Cell. (2021) 20:e13459. doi: 10.1111/acel.
13459

8. Yoneyama K, Nakai M, Higuma T, Teramoto K, Watanabe M, Kaihara T, et al.
Weather temperature and the incidence of hospitalization for cardiovascular diseases
in an aging society. Sci Rep. (2021) 11:10863. doi: 10.1038/s41598-021-90352-x

9. Chen Z, Liu P, Xia X, Cao C, Ding Z, Li X. Low ambient temperature exposure
increases the risk of ischemic stroke by promoting platelet activation. Sci Total Environ.
(2024) 912:169235. doi: 10.1016/j.scitotenv.2023.169235

10. Mou P, Qu H, Guan J, et al. Extreme temperature events, functional dependency,
and cardiometabolic multimorbidity: insights from a national cohort study in China.
Ecotoxicol Environ Saf. (2024) 284:117013. doi: 10.1016/j.ecoenv.2024.117013

11. Liang S, Chen Y, Sun X, et al. Long-term exposure to ambient ozone and
cardiovascular diseases: evidence from two national cohort studies in China. J Adv Res.
(2024) 62:165–73. doi: 10.1016/j.jare.2023.08.010

12. Lv Y, Yang Z, Ye L, Jiang M, Zhou J, Guo Y, et al. Long-term fine particular
exposure and incidence of frailty in older adults: findings from the Chinese longitudinal
healthy longevity survey. Age Ageing. (2023) 52:afad009. doi: 10.1093/ageing/
afad009

13. Collaborators GRF. Global burden of 87 risk factors in 204 countries and
territories, 1990-2019: a systematic analysis for the global burden of disease study 2019.
Lancet. (2020) 396:1223–49. doi: 10.1016/S0140-6736(20)30752-2

14. Zhao Y, Strauss J, Yang G, Giles J, Hu P, Hu Y, et al. China Health and Retirement
Longitudinal Study: 2011–2012 National Baseline User’s Guide, National School of
Development, Peking University (2013).

15. Zhao Y, Strauss J, Chen X, Wang Y, Gong J, Meng Q, et al. China Health and
Retirement Longitudinal StudyWave 4 User’s Guide, National School of Development,
Peking University (2020).

16. Zhao Y, Hu Y, Smith JP, Strauss J, Yang Y. Cohort profile: the China Health
and Retirement Longitudinal Study (CHARLS). Int J Epidemiol. (2014) 43:61–
68. doi: 10.1093/ije/dys203

17. Theou O, Haviva C, Wallace L, Searle SD, Rockwood K. How to
construct a frailty index from an existing dataset in 10 steps, Age Ageing.
52:afad221. doi: 10.1093/ageing/afad221

18. DaiW, Liu S, XuW, Shen Y, Yang X, Zhou Q. The combined effects of heatwaves,
air pollution and greenery on the risk of frailty: a national cohort study. Sci Rep. (2024)
14:24293. doi: 10.1038/s41598-024-73604-4

19. Tian H, Li YM, Wang CQ, Chen GQ, Lian Y. Association between non-
insulin-based insulin resistance indicators and frailty progression: a national
cohort study and mendelian randomization analysis. Cardiovasc Diabetol. (2025)
24:31. doi: 10.1186/s12933-025-02597-9

20. Ren H, Wang Z, Jiang Y, Mu Q, Li Y, Wang J, et al. Antidepressant
intervention to possibly delay disease progression and frailty in elderly
idiopathic pulmonary fibrosis patients: a clinical trial. Aging Clin Exp Res. (2025)
37:101. doi: 10.1007/s40520-025-03009-4

21. R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. (2021) Available at: https://
www.R-project.org/ (accessed October 1, 2024).

22. IBM Corp. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM
Corp. (2019).

23. Yang J, Yin P, Sun J, Wang B, Zhou M, Li M, et al. Heat wave and mortality in
31 major Chinese cities: definition, vulnerability and implications. Sci Total Environ.
(2019) 649:695–702. doi: 10.1016/j.scitotenv.2018.08.332

24. De Riggi M, Paparella G, Cannavacciuolo A, Salzillo M, Nuti F, Quarta
L, et al. Aging, frailty, and their effects on motor performance: evidence from
kinematic analysis. Neurol Sci. (2025). doi: 10.1007/s10072-025-08092-z. [Epub ahead
of print].

25. Esteves GP, Swinton P, Sale C, Gualano B, Roschel H, Dolan E. Use of factor
analysis to model relationships between bonemass and physical, dietary, andmetabolic
factors in frail and pre-frail older adults. J Appl Physiol (1985). (2023) 135:146–
153. doi: 10.1152/japplphysiol.00129.2023

26. Capece U, Iacomini C, Mezza T, Cesario A, Masciocchi C, Patarnello S, et al.
Real-world evidence evaluation of LDL-C in hospitalized patients: a population-
based observational study in the timeframe 2021–2022. Lipids Health Dis. (2024)
23:224. doi: 10.1186/s12944-024-02221-x

27. Thompson R, Kovats S, Hajat S, Macintyre H, O’Connell E. Identification
of individual-level clinical factors associated with increased risk of death during
heatwaves: a time-stratified case-crossover study using national primary care records
in England. BMJ Public Health. (2024) 2:e000927. doi: 10.1136/bmjph-2024-000927

28. Gibbons TD, Tymko MM, Thomas KN, Wilson LC, Stembridge M, Caldwell
HG, et al. Global REACH 2018: the influence of acute and chronic hypoxia on cerebral
haemodynamics and related functional outcomes during cold and heat stress. J Physiol.
(2020) 598:265–84. doi: 10.1113/JP278917

29. Zhou L, Wei Y, Ge Y, Li Y, Liu K, Gao Y, et al. Global, regional, and national
burden of stroke attributable to extreme low temperatures, 1990-2019: a global analysis.
Int J Stroke. (2024) 19:676–685. doi: 10.1177/17474930241238636

30. He Q, Lang X, Shen H, Liu J, Zhou S, Wei J, et al. Impact of
extreme temperature on congenital heart disease mortality: a population-
based nationwide case-crossover study. Lancet Reg Health West Pac. (2024)
53:101244. doi: 10.1016/j.lanwpc.2024.101244

31. Kirby N, Meade R, McCormick J, King KE, Kenny GP. Brain-derived
neurotrophic factor response to daylong exposure to extreme heat in young
and older adults: a secondary analysis. Appl Physiol Nutr Metab. (2025) 50:1–
9. doi: 10.1139/apnm-2024-0289

32. Hernandes Júnior PR, Sardeli AV. The effect of aging on body
temperature: a systematic review and meta- analysis. Curr Aging Sci. (2021)
14:191–200. doi: 10.2174/1874609814666210624121603

33. Jin J, Xu Z. Cao R, Wang Y, Zeng Q, Pan X, et al. Long-Term apparent
temperature, extreme temperature exposure, and depressive symptoms:
a longitudinal study in China. Int J Environ Res Public Health. (2023)
20:3229. doi: 10.3390/ijerph20043229

34. Fischer S, Naegeli K, Cardone D, Filippini C, Merla A, Hanusch KU, et al.
Emerging effects of temperature on human cognition, affect, and behaviour. Biol
Psychol. (2024) 189:108791. doi: 10.1016/j.biopsycho.2024.108791

35. Alari A, Letellier N, Benmarhnia T. Effect of different heat wave timing
on cardiovascular and respiratory mortality in France. Sci Total Environ. (2023)
892:164543. doi: 10.1016/j.scitotenv.2023.164543

36. Deng B, Zhu L, Zhang Y, Tang Z, Shen J, Zhang Z, et al. Short-term exposure
to PM25 constituents, extreme temperature events and stroke mortality. Sci Total
Environ. (2024) 954:176506. doi: 10.1016/j.scitotenv.2024.176506

37. Sasai F, Roncal-Jimenez C, Rogers K, Sato Y, Brown JM, Glaser J,
et al. Climate change and nephrology. Nephrol Dial Transplant. (2023) 38:41–
8. doi: 10.1093/ndt/gfab258

38. Alahmad B, Khraishah H, Royé D, Vicedo-Cabrera AM, Guo
Y, Papatheodorou S, et al. Associations between extreme temperatures
and cardiovascular cause-specific mortality: results from 27 countries.
Circulation. (2023) 147:35–46. doi: 10.1161/CIRCULATIONAHA.122.
061832

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1507400
https://doi.org/10.1111/acel.13459
https://doi.org/10.1038/s41598-021-90352-x
https://doi.org/10.1016/j.scitotenv.2023.169235
https://doi.org/10.1016/j.ecoenv.2024.117013
https://doi.org/10.1016/j.jare.2023.08.010
https://doi.org/10.1093/ageing/afad009
https://doi.org/10.1016/S0140-6736(20)30752-2
https://doi.org/10.1093/ije/dys203
https://doi.org/10.1093/ageing/afad221
https://doi.org/10.1038/s41598-024-73604-4
https://doi.org/10.1186/s12933-025-02597-9
https://doi.org/10.1007/s40520-025-03009-4
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1016/j.scitotenv.2018.08.332
https://doi.org/10.1007/s10072-025-08092-z
https://doi.org/10.1152/japplphysiol.00129.2023
https://doi.org/10.1186/s12944-024-02221-x
https://doi.org/10.1136/bmjph-2024-000927
https://doi.org/10.1113/JP278917
https://doi.org/10.1177/17474930241238636
https://doi.org/10.1016/j.lanwpc.2024.101244
https://doi.org/10.1139/apnm-2024-0289
https://doi.org/10.2174/1874609814666210624121603
https://doi.org/10.3390/ijerph20043229
https://doi.org/10.1016/j.biopsycho.2024.108791
https://doi.org/10.1016/j.scitotenv.2023.164543
https://doi.org/10.1016/j.scitotenv.2024.176506
https://doi.org/10.1093/ndt/gfab258
https://doi.org/10.1161/CIRCULATIONAHA.122.061832
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	The impact of ambient temperature on frailty progression in older adults: Evidence from a longitudinal study in China
	1 Introduction
	2 Method
	2.1 Data source and participants
	2.2 Calculation of the FI
	2.3 Temperature data
	2.4 Covariates
	2.5 Statistical analysis

	3 Results
	3.1 Participant selection
	3.2 Participant characteristics
	3.3 Relationship between temperature data and FPR
	3.4 Subgroup analysis

	4 Discussion
	5 Limitations
	6 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


