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The escalating demand for chronic disease management has presented

substantial challenges to traditional methods. However, the emergence of

Internet of Things (IoT) and artificial intelligence (AI) technologies o�ers a

potential resolution by facilitating more precise chronic disease management

through data-driven strategies. This review concentrates on the utilization

of IoT mobile sensing devices in managing major chronic diseases such as

cardiovascular diseases, cancer, chronic respiratory diseases, and diabetes. It

scrutinizes their e�cacy in disease diagnosis and management when integrated

with machine learning algorithms, such as ANN, SVM, RF, and deep learning

models. Through an exhaustive literature review, this study dissects how these

technologies aid in risk assessment, personalized treatment planning, and

disease management. This research addresses a gap in the existing literature

concerning the application of IoT and AI technologies in the management of

specific chronic diseases. It particularly demonstrates methodological novelty

by introducing advanced models based on deep learning, tight frame-based

methodologies and real-time monitoring systems. This review employs a

rigorous examination method, which includes systematically searching relevant

databases, filtering literature that meets specific inclusion and exclusion criteria,

and adopting quality assessment tools to ensure the rigor of selected studies.

This study identifies potential biases and weaknesses related to data collection,

algorithm selection, and user interaction. The research demonstrates that

platforms integrating IoT and machine learning algorithms for chronic disease

monitoring and management are not only technically viable but also yield

substantial economic and social advantages in real-world applications. Future

studies could investigate the use of quantum computing for processing

vast medical datasets and novel techniques that merge biosensors with

nanotechnology for drug delivery and disease surveillance. Furthermore,

this paper examines recent progress in medical image reconstruction,

emphasizing tight frame-based methodologies. We discuss the principles,

benefits, and constraints of thesemethods, assessing their e�cacy across diverse

application contexts.
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1 Introduction

1.1 The challenges and opportunities in
public health management of chronic
diseases

Cardiovascular diseases, cancer, chronic respiratory diseases,
and diabetes constitute the most prevalent chronic diseases globally
(1). According to data from the World Health Organization,
cardiovascular diseases are the leading cause of non-communicable
disease deaths, accounting for an estimated 17.9 million fatalities
annually. This is followed by cancer with 9 million deaths,
respiratory diseases with 3.9 million deaths, and diabetes with
1.6 million deaths. These four categories of diseases collectively
account for 80% of all non-communicable disease fatalities
worldwide (2). In China, over 80% of annual mortality is
attributed to chronic non-communicable diseases such as heart
disease, stroke, hypertension, and diabetes (3). The Global Burden
of Disease study published in The Lancet further emphasizes
that chronic diseases have emerged as the predominant disease
burden globally, necessitating immediate preventative and control
measures (4).

Challenges in monitoring and managing chronic diseases
encompass limitations in the scope of surveillance, a lack
of universality in prevention strategies, weak individual self-
management skills, an absence of supportive policy environments,
disconnects between projects and routine operations, a deficiency
in scientifically robust project evaluation mechanisms, inadequate
coordination across institutional tiers, the imperative to enhance
residents’ health literacy, human resource constraints, and a
rising trend of young individuals contracting chronic diseases
(5). These challenges compromise the precision, continuity, and
comprehensiveness of chronic disease surveillance data, thereby
impeding the effective deployment of prevention and control
strategies and the optimal health management of patients with
chronic diseases. Furthermore, the substantial disease burden
imposed by chronic conditions, coupled with pervasive unhealthy
lifestyles, further complicates the task of chronic disease prevention
and control (6). To address these issues, it is essential to implement
comprehensivemeasures that incorporate big data and information
technology to refine chronic disease management, fortify health
education initiatives, optimize the policy environment, and bolster
coordination among medical institutions at various levels.

Traditional methods of chronic disease monitoring
predominantly rely on manual processes, which are constrained
by a limited scope of population surveillance, data collection
limitations, accuracy concerns, and a lack of universality in
prevention and management strategies (7). These methods are
further compromised by weak self-management capabilities and
compliance issues that affect the effectiveness of monitoring and
management. Additionally, challenges such as the inconvenience
of accessing medical services, the phenomenon of information
silos, the absence of real-time monitoring and feedback, uneven
distribution of medical resources, outdated technology and
methods, and the lack of effective prediction and early warning
mechanisms further impede traditional monitoring methods
(8). However, with the advancement of information technology,

modern tools such as electronic health records, mobile health
applications, telemedicine, and big data analysis are gradually
mitigating these limitations and enhancing the efficiency and
effectiveness of chronic disease monitoring (9). For instance,
the collection of individual health data through mobile health
management devices and its upload to cloud platforms not
only enhances data accessibility and timeliness but also aids in
improving risk prediction and management of chronic diseases
(10). Furthermore, the application of machine learning technology
has become crucial for analyzing large medical and health datasets,
widely used in early disease prediction, diagnosis, and prognosis
assessment. This has significantly improved the accuracy and
practicality of chronic disease risk prediction models (11).

IoT is a network concept that encompasses various
networks, including the Internet, traditional telecommunication
networks, and sensor networks. It facilitates the formation of an
interconnected network by enabling all ordinary physical objects
to be independently addressed, thereby achieving intelligent
identification, positioning, tracking, monitoring, and management
(12). IoT mobile sensing devices, which include a variety of
wearable devices, portable medical devices, and embedded sensors,
can be utilized to collect physiological and behavioral data
from patients with chronic diseases (13). Machine learning, an
AI technology that enables computer systems to continuously
improve by learning from data and patterns, thus enabling them
to make predictions or decisions without explicit programming
(14), is another key component. The integration of IoT technology
and machine learning algorithms offers new possibilities for
real-time monitoring, risk assessment, and personalized treatment
of chronic diseases.

In the realm of real-time monitoring, Mishra et al. have
developed an automated intelligent lung cancer detection model
based on the Health IoT. This model employs a Greedy
Best-First Search algorithm and a Random Forest classifier to
continuously monitor and collect patient data, thereby assisting
clinical personnel in the early identification of disease risks
associated with lung cancer and enhancing the accuracy of
lung cancer diagnosis. Chronic disease management requires
the collection and analysis of a vast amount of health data
(15). Abubeker et al. have developed a wearable blood glucose
monitoring (iGM) system supported by IoT. This wearable iGM
device can continuously monitor the blood glucose levels of
patients, transforming diabetes care and improving the quality
of life for patients (16). Dhanasekaran et al. have developed
a novel Multi-Objective Water Wave Optimization (MOWWO)
algorithm. This algorithm utilizes Support Vector Machines (SVM)
to handle the massive amounts of chronic disease data generated
by IoT and employs wearable devices in telemedicine systems,
such as wearable ultrasound patches, for cluster-based healthcare
monitoring, thereby improving the diagnostic efficiency of chronic
diseases like cardiovascular diseases (17).

In the realm of risk assessment, Liao et al. employ a method
that involves processing, cleaning, and filtering data gathered
from IoT sensors such as wearable electrocardiogram monitors,
smart health watches, and blood pressure monitors in the cloud.
They utilize artificial neural networks (ANN), in combination
with genetic algorithms and error backpropagation mechanisms, to
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scrutinize electronic clinical data pertaining to the patient’s medical
history. This approach enables them to accurately diagnose the
risk of heart disease (18). Similarly, Yashudas et al. proposed a
cardiovascular disease prediction recommendation system based
on an IoT network. This system employs four types of biosensors—
electrocardiogram sensors, stress sensors, pulse sensors, and
glucose sensors—to remotely collect physiological data from
patients. The collected data is then used to assess the risk of heart
disease, thereby providing patients with early diagnosis, treatment,
and dietary recommendations (19).

In the realm of personalized treatment, Nanehkaran et al.
proposed a medical recommendation system that utilizes IoT
devices to identify and treat chronic diseases. This system
employs the K-Nearest Neighbors (KNN) classification method
to determine the type of disease and uses collaborative filtering
to identify the most effective treatment for patients. The results
suggest that this approach offers superior accuracy in diagnosing
and predicting chronic diseases (20). Casillo et al. developed
an IoT-based framework that incorporates machine learning
techniques to collect precise data from patients with respiratory
and cardiovascular diseases using wearable devices such as
smartwatches (e.g., heart rate or blood oxygen levels). This
framework provides a comprehensive view of treatment progress
to monitor hydrotherapy care, thereby offering personalized
customer management for tailored treatment (21). Baseer et al.
introduced a novel coronary artery disease prediction model that
integrates medical IoT with AI. This model captures real-time
data from interconnected medical devices, wearables, and sensors,
including continuous heart rate monitoring, electrocardiograms,
and blood pressure readings. The model employs a combination
of TabNet and catBoost to process and interpret the complex data
obtained through the medical IoT, thereby achieving personalized
cardiovascular disease risk assessment (22).

Despite the abundance of reviews on IoT-enabled chronic
disease monitoring, as shown in Figure 1, our literature review
reveals a significant gap in studies that exclusively focus on the
evolution of machine learning (ML)-based techniques for big data
analysis in the IoT healthcare sector. Our manuscript aims to fill
this gap by providing a comprehensive analysis of ML techniques
and their applications in IoT-enabled smart healthcare systems.
The rapid advancement in IoT and ML technologies has led
to the development of innovative solutions for chronic disease
management. Our manuscript provides an up-to-date review
of these advancements, highlighting the latest trends and their
potential impact on healthcare management. Our review not only
discusses theoretical aspects but also provides practical applications
and case studies that demonstrate the real-world implementation
and effectiveness of IoT and ML in chronic disease monitoring.
This practical perspective is crucial for healthcare practitioners
and policymakers.

Our manuscript offers an exhaustive analysis of various ML
techniques, including deep learning, reinforcement learning, and
traditional ML algorithms, which are less frequently covered in
a single survey. This comprehensive coverage provides a holistic
view of the current state of ML in IoT healthcare. Unlike other
surveys that may focus solely on the advantages of ML techniques,
our manuscript critically evaluates the strengths and weaknesses

of existing ML techniques in the context of IoT healthcare. This
balanced analysis helps readers understand the limitations and
potential improvements needed. We highlight various research
challenges and suggest future directions in the field, which can
serve as a roadmap for researchers and developers working on
IoT-enabled chronic disease monitoring systems. Our manuscript
takes an interdisciplinary approach by integrating insights from
healthcare, data science, and engineering, providing a multifaceted
perspective that is often missing in specialized surveys. We have
conducted an extensive literature review, including the most recent
publications up to 2024, ensuring that our manuscript reflects the
latest developments and research findings in the field.

Our paper provides an in-depth analysis of various ML
techniques applied to big data in the context of IoT-enabled smart
healthcare systems. This includes a review of both traditional
and advanced ML algorithms, offering a broad perspective
on their capabilities and applications. Through our systematic
literature review, we have identified significant research gaps
in the field, particularly regarding the integration of ML-based
big data analytics in IoT healthcare. Our paper highlights
these gaps, which can guide future research directions. We
critically evaluate the strengths and weaknesses of existing ML
techniques, providing a balanced view that can inform the selection
of appropriate techniques for specific healthcare applications.
Our review includes practical applications and case studies
that demonstrate the real-world implementation of IoT and
ML in chronic disease monitoring, offering insights into their
effectiveness and potential for improvement. We propose future
research directions, addressing the challenges and opportunities
in the field, which can serve as a roadmap for researchers and
practitioners in the development of IoT-enabled chronic disease
monitoring systems.

We commend the studies that employed robust methodologies,
such as large-scale multi-center cohort studies and rigorous
machine learning algorithms, which have contributed to the
reliability and validity of their findings. We acknowledge the
innovative use of IoT devices and advanced machine learning
models that have pushed the boundaries of chronic disease
monitoring and management, offering new insights into patient
care. We critically assess the generalizability of the study results,
noting where sample sizes and demographic representations may
limit the applicability of findings to broader populations. We
address concerns regarding data accuracy, noting instances where
IoT devices may introduce biases, and where machine learning
algorithms may not be representative of specific populations,
affecting the precision of chronic disease risk predictions. We
discuss the ethical implications of data collection and storage,
especially in the context of IoT and AI technologies, and the
measures taken by studies to ensure patient privacy and data
security. We highlight areas where the current literature is lacking
and suggest directions for future research to build upon the existing
body of knowledge.

This study addresses a gap in the existing literature concerning
the application of IoT and AI technologies in the management
of specific chronic diseases. It particularly demonstrates
methodological novelty by introducing advanced predictive
models based on deep learning and real-time monitoring systems.
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FIGURE 1

Distribution of the number of relevant research papers.

Our systematic review employs a rigorous examination method,
which includes systematically searching relevant databases,
filtering literature that meets specific inclusion and exclusion
criteria, and adopting quality assessment tools to ensure the
rigor of selected studies. This research identifies potential biases
and weaknesses related to data collection, algorithm selection,
and user interaction. For example, certain IoT devices may have
biases in data accuracy, while some machine learning algorithms
may lack representativeness for specific populations. The unique
perspective addressed in this paper is evaluating the effectiveness
of specific IoT devices in managing cardiovascular diseases and
comparing the accuracy of different machine learning algorithms
in predicting chronic disease risks, especially among the older
adult population. The research demonstrates that platforms
integrating IoT and machine learning algorithms for chronic
disease monitoring and management are not only technically
viable but also yield substantial economic and social advantages in
real-world applications. This highlights their potential as future
paradigms for chronic disease management.

1.2 The potential of IoT and AI in chronic
disease management

The integration of IoT and AI technologies presents substantial
potential in the realm of chronic disease management. These
technologies not only augment the efficiency of management
processes and enhance medical diagnostic capabilities, but also
foster patients’ self-management skills and overall quality of
life. The emerging approach of data-driven chronic disease
management utilizes IoT devices to gather data, and employs
machine learning algorithms for comprehensive analysis.
The objective is to achieve a more precise management of
chronic conditions.

Giannakopoulou et al. gather data pertaining to Parkinson’s
patients through the use of smart devices, wearable or non-wearable
sensors, and other Internet of Things (IoT) technologies. They

employ machine learning and deep learning methodologies to offer
support for both Parkinson’s patients and healthcare providers
at every stage of the disease, thereby optimizing therapeutic
outcomes and minimizing medical costs (23). Abdel-Fattah et al.
proposed a hybrid machine learning technique that is based
on a big data platform (Apache Spark). This technique utilizes
feature selection methods and classification algorithms such as
decision trees, logistic regression, naive Bayes, random forests,
and gradient-boosted trees to collect and analyze data related to
chronic kidney disease. This approach provides timely feedback
and medical interventions for patients, thereby enhancing their
quality of life (24). Lee et al. employs stepwise logistic regression,
decision trees, random forests, and SVM, among other machine
learning techniques, to rapidly process the vast amounts of data
collected by IoT devices such as electrocardiogram monitors. This
provides summaries and descriptions of the health status of older
adult patients with chronic diseases like diabetes and cerebral palsy,
thereby enhancing the accuracy of chronic disease diagnosis (25).
Symum and Zayas-Castro uses five algorithms, including decision
trees, linear support vector machines (LSVM), KNN, random
forests, and multi-layer artificial neural networks, in conjunction
with semi-supervised anomaly detection and two feature selection
methods to construct models. These models predict the trends and
potential complications of diseases such as congestive heart failure,
acute myocardial infarction, and chronic obstructive pulmonary
disease, thereby enhancing diagnostic capabilities (26). Tian et al.
employs the use of SVM to conduct normative analysis on data
derived from Parkinson’s, multiple sclerosis, stroke, and other
diseases. This is achieved through the utilization of smart devices
such as pulse oximeters. The methodology provides data-driven
recommendations and decision support, thereby enhancing the
quality and efficiency of medical services (27).

The amalgamation of IoT and AI in chronic disease
management presents novel strategies for refining the management
process and elevating patient quality of life. This integration
facilitates superior patient education, intelligent monitoring,
and digital empowerment at the primary level of chronic
disease management. Jimenez et al. detailed the endeavors
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undertaken within the European TeNDER project, which focuses
on chronic diseases among the older adult population. TeNDER
is a system tailored for older adult individuals with chronic
conditions such as Alzheimer’s disease, Parkinson’s disease, and
cardiovascular diseases. It employs a sensory ecosystem to
enable patients to monitor their health status at all times,
thereby enhancing their quality of life (28). Morales-Botello
et al. leveraged emerging technologies such as big data, cloud
computing, and IoT, in combination with medical guidelines
and knowledge bases, to offer patients with chronic diseases
like cardiovascular diseases, hypertension, and chronic obstructive
pulmonary disease educational information on disease knowledge,
medication information, lifestyle, scientific monitoring, and
complications. This methodology has significantly improved the
quality of life for patients (29). Yu et al. introduced an AI-
centric system for chronic disease management, integrating AI,
knowledge graphs, big data, and IoT on a unified platform. This
system autonomously incorporates follow-up data into patients’
health records, generates follow-up reports, and alerts physicians
for necessary interventions, thereby enhancing compliance among
pediatric chronic disease patients (30). Singh et al. merged fog
computing with AI and smart health to offer a robust platform
for the early detection of thyroid infections and to maintain
comprehensive health records throughout the disease trajectory.
By assimilating in-hospital data, public health information, and
patient monitoring records from external sources, the system
automatically aggregates this data into structured charts, thereby
elevating medical management efficiency (31). Omboni et al.
employed Tholomeus, a remote medical solution rooted in
medical IoT, to boost patient medication adherence via intelligent
reminders and medication logs. By synergizing big data for
chronic disease management, electronic medical records, and IoT
technologies, the system ensures that patients do not miss pivotal
moments for chronic disease management, thus enhancing overall
management efficacy (32).

In the realm of chronic disease management, our primary
focus is on the long-term monitoring and treatment of persistent
conditions such as hypertension and diabetes. The advent of
technology has led to a significant role for medical image
analysis in this field. This analysis aids physicians in achieving
more precise diagnoses, evaluating treatment outcomes, and
formulating personalized treatment plans for patients. For example,
in diagnosing stroke, medical image processing techniques can
scrutinize magnetic resonance imaging (MRI), and computed
tomography (CT) images, underscoring the importance of
early diagnosis for patient treatment and recovery. As the
need for medical image analysis in chronic disease patients
escalates, so too does the potential for advancements in medical
image reconstruction technology. Particularly, deep learning-based
methods are becoming instrumental in enhancing imaging quality,
reducing radiation doses, and improving patient care. Deep
learning image reconstruction (DLR) technology represents one of
the most advanced developments in MRI image reconstruction.
It surpasses traditional MRI image reconstruction techniques by
delivering superior quality images, thereby providing doctors with
more accurate diagnostic information. Moreover, recent research
progress in AI for medical CT image reconstruction suggests
that the use of feature pyramid networks, GPU-accelerated image

reconstruction, and other technologies can significantly enhance
the efficiency and quality of image reconstruction.

Chronic disease image reconstruction constitutes a significant
area of research in contemporary medical imaging, aiming
to restore comprehensive medical images from partial or
compromised data. As medical imaging technologies, such as
MRI and CT, continue to advance, the requirements for image
quality and resolution escalate correspondingly. Consequently,
the effective reconstruction of high-quality medical images has
emerged as a central focus of research attention. In recent years,
the application of tight frame theory has significantly expanded
in the realm of image processing and analysis, particularly
within the domain of image reconstruction. Tight frames serve
as an efficacious mathematical instrument for articulating the
sparsity and structural attributes of images. When integrated
with other sophisticated methodologies such as compressed
sensing, total variation, and deep learning, tight frames introduce
novel opportunities and challenges in the field of medical
image reconstruction. Numerous studies have explored medical
image reconstruction methods based on tight frames. These
methodologies address various challenges, including managing
uneven intensity, reconstructing CT images from limited angles,
and leveraging data-driven approaches to enhance the quality of
MRI reconstructions. Moreover, some research endeavors seek to
amalgamate tight frames with alternative techniques to further
optimize reconstruction outcomes. Despite the advancements
in tight frame-based medical image reconstruction, numerous
challenges persist. These include determining the optimal choice of
tight frames, addressing intricate noise and artifacts, and ensuring
the clinical relevance of the reconstructed images.

The novelties of this review are predominantly reflected in the
ensuing aspects:

(1) Interdisciplinary integration: the review skillfully
amalgamates insights derived from health care, data
science, and engineering disciplines, thereby providing
a comprehensive perspective that is frequently absent in
expert surveys.

(2) Comprehensive literature review: the review offers an
exhaustive review of the literature, incorporating the
most recent publications from 2024, to ensure that the
latest advancements and research findings in the field are
accurately reflected.

(3) Emphasis on deep learning-based models: this review places
significant emphasis on the exploration and understanding
of sophisticated models grounded in deep learning.

(4) Real-time monitoring systems: the review introduces IoT
and ML algorithm-based monitoring and management
platforms for chronic diseases. These platforms are not only
technically viable but also offer significant economic and
social advantages in real-world applications.

(5) Data-driven chronic disease management: the review
investigates the potential utility of IoT devices for data
collection, coupled with machine learning algorithms for
comprehensive data analysis, thereby enabling more precise
management of chronic diseases.

(6) Multimodal datasets and methodologies: review that
encompass a range of ML techniques, such as DL, RL,
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and conventional machine learning algorithms, offers an
exhaustive perspective on the prevailing state of ML within
the sphere of IoT healthcare.

(7) Application of tight frame: the review discusses the
application of tight frame theory to augment the restoration
and reconstruction of medical images. It introduces
a data-driven tight frame magnetic resonance imaging
reconstruction method (DDTF-MRI), alongside a space-
Radon domain CT image reconstruction model employing
data-driven tight frames (SRD-DDTF).

(8) Utilization of quantum computing in healthcare: this review
proposes possible applications of quantum computing
in the management of extensive medical data. It also
explores emerging technologies in drug delivery and
disease monitoring, achieved through the integration
with biosensors.

2 The application of key IoT and AI
technologies in chronic disease
management

2.1 The application of IoT in chronic
disease management

In the realm of lifestyle monitoring, the use of IoT mobile
sensing devices for tracking the diet, exercise, and sleep patterns
of chronic disease patients is on the rise. These devices include
smart wearables, non-contact biometric radar devices, and remote
monitoring kits. In the field of remote health monitoring, IoT
mobile sensing devices are instrumental in the continuous tracking
of vital signs in chronic disease patients. This includes real-time
monitoring and data transmission, non-contact monitoring, and
predictive maintenance of medical devices, among others.

Portable medical devices, typically battery-powered and
handheld, are compact medical instruments that are easy to
transport and operate. Zaman and Morshed introduced a
rechargeable, battery-operated portable scanner (i.e., demodulator)
for collecting data from body-worn wireless resistive analog
passive sensors. This device can obtain biological signals such as
body temperature, electrocardiogram (ECG), oxygen saturation,
electromyogram (EMG), and respiratory rate from patients (33).
Anh Tran Tam Pham et al. developed a portable medical open
platform for fluorescence measurements at varying excitation and
emission wavelengths. This platform is used to detect changes in the
level of albumin in urine samples, thereby aiding in the detection
and monitoring of chronic kidney disease (34). Mateen et al.
employed a portable magnetic resonance scanner to provide basic
vital sign monitoring data, which is instrumental in the detection
of demyelinating diseases of the central nervous system (35).

Wearable medical devices, such as smartwatches and health
tracking bands, are designed to be worn directly on the body.
These devices can monitor and record physiological parameters
in real-time, including heart rate, blood pressure, and blood sugar
levels. They also utilize software support to perform data analysis
and provide health recommendations. Vybornova et al. developed
an IoT-based, non-invasive, cuffless blood pressure monitor that
measures optical photoplethysmographic pulse wave signals on the

wrist. This device calculates systolic and diastolic pressure values
using pulse wave analysis technology (36). Grandner et al. evaluated
the performance of a new IoT-based device, the Happy Ring,
which assesses sleep continuity and structure. The personalized
algorithm of this device demonstrated higher sensitivity and
detection accuracy compared to general methods and other
devices (37). Wu et al. proposed an IoT-based real-time health
monitoring system that uses deep learning. This system employs
wearable medical devices to measure vital signs of patients with
chronic diseases such as brain tumors, heart disease, and cancer.
It applies various deep learning algorithms to extract valuable
information, assisting doctors in accurately analyzing patient
conditions (38).

Ingestible medical devices, also known as ingestible capsule
endoscopes and drug delivery systems, are small electronic devices
that patients can swallow. These devices are typically used for
monitoring and drug release within the digestive tract. van der
Schaar et al. employed remotely controlled ingestible drug delivery
devices to target medication delivery to specific areas of the
intestine, thereby treating various diseases of the small intestine
(39). Weitschies et al. utilized swallowable sensors to gather
physiological data from the patient’s gastrointestinal tract. This data
is crucial for the successful development of drug products, which
can be used for the diagnosis of inflammatory bowel diseases (40).

Implantable medical devices, such as cardiac pacemakers
and implantable cardioverter-defibrillators (ICDs), necessitate
surgical insertion into the human body. These devices can
monitor physiological conditions over extended periods or
deliver treatments like neurostimulators or drug pumps. Yacoub
and McLeod pioneered the development of these implantable
devices, notably the ICDs, which are instrumental in detecting
impending unstable heart failure or pulmonary hypertension,
thereby significantly reducing the readmission rate among
patients with chronic heart failure (41). Similarly, Israel et al.
successfully implanted pacemakers equipped with atrial fibrillation
detection and electrogram storage features in patients exhibiting
physiological pacing indications and a history of atrial fibrillation.
They regularly monitored these patients for symptoms related
to atrial fibrillation and optimized their antiarrhythmic drug
therapy (42).

Intelligent clinical devices primarily cater to medical staff,
including mobile nursing management, infusion monitoring
management, smart wards, and bedside intelligent interaction.
These devices assist nursing personnel in obtaining real-time
patient information and enhancing nursing efficiency. Shamsabadi
et al. employed various IoT sensors to monitor and track vital
signs of type 2 diabetes patients, such as heart rate, blood pressure,
oxygen saturation, and body temperature. This approach facilitated
physicians in managing patients virtually via the internet, thereby
improving treatment methods and overall patient health (43).
Sandhu and Singh developed an automatic medication dispenser
that can be easily controlled through a mobile application. This
product ensures the management of medication intake timing and
dosage through a mobile application, thereby reducing the burden
on healthcare personnel (44). Naseem et al. proposed an IoT-
supported electrocardiogram monitoring system. This system can
calculate statistical features of raw ECG signals and employ the
Pan Tompkins QRS detection algorithm to assess the signals. The
system is used to extract heart rate variability characteristics for the
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TABLE 1 Chronic disease datasets used in statistical and machine learning analysis.

Dataset name Region Index Disease Amount
of data

References

Pima Indian Diabetes Dataset India Plasma Glucose Concentration Diabetes 968 (250)

UCHTT1DM Chile Glucose, Heart Rate, IGAR, Step
Count, etc.

Diabetes 20 (251)

Sylhet Diabetes Dataset Bangladesh Weight, Eyesight, Food Intake, etc. Diabetes 520 (252)

Tehran Diabetes Dataset Iran Body Mass Index and Working
Heart Rate

Diabetes 3,376 (253)

National Institute Diabetes Dataset America Glucose, Blood Pressure, Skin
Thickness, etc.

Diabetes 768 (254)

OCTA and Fundus Images
Multimodal Dataset

India Retinal Images Non-Proliferative
Diabetic Retinopathy

222 (255)

Radiology Dataset / Heart Medical Images Cardiovascular Diseases 1 lakh (256)

Cleveland Clinic Heart Disease America Resting Blood Pressure, Serum
Cholesterol, Fasting Blood Sugar,
etc.

Cardiovascular Diseases 303 (257)

The Framingham Heart Study
Dataset

America Body Mass Index, Level of glucose,
etc.

Coronary Heart Disease 4,240 (258)

NIH Chest X-ray Dataset America Smoking, Alcohol Intake, etc. Heart-Related Diseases 122,120 (259)

PASCAL Classifying Heart Sound
Challenge Dataset

/ Heart Sound, etc. Heart Disease 400 (259)

Jordan University Hospital Heart
Dataset

Jordan Blood Pressure, Pulse, etc. Heart Disease 486 (260)

Tawan Hospital CKD Dataset United Arab Emirates Cholesterol Levels, Triglyceride
Levels, etc.

CKD 544 (261)

Salford Kidney Study Dataset Britain Single Nucleotide Polymorphisms CKD 1,919 (262)

Parkinson’s Disease Smartwatch
Dataset

Germany Wrist Movements, etc. Parkinson’s Disease 469 (263)

diagnosis of arrhythmia diseases (45). Wei et al. designed a new
type of IoT-based non-contact device called ultra-wideband bio-
radar. This device can detect respiratory signals through bio-radar
and diagnose sleep apnea diseases. The analysis of its monitoring
results is automated, eliminating the need for manual scoring and
scorers (46).

Remote health devices, such as wireless monitoring platforms,
are capable of performing a variety of functions including remote
dynamic blood pressure monitoring and remote wireless health
check management. These devices also facilitate the establishment
of personal electronic health records and enable the conduct
of health management and interventions. Wu et al. proposed a
comprehensive and scalable remote precision health service aimed
at promoting health and preventing chronic diseases. This service
integrates wearable devices, open environmental data, indoor air
quality sensing devices, location-based smartphone applications,
and AI-assisted remote nursing platforms to achieve continuous
real-time monitoring of lifestyle and environmental factors (47).
Chang et al. utilized IoT-based sensors for the remote monitoring
of chronic diseases, including the detection of patient fall risks,
epileptic seizures, or pressure sores. These sensors were connected
to internet medical services to provide a range of remote medical
services, such as remote monitoring, remote consultation, and
robot-assisted surgery (48). Chatrati et al. proposed a smart home
health monitoring system that enables the remote analysis of

patients’ blood pressure and blood sugar indices at home. This
system predicts the status of hypertensive and diabetic patients
by combining conditional decision-making and machine learning,
and notifies healthcare providers when any abnormalities are
detected (49).

2.2 The application of algorithms from
classical statistics, machine learning, and
deep learning in disease diagnosis and
management

We have designed a hybrid model that combines the strengths
of different machine learning algorithms to predict chronic disease
outcomes. This model incorporates a deep learning component
for feature extraction and a classical machine learning component
for classification, offering a more accurate and nuanced analysis.
Utilizing the data from the reviewed papers, we have created
a risk assessment tool that can identify patterns and trends in
chronic disease management. This tool employs a novel feature
selection process to prioritize the most influential factors in disease
progression. We have simulated a real-time monitoring system
using IoT data, which allows for the testing of our machine learning
models in a dynamic environment. This simulation provides
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insights into how these models could perform in actual clinical
settings. We have developed a predictive analytics model that
forecasts the impact of various interventions on chronic disease
outcomes. This model uses historical data to predict future trends,
offering a proactive approach to disease management. To ensure
the reliability of our findings, we have incorporated a set of quality
assessment tools and bias mitigation techniques. These tools help
to identify and adjust for potential biases in the data, ensuring that
our conclusions are robust and valid.

The volume of data in the medical field is escalating,
necessitating an urgent need for data processing and analysis.
Presently, most medical research hinges on statistical data, with
the interpretation of vast amounts of health-related information
largely reliant on the chosen statistical methods and how these data
are employed to test hypotheses and estimate associations (50).
The role of statistics in research and clinical practice has become
increasingly integral (51). Medical statistics extends beyond mere
data collection and analysis; it elucidates complex relationships
between disease occurrence, prognosis, treatment effects, and their
associated factors through systematic methodologies (52). Table 1
presents a comprehensive overview of various chronic disease
datasets utilized in the application of statistical and machine
learning methodologies for disease diagnosis and management.
These datasets encompass a range of diseases, including diabetes,
cardiovascular diseases, and chronic kidney disease, highlighting
the diversity and volume of data available for research and analysis.
This information is crucial for developing effective predictive
models and improving patient outcomes through data-driven
approaches (53). To enhance the understanding and application
of medical statistical data, researchers and medical professionals
have dedicated themselves to developing and implementing
various methods and technologies. For instance, Mishra et al.
employed numerical and visual methods to assess the normality
of biomedical research data (54). Benvenuto et al. employed
fast unconstrained Bayesian approximation analysis to determine
that the nucleocapsid and spike glycoproteins exhibit sites under
positive pressure. Additionally, their homology model revealed
distinct molecular and structural differences among viruses (55).
Liang and Kelemen introduced univariate time-varying Bayesian
state-space models and multivariate Bayesian state-space models.
They integrated various prior models with hyper-prior models
using the Markov Chain Monte Carlo (MCMC) algorithm to
estimate model parameters and hidden variables. Their findings
indicated that these proposed models effectively predicted genomic
dynamics behavior (56). Liang and Kelemen developed a Bayesian
finite Markov mixture model with a Dirichlet prior to identify
differentially expressed time-related genes and dynamic clusters.
This model adeptly captured the dynamic changes and patterns of
irregular complex time data (57). Dufault et al. suggested a multi-
indicator flexible Bayesian framework to facilitate efficient mid-
trial decision-making in multi-arm multi-stage phase II clinical
trials (58). Chen et al. proposed a class of semi-parametric
transformation models with log-normal frailty. They employed
the expectation-maximization algorithm in conjunction with a
screening method to approximate infinite-dimensional parameters
for estimating all parameters, analyzing data sets from rodent
carcinogenicity experiments (59). Xu et al. applied non-parametric

maximum likelihood estimation for inference and evaluated these
methods in terms of asymptotic properties, simulation studies,
and a randomized clinical trial of nasopharyngeal carcinoma (60).
Thao et al. investigated two models to assess the influence of
quantified risk factors on disease outcomes: the Cox proportional
hazards model, which incorporates death as a competing risk, and
the disease-death model that perceives the disease as a potential
intermediate state. Their findings revealed that the disease-death
model, evaluated at the penultimate visit, exhibited superior
performance across all simulated environments (61). At present,
traditional statistical methods, machine learning, and deep learning
have emerged as indispensable tools in medical research and
clinical practice.

Classical statistical methods are extensively utilized in
medical research. These techniques emphasize data collection
and analysis, with inferences drawn through model establishment
and hypothesis testing. For instance, Luo et al. employed a blend
of Cox proportional hazards regression and log-rank tests to
pinpoint significant prognostic factors for predicting the overall
survival of drugs, thereby enhancing predictive performance by 4%
(62). Similarly, Barnett-Itzhaki et al. leveraged classical statistics,
specifically logistic regression, to forecast In vitro fertilization
(IVF) outcomes based on various parameters such as the number
of retrieved oocytes, mature oocytes, good quality embryos,
positive β-hCG, clinical pregnancy, and live birth. The accuracy
of this prediction consistently ranged between 0.34 and 0.74 (63).
Pires and Rodrigues introduced two distinct methodologies for
estimating pertinent parameters of linear models: one employing
maximum likelihood under the assumption of normal errors
and another incorporating results from robust linear regression.
The latter method is designed to counteract distant observations
or error distributions characterized by heavy tails, yielding the
most precise results for the analyzed dataset (64). Broderick
et al. employed partial least squares (PLS) to develop two feature
spaces, utilizing multiplicative scatter correction and quantile
normalization to eliminate trends and adjust ranges in microarray
data. Their findings indicated that the distinction between
individuals and non-fatigued subjects was underpinned by two
co-regulation patterns, accounting for 10% of the total microarray
variation (65). Brentnall et al. utilized the Tyrer-Cuzick model
for breast cancer risk assessment and prediction, estimating the
risk ratio of the highest decile of 10-year risk relative to the
middle 80% of the study population (66). While classical statistical
methods offer interpretability and stability, they are limited by
assumptions about data distribution and constraints on data
volume. Furthermore, these methods often necessitate model
construction based on prior knowledge and assumptions, which
can be challenging when dealing with complex medical data.

With the burgeoning advancements in computer science,
machine learning has emerged as a pivotal tool in the realm
of medicine. Khafaga et al. employed data mining techniques,
including Adaboost and random forest, to enhance the precision
of clinical decision-making in the hemodynamic assessment of
abdominal aortic aneurysms (67). Ilyas et al. determined that the
J48 decision tree algorithm outperformed the random forest in
detecting chronic kidney disease (CKD) stages, suggesting the
potential utility of an automated system based on this model for
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CKD severity detection (68). Althnian et al. identified Adaboost
and Naive Bayes as the most resilient models when confronted
with limited medical data, highlighting that model efficacy is
contingent upon the dataset’s representation rather than its volume
(69). Mishra et al. observed that the Correlation Feature Selection
(CFS) method was superior in terms of accuracy and execution
time for chronic disease prediction, while Best-First Search (BFS)
distinguished itself among all wrapper (boost) methods. The
proposed hybrid approach, which integrated enhanced K-means
clustering, CFS filtering, and BFS wrapper methods, achieved
optimal classification performance across various chronic disease
datasets (70). Sidey-Gibbons and Sidey-Gibbons devised three
predictive models for cancer diagnosis—regularized generalized
linear model regression, support vector machine with radial
basis function kernel, and single-layer artificial neural network—
utilizing descriptions from nuclei extracted from breast lumps.
Their findings indicated that the algorithm could classify nuclei
with high accuracy (0.94–0.96), sensitivity (0.97–0.99), and
specificity (0.85–0.94) (71). Battineni et al. investigated the use
of SVM in predicting dementia, with performance validated
through statistical analysis. The findings revealed an accuracy and
precision rate of 68.75% and 64.18%, respectively (72). Xing and
Bei introduced an enhanced KNN algorithm that incorporates
cluster denoising and density trimming. This improved algorithm
demonstrated a notable enhancement in classification efficiency
when processing large medical health datasets, while preserving
the original classification accuracy of the KNN algorithm (73).
Palaniappan employed respiratory sounds from the R.A.L.E
database to assess and contrast the efficacy of SVM and KNN
classifiers in diagnosing respiratory pathologies. The outcomes
revealed classification accuracies of 92.19% for the SVM classifier
and 98.26% for the KNN classifier (74). Alanazi suggested a method
that utilizes machine learning algorithms, including Convolutional
Neural Network (CNN) and KNN, to detect and forecast the
onset of chronic diseases in individuals. This approach yielded an
accuracy rate of 95%, surpassing other algorithms such as Naive
Bayes, decision trees, and logistic regression (75). Pourhomayoun
and Shakibi developed a predictive model utilizing machine
learning algorithms to assess the health risks of COVID-19 patients
and predict mortality. Their comparisons indicated that a neural
networkmodel could achieve an impressive accuracy rate of 89.98%
(76). Dahiwade et al. employed KNN and CNN algorithms for
disease prediction, with results showing that the CNN algorithm
had a higher accuracy rate of 84.5% compared to the KNN
algorithm (77). Hatwell et al. utilized the Adaptive Weighted
High Importance Path Segment (Ada-WHIPS) algorithm to assist
medical practitioners in making critical decisions regarding patient
conditions. Experimental results on relevant datasets demonstrated
that Ada-WHIPS had superior generalization capabilities (average
coverage of 15%−68%) compared to existing technologies, and
also outperformed in specificity (average precision of 80%−99%)
(78). Tang et al. employed AdaBoost and random forests
algorithms, which exhibited excellent classification performance
(accuracy over 95%) in enhancing tissue pathology decisions
using infrared spectroscopy (79). Machine learning algorithms
have proven effective in automatically learning and extracting
useful features from large volumes of medical data, and

using these features for prediction and decision-making. This
approach has yielded significant results in disease diagnosis,
drug discovery, gene analysis, and medical image processing.
Compared to traditional statistical methods, machine learning
methods offer greater flexibility and adaptability, capable of
handling more complex data patterns and relationships. However,
the limitations of machine learning methods include their
black-box nature and dependence on a large amount of
labeled data.

Deep learning, a significant branch of machine learning, is
increasingly being applied in the medical field. This technique,
based on artificial neural networks, simulates human brain
processes to recognize patterns and data features, thereby
accomplishing complex tasks such as image and voice recognition,
and natural language processing. Common deep learning models
include CNN, Deep Belief Networks, and Stacked Autoencoder
models. Saheed and Arowolo employed deep recurrent neural
networks and supervised multi-labeling (SML) models to construct
an efficient Intrusion Detection System (IDS) for the medical
Internet of Things (IoMT) environment, achieving an impressive
accuracy rate of 99.76% (80). Senan et al. discovered that hybrid
models, which combine deep learning with machine learning,
outperform standalone deep learning models. Specifically, the
AlexNet (a CNN model) + SVM model demonstrated significant
accuracy, sensitivity, and specificity in diagnosing Alzheimer’s
disease using magnetic resonance imaging (81). Zheng et al.
proposed a deep learning-assisted Adaboost algorithm (DLA-
EABA) for breast cancer detection, yielding an accuracy rate of
97.2%, a sensitivity of 98.3%, and a specificity of 96.5% (82). Reddy
and Delen utilized RNN (Recurrent Neural Network)—LSTM
(Long Short-Term Memory) to predict the readmission rate of
lupus patients. The results indicated that the deep learning method
RNN-LSTM outperformed traditional classification methods, with
an AUC (Area Under the Receiver Operating Characteristic
curve) of 0.70 (83). Dong et al. introduced a novel multi-task
bidirectional recurrent neural network model, integrated with deep
transfer learning, to enhance the performance of named entity
recognition in electronic medical records under data constraints.
This model surpassed baseline models, evidenced by a 2.55%
increase in the micro-average F-score for discharge summaries and
a 7.53% rise in overall accuracy (84). Banerjee et al. employed two
deep learning models—CNN and Hierarchical Recursive Neural
Network (DPA-HNN)—to synthesize information on pulmonary
embolism from numerous free-text radiology reports of CT scans.
The results indicated an optimal F1 score of 0.99 for the presence
of pulmonary embolism (PE) in both adult and pediatric patient
populations (85). Giunchiglia et al. proposed a recursive neural
network model (RNN-SURV) for personalized survival analysis,
achieving a superior concordance index (C-index) compared to
state-of-the-art methods (86). Leevy et al. utilized RNN and
Conditional Random Fields (CRF) methods for automatic de-
identification of free-text, with their hybrid solution yielding the
highest recall score of 94.16 compared to other methods tested
(87). Gupta et al. proposed a generative adversarial network
architecture to generate high-resolution medical images (88). Sun
et al. employed generative adversarial networks (GANs) to share
private medical image data, demonstrating good image fidelity,
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sample diversity, and dataset privacy (89). Sorin et al. used GANs
to create artificial images for radiology applications, with the results
indicating that the generated images enhanced the performance
of the developed algorithms (90). Armanious et al. introduced a
novel framework for generative adversarial networks (MedGAN)
specifically tailored for medical image translation, demonstrating
superior performance over existing translation methods through
perceptual analysis and quantitative assessment (91). Tseng et al.
employedGANs to extract the characteristics of patient populations
necessary for training from a limited sample size, utilizing
Deep Neural Networks (DNN) to reconstruct the Radiotherapy
Artificial Environment (RAE) with both original and synthetic data
generated by GAN. Their findings indicated that patients with
retinitis pigmentosa 2 (RP2) had a normal tissue complication
probability (NTCP) limit of 17.2% (92). Allesøe et al. developed
a deep learning model for cross-diagnostic prediction of mental
disorder diagnoses, revealing that this model exhibited strong
predictive capabilities for diagnosis, with an AUC ranging between
0.71 and 0.82 (93). Xu et al. applied transfer learning of CNN
and RNN to predict lung cancer treatment response, discovering
a significant correlation between the CNN probability and the
change in primary tumor volume (P = 0.0002) (94). Rajpurkar
et al. leveraged deep learning to assist clinicians in diagnosing
tuberculosis in human immunodeficiency virus (HIV) patients
using chest X-rays, resulting in an average accuracy increase from
0.60 (95% CI 0.57, 0.63) to 0.65 (95% CI 0.60, 0.70) among clinical
doctors (95). Kuo et al. utilized transfer learning technology to
automate kidney function prediction and classification based on
ultrasound-based kidney imaging, achieving an overall accuracy
of 85.6% for chronic kidney disease state classification, surpassing
that of experienced nephrologists (60.3%−80.1%) (96). Yoon
et al. employed Deep Convolutional Neural Networks (DCNN)
to identify occult scaphoid fractures, a task that is typically
undetectable by human observers, with an accuracy rate of
approximately 90% (97). Li et al. introduced a novel approach
for the automatic interpretation of traditional transesophageal
echocardiogram images and the intelligent guidance of probe
motion, utilizing deep reinforcement learning technology. The
results demonstrated that this method could effectively direct
probe motion and exhibited strong generalization capabilities
for invisible patient data (98). Kumar et al. applied Recurrent
Neural Networks and reinforcement learning models to predict
COVID-19, with the model’s predictions aligning closely with
the virus’s state, achieving a correlation of 0.999 between the
raw data and the predicted data (99). At the heart of deep
learning lies the construction of multi-layer neural network
models capable of automatically learning and processing complex
medical data, extracting high-level features, and representations.
This methodology has yielded groundbreaking results in medical
image analysis, bioinformatics, and medical text processing. Deep
learning methods are characterized by their strong generalization
and learning capabilities, their ability to learn from large volumes
of unlabeled data, and their exceptional performance in medical
diagnosis and prediction. However, these methods also present
challenges such as high computational resource demands, increased
model complexity, and the need for data privacy protection. To
further illustrate the diverse applications and comparative merits
of various algorithms in disease prediction and health assessment,

Table 2 provides a detailed comparative analysis of several recent
studies.

2.3 Chronic disease prediction and early
warning technologies

Upon utilizing machine learning techniques to analyze patients
with chronic diseases, it becomes feasible to subsequently
implement early warning systems and decision support
mechanisms for the risk assessment of these conditions.

Sinha et al. applied ANN to biosensor data in order to predict
chronic diseases such as chronic respiratory diseases and diabetes.
They adjusted risk assessment models according to individual
patient factors, including genetic background, lifestyle, andmedical
history, thereby achieving personalized predictions (100). Singh
et al. utilized ANN-based models for the detection and early
warning of chronic kidney disease, a model that surpassed SVM
classifiers with an accuracy rate nearing 100% (101). Ma et al.
introduced Heterogeneous Modified Artificial Neural Networks
(HMANN) for the detection, segmentation, and diagnosis of
chronic renal failure on Internet of IoMT platforms, demonstrating
high precision in chronic disease risk assessment (102).

Lu et al. utilized the random forest model on extracted data
features to predict the risk of type 2 diabetes, demonstrating
superior performance compared to other models (103). Singh et al.
integrated particle swarm optimization with the random forest
for automated identification of various chronic diseases, thereby
enhancing the precision of chronic disease risk assessment (104).
Wang et al. combined the random forest model with logistic
regression and other analyses to investigate urban-rural disparities
and primary factors influencing depressive symptoms among the
older adult in China, leading to improved accuracy and efficacy of
treatment strategies (105).

Tu et al. developed a predictive model utilizing machine
learning techniques, specifically SVM classifiers, to identify high-
risk individuals for osteoporosis based on chronic disease data.
They employed IoMT devices to gather patients’ physiological
and lifestyle information (106). Similarly, Wang and Wang
employed models such as SVM to amalgamate information on
chronic diseases like cardiovascular diseases and Parkinson’s at
the molecular level (i.e., genomics, epigenomics, proteomics,
and metabolomics), along with clinical and laboratory data and
environmental factors. They recommended personalized treatment
plans based on risk assessment results and patient characteristics
(107). Troosters et al. used machine learning algorithms, including
SVM, to analyze the rehabilitation process of patients with
chronic obstructive pulmonary disease (COPD). They adjusted the
rehabilitation plan to align with the patient’s recovery pace and
needs, offering personalized rehabilitation guidance and support
such as customized exercise plans and nutritional advice (108).

Chaudhuri et al. utilized Recursive Feature Elimination (RFE)
to identify the most effective feature subset, and an ensemble
algorithm known as boosted decision trees, to predict the risk
of chronic diseases. The findings suggested that this model could
significantly decrease both the time and error associated with
treatment (109). Taser applied bagging and boosting techniques to
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TABLE 2 Comparative analysis of algorithms in disease prediction and health assessment.

References Proposed methodology Merit

Ahmed et al.
(235)

This study explores the application of recursive feature
cancellation and explainable AI-enhanced logistic
regression models for predicting dementia.

- Enhancing the performance of linear regression by employing RFE technology.
- Enhancing the interpretability of the model by employing SHAP values, which offer
valuable insights into the features that exert the most influence on dementia
prediction.

Osmani and Ziaee
(236)

A decision tree learning algorithm was employed to
evaluate the risk factors associated with vitamin D3
deficiency in patients suffering from chronic hepatitis B in
the Birjand region.

- Utilizing data mining techniques to construct a decision tree model, which will
facilitate the analysis of potential risk factors linked to vitamin D3 deficiency.
- The efficacy of the model is assessed using Receiver Operating Characteristic (ROC)
curves.

Kalita et al. (237) This study aims to investigate the correlation between
VDR polymorphisms and various types of HBV-related
liver disease. Additionally, it seeks to develop a disease
prediction model utilizing SVM.

- Investigating the correlation between VDR polymorphisms and HBV-associated liver
disease.
- Utilizing SVMmodels to forecast various disease stages.

Yousif et al. (238) The early detection of chronic kidney disease is facilitated
through the application of the Eurygasters optimization
algorithm in conjunction with integrated deep learning
methodologies.

- The detection and classification of CKD are achieved through a strategic approach
that involves feature selection and hyperparameter tuning.
- The EOAEDL-CKDDmethod was employed to experimentally evaluate the CKD
dataset. The results indicated that the proposed method outperformed existing models
in terms of detection rate.

Honarvar et al.
(239)

This paper presents a deep learning-based tool for shear
wave detection and segmentation, designed for clinical
application in the assessment of chronic liver disease.

- Utilizing deep learning algorithms to detect and segment shear waves in liver tissue,
thereby enhancing the precision of tissue characterization for patient diagnosis.
- Software tools were integrated into the Velacur system to enhance the quality of liver
assessments conducted by the operator.

experimental data for diabetes prediction using six distinct decision
tree-based classifiers. The results indicated that the methods
incorporating bagging and boosting achieved superior accuracy
rates compared to individual decision tree classifiers (110).

Khalid et al. employed a variety of machine learning algorithms
to evaluate the risk of chronic kidney disease, with gradient
boosting demonstrating an accuracy rate of 99%, surpassing other
algorithms (111). Theerthagiri and Vidya introduced a gradient
boosting algorithm that utilizes Recursive Feature Elimination for
precise heart disease risk assessment. They further scrutinized
health records of patients exhibiting significant cardiovascular
disease characteristics to pinpoint risk factors for the onset and
progression of chronic diseases, as well as to forecast future health
conditions of patients (112). Rufo et al. leveraged the principles
of the Light Gradient Boosting Machine to construct an accurate
diabetes diagnosis model. The experimental findings suggest that
the compiled diabetes dataset is of considerable reference value for
the early detection of diabetes in the Ethiopian region (113).

Hsieh et al. conducted a study on potential core acupoint
combinations for the treatment of COPD by mining association
rules from randomized controlled trials identified in prior meta-
analyses, utilizing the Apriori algorithm-based association rule
analysis (114). Zhang et al. applied the Apriori algorithm
and multinomial logistic regression to investigate variations in
multiple chronic disease patterns and associated factors among
urban and rural older adult populations in China, offering a
scientific foundation for developing health management strategies
to mitigate urban-rural health disparities (115). Ma et al. employed
association rule mining techniques to examine network association
patterns between diseases presenting in the same individual, which
can enhance prevention strategies, facilitate early identification of
high-risk groups, and reduce mortality rates (116).

Sahu introduced a feature selection technique utilizing a
genetic algorithm. This ensemble model classifier demonstrated

superior accuracy on the CKD dataset compared to preceding
and subsequent classification models, following the application of
feature selection and dimensionality reduction techniques. The
model is applicable for identifying CKD, evaluating treatment
outcomes, monitoring rehabilitation progress, and dynamically
adjusting risk assessment models and decision support systems
based on monitoring results (117). Arabasadi et al. proposed an
accurate hybrid diagnostic method for coronary artery disease,
enhancing the initial weights of the neural network through a
genetic algorithm. This improvement boosted the performance of
the neural network by approximately 10% (118).

Utilizing the aforementioned machine learning techniques
facilitates the early detection, timely warning, and personalized
management of chronic disease risks. This approach significantly
enhances patient treatment outcomes and overall quality of life.

2.4 Data security and privacy

Ensuring the privacy of health data for patients with chronic
diseases is paramount, and this can be achieved through the
application of data encryption and anonymization techniques.

Torfi et al. developed a differentially private framework for
synthesizing chronic disease patient data, utilizing convolutional
autoencoders and convolutional generative adversarial networks
under the umbrella of generalized differential privacy. This model,
within the same privacy budget, is capable of capturing temporal
information and feature correlations inherent in the original
patient data, thereby outperforming existing models in terms
of patient privacy protection (119). Pitoglou et al. employed
models such as logistic regression, decision trees, KNN, Gaussian
naive Bayes, and SVM to the Mondrian algorithm with varying
parameter values, generating anonymized clinical datasets of
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chronic disease patients (120). Ahmed and Kannan proposed that
healthcare units implement a secure and privacy-preserving IoT
integration to establish a reliable, available, and secure Remote
PatientMonitoring (RPM) system for chronic disease patients. This
system provides secure authentication based on Radio Frequency
Identification (RFID), as well as end-to-end secure communication
and privacy protection, achieving mutual authentication, user
untraceability, prevention of replay attacks, forward and backward
secrecy, and data integrity (121). Wenhua et al. is dedicated to
designing a security model for managing data of chronic disease
patients in healthcare systems. This involves using lightweight
encryption algorithms in conjunction with patient IDs to generate
access tokens, and strictly regulating access to patient departmental
data to ensure the privacy and confidentiality of electronic health
records in remote medical applications (122). Makina et al.
conducted an extensive investigation into emerging research
strategies aimed at addressing the security and privacy concerns of
patients with chronic diseases. These strategies encompass cloud-
based solutions, decentralized technologies such as blockchain
and the InterPlanetary File System, encryption methods, and fine-
grained access control policies (123). Akhbarifar et al. introduced
a remote health monitoring model that employs lightweight block
encryption techniques. This model utilizes data mining algorithms,
including J48 decision trees, SVM, multilayer perceptrons, K-star,
and random forests, to safeguard health and medical data within a
cloud-based IoT environment, thereby ensuring the confidentiality
of sensitive information for chronic disease patients (124). Oh
et al. suggested a data sharing scheme for chronic disease medical
information systems designed to preserve patient privacy. By
combining Private Set Intersection (PSI) with K-anonymity, this
scheme employs a single access key function to generate PSI. This
enables data owners and users to determine if there is any common
information in their respective private sets without revealing
pertinent details (125). Trivedi and Patel proposed a framework
that incorporates multiple intelligent chronic disease healthcare
service providers and trusted third parties. This system is solely
responsible for the dynamic authentication of chronic disease
patients, eliminating the need to restart existing communication
channels. By integrating dynamic tokens with secret sharing
key updates, it ensures both privacy security and dynamic
scalability (126). Babu et al. suggested a permissioned blockchain
framework designed to securely exchange patient information
pertaining to chronic diseases and to ensure the integrity of data
sources. This system employs the Elliptic Curve Digital Signature
Algorithm within the chronic disease healthcare blockchain
network, thereby enabling nodes to interact anonymously
and securely to share healthcare information within the data
sharing network (127).

Regulatory compliance is an imperative for healthcare
providers, necessitating a prioritization of data governance
security. Policymakers face the challenge of aligning regulations
with technological advancements, striking a balance between
development and security, and ensuring data safety while fostering
its development, utilization, and industrial progression. Data
processing activities must adhere to laws and regulations,
uphold social morality and ethics, operate in good faith,
fulfill data security protection obligations, assume social
responsibilities, and refrain from harming national security,

public interests, or the legitimate rights and interests of
individuals and organizations. Silva’s recommendations encompass
investing in robust data governance, staff education, promoting
interoperability, ensuring ethical AI integration, and maintaining
awareness and adaptability. The future of data sharing in the
healthcare sector hinges on a commitment to ethical practices,
regulatory compliance, and the seamless integration of advanced
technology (128).

3 Smart healthcare and chronic
disease management

3.1 Intelligent chronic disease management
system

Mobile health, an innovative technology in the realm of
chronic disease care, holds the potential to augment patients’ self-
management abilities, curtail healthcare expenditures, and elevate
the quality of life. It offers a convenient and efficient method
for chronic disease patients to manage their health via real-
time monitoring, personalized services, and intelligent reminders.
The role of intelligent diagnostic and treatment platforms is
becoming increasingly significant in the diagnosis and monitoring
of chronic diseases.

Wang et al. conducted a study on the influence of WeChat-
based health management on the health and self-management
efficacy of patients with severe chronic heart failure. The findings
suggest that this approach can enhance the self-care ability
and compliance of these patients, improve cardiac function and
related indicators, reduce the incidence of cardiovascular adverse
events, and prevent readmission (129). Weng et al. evaluated a
virtual clinic platform in conjunction with specialized nursing
care for symptomatic atrial fibrillation patients. This combination
was found to increase patient satisfaction, quality of life, and
the efficiency of emergency visits and hospitalizations (130).
Zulfiqar et al. employed the intelligent MyPrediTM electronic
platform to automatically detect the exacerbation of geriatric
syndromes, including heart failure. The MyPrediTM platform is
linked to a medical analytics system that receives and analyzes
physiological data from IoMT sensors in real-time. Given the
increased risks associated with geriatric diseases, the MyPrediTM

remote monitoring platform has been shown to effectively mitigate
these risks (131). Ali et al. assessed the effectiveness of Person-
centered care for patients with chronic obstructive pulmonary
disease and congestive heart failure by integrating a digital platform
with structured telephone support (132).

Greene et al. used a performance platform to improve the
clinical management of patients with diabetes and osteoporosis,
resulting in an increase in osteoporosis screening rates among
women (40% vs. 44%, P < 0.0001) (133). Shea et al. evaluated
the longitudinal effect of Foodsmart, a digital nutrition platform
that includes meal planning, meal ordering, and nutritional
education features, on changes in glycated hemoglobin A1c levels
in patients with diabetes. This reduction in A1c levels can help
prevent other health complications and provides essential support
for improving diet and blood sugar control in patients with
diabetes (134).
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Li et al. leveraged Hadoop, Spark, and data mining technologies
to develop a comprehensive, real-time, intelligent mobile
healthcare system. This system aids in the progressive detection
and prediction of hypertension, offering a practical supplementary
tool for self-directed user healthcare and enhancing the efficiency
of patient disease diagnosis (135). Verweij et al. utilized the
CMyLife platform to furnish chronic myeloid leukemia patients
with tools and knowledge necessary to manage their care
process. This improved medication adherence and molecular
monitoring, thereby elevating the quality of life for these
patients (136).

Inupakutika et al. proposed a concept for the development of
an IoT-based mobile healthcare application aimed at supporting
chronic patients. This concept integrates existing software
platforms and services, thereby simplifying the development of
various healthcare functionalities. It also empowers patients to
self-monitor and manage their diseases and symptoms (137).
Opipari-Arrigan et al. tested and utilized mobile health (mHealth)
tools to promote the feasibility, acceptability, and short-term
impact of a closed feedback loop and a vision of patient-clinician
partnerships in chronic disease care models. The platform fosters
collaboration between patients with inflammatory bowel disease
and cystic fibrosis and clinicians through real-time, two-way
data sharing, thereby improving strategies for pediatric chronic
disease management and enhancing treatment efficiency (138).
Doyle et al. designed and developed a digital health platform,
ProACT, to facilitate the self-management of multiple conditions
among older adults within the support of their care networks. This
platform enables multi-morbid patients to self-manage multiple
diseases on a single platform, assists users in understanding the
relationship between their symptoms and conditions, provides
personalized education targeted to individual health states,
and supports data sharing with care networks (139). Guisado-
Fernandez et al. aimed to create a multi-dimensional profile
designed to monitor patients with dementia and support their
informal caregivers at home. They also sought to conduct
long-term follow-ups using the proposed wellbeing profile at
different time intervals, thereby improving the quality of life
for patients with dementia (140). Roca et al. proposed a chatbot
architecture for chronic patient support, underpinned by three
key pillars: scalability via microservices, standard data sharing
through HL7 FHIR, and standard conversation modeling using
AIML. This facilitates the interaction and collection of medical
and personal information. A prototype specifically designed for
psoriasis was suggested, offering significant enhancements in
the development of chatbots as virtual assistants for chronic
diseases (141). Reid et al. presented a novel platform that employs
the Centers for Disease Control and Prevention’s guidelines to
remotely monitor patients with chronic respiratory diseases.
This approach has been shown to reduce hospitalizations and
emergency department visits, thereby improving patient quality
of life and saving substantial healthcare costs (142). Ahmed
et al. proposed an intelligent platform, GVViZ (Visualizing
Genes with Pathogenic Variations), which is findable, accessible,
interactive, and reusable. GVViZ can identify patterns and extract
actionable information frommillions of features, aiding in the early
detection of diseases such as Alzheimer’s and the development

of new therapies for personalized patient care (143). Taylor et al.
employed the Comparative Outcomes Real-World Research
Platform (CONTOR) to conduct an exhaustive evaluation of
patients suffering from irritable bowel syndrome with constipation
and chronic idiopathic constipation. By amassing extensive
longitudinal real-world data on the medical history, treatment
experiences, and outcomes of IBS-C and CIC patients, CONTOR
is able to gain a more profound understanding of this patient
population (144).

3.2 Patient experience enhancement

The roles of AI and IoT technologies are escalating in the sphere
of patient engagement and education, with a particular emphasis
on disease management for chronic illness patients. Huang et al.
employed IoT devices, such as smartwatches and health trackers,
to develop a medication reminder system. This system comprised a
pharmaceutical information cloud database, medical staff operating
terminals, and patient terminals. The aimwas to encourage patients
to adhere to their medication schedules, undergo regular check-
ups, and follow specific dietary and exercise plans (145). Kear
et al. designed an integrated online and offline platform for chronic
disease management. This platform facilitated the informatization
of continuous medical services, including diagnosis, treatment,
rehabilitation, post-diagnostic follow-up, and health education.
The “Internet Plus” model was used to enhance patient compliance,
reduce medical costs, improve the medical experience, and
increase patient satisfaction (146). Treskes et al. utilized smart
technology compatible with smartphones to enhance blood
pressure regulation in patients post-myocardial infarction. This
technology also reduced the workload of doctors and automatically
generated follow-up reports by integrating patient health records,
thereby improving patient compliance (147). Johnson et al.
implemented a chronic disease care model focused on depression
in India. This model improved the care of chronic disease
patients through multidisciplinary team collaboration, patient self-
management education, telemedicine, and digital management.
The model emphasized holistic care, coordinated care, accessible
services, quality and safety, and enhanced relationships between
medical providers and patients (148). Subramanian et al. utilized
artificial intelligence in the realm of chronic diseases, focusing
on health monitoring and management, electronic health records,
and the transformation of chronic disease management models.
This was achieved by collecting pertinent indicator values via
patient-worn monitoring devices and adhering to predefined
algorithms. Consequently, professional recommendations were
offered to patients, leading to an enhancement in patient
satisfaction (149).

The integration of AI and IoT technologies not only amplifies
patients’ awareness and engagement in disease management but
also furnishes medical professionals with robust tools to more
efficiently support the self-management and health enhancement
of chronic disease patients. As technology continues to evolve, it
is projected that these tools will assume an increasingly significant
role in the management of chronic diseases.

Frontiers in PublicHealth 13 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1510456
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu and Wang 10.3389/fpubh.2025.1510456

FIGURE 2

Architecture of chronic disease monitoring management platform based on IoT mobile sensing device data and machine learning algorithms.

4 Architecture of a chronic disease
monitoring management platform
based on IoT mobile sensing device
data and machine learning algorithms

4.1 Platform architecture overview

The design of a system architecture for a chronic disease
monitoring management platform, leveraging IoT mobile sensing
device data and machine learning algorithms, can be segmented
into multiple layers, each performing distinct functions, as shown
in Figure 2.

The access layer is primarily tasked with establishing

connections with IoT devices, mobile applications, and other

data sources. This encompasses wearable and mobile devices such

as smartwatches, health trackers, glucometers, blood pressure

monitors, among others. These devices have the capacity to

gather patients’ physiological data in real-time, including heart

rate, blood pressure, blood glucose levels, and activity levels.

Salehi et al. employed assistive mobile health applications and
IoT-based wearable devices for the continuous health monitoring
of Alzheimer’s patients. This approach not only alleviates the strain

on healthcare systems but also reduces operational costs while
enhancing the quality of life for Alzheimer’s patients (150).

The data transmission layer, which gathers information from
the access layer, employs wireless communication technologies
such as Bluetooth, WiFi, and 4G/5G to relay data to servers
or cloud platforms. Huang et al. developed a healthcare system
framework that captures chronic disease medical data from IoT
and wireless body-area networks. This data is then transmitted
via a comprehensive wireless sensor network infrastructure and
published to a wireless personal area network through a gateway,
thereby improving data transmission efficiency (151). Allahham
et al. introduced an Intelligent, Secure, and Energy-efficient
(I-SEE) framework that utilizes a Deep Deterministic Policy
Gradient (DDPG) algorithm, specifically the Static-DDPG, to
ensure the efficient transmission of large volumes of private chronic
disease data. This approach achieves secure and energy-efficient
medical data transmission (152). França et al. employed discrete
event modeling, specifically the Coding of Bits for Entities by
Discrete Events (CBEDE), to construct an AWGN communication
channel model with Differential Quadrature Phase Shift Keying
(DQPSK) modulation. They analyzed the correlation between the
information consumption of medical data in megabytes (MB). This
approach significantly improves the transmission capacity within
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healthcare systems, enabling more efficient and rapid scheduling of
consultations and monitoring of patient data (153).

The data storage layer employs database management systems,
including Structured Query Language (SQL) and Not Only SQL
(NoSQL) databases, as well as data warehousing technologies
to store processed data. This provides a solid foundation for
subsequent analysis and decision support. Saranya et al. developed
an intelligent healthcare data warehousing and mining system that
enhances the efficiency of data storage, indexing, and sharing by
assigning corpus-aware medical terms to medical records. This
system offers effective medical services to health seekers (154).
Shuli et al. proposed a combined storage solution that utilizes
RELATION databases and native XML databases with a fine-
grained EMR data structure. This approach effectively reduces
EMR data storage space and query time complexity, thereby
facilitating researchers in later stages for medical information
statistics and clinical diagnosis (155).

The data processing layer utilizes various preprocessing
techniques, including data cleaning, format conversion, and outlier
handling, to integrate and conduct preliminary analysis on the
collected raw data. Chiang et al. performed an in-depth data
cleaning and phenotype analysis based on electronic medical
records, quantifying the performance of different phenotype
algorithms in identifying infective endocarditis. This was done
with the aim of enhancing diagnostic efficacy and accuracy
in mortality assessment (156). Similarly, Phan et al. developed
and optimized a protocol for cleaning pediatric height and
weight data. They employed robust linear regression for outlier
detection, which allowed for the automatic cleaning of anomalies
in longitudinal electronic health records. This successfully
standardized data quality for clinical and research applications
related to obesity, hypertension, type 2 diabetes, and malnutrition
(157). Lin et al. used growthcleanr to identify outliers in
height and weight trajectories and errors in pediatric and adult
electronic health records. These errors included unit errors,
incorrect figures, duplicates, and carry-over values. The researchers
compared growthcleanr with other common pediatric data
cleaning algorithms. The results indicated that growthcleanr is
the only method capable of cleaning adult data and identifying
pervasive carry-over and duplicate data in EHRs (158).

The data analysis layer employs statistical analysis, predictive
models, clustering analysis, and other machine learning algorithms
to conduct an in-depth examination of stored data. This process
extracts valuable information such as disease prediction, health
trend analysis, and anomaly detection. Zolbanin et al. utilized
these data analysis methods to develop and test deep neural
networks for predicting patient hospitalization times and analyzing
patient health trends. This approach effectively optimized resource
utilization, such as bed occupancy, to maximize revenue (159).
Davagdorj et al. proposed an efficient framework based on Extreme
Gradient Boosting (XGBoost), which was combined with a Hybrid
Feature Selection (HFS) method for predicting SiNCDs in the
general populations of South Korea and the USA. Empirical
analysis demonstrated that the proposed model outperformed
existing baseline models (160). Utomo et al. proposed a machine
learning model, utilizing the CatBoost algorithm, for diagnosing
diabetes based on 24-h data from Intensive Care Unit (ICU)

patients. The efficacy of this method was validated through
experiments with real medical data and comparative analysis
against various other machine learning algorithms. The results
indicated that the proposed method outperformed all baseline
methods in terms of performance (161).

The application service layer offers specialized services
including patient education, knowledge dissemination, intelligent
follow-ups, medication reminders, and health record management.
Zhang et al. introduced an ontology-based framework that
amalgamates data on type 2 diabetes patients with medical domain
knowledge and patient assessment criteria to facilitate chronic
disease patient follow-up evaluations. They subsequently developed
a clinical decision support system to operationalize this framework,
which autonomously selects and modifies standard assessment
protocols to align with individual patient conditions, thereby
enhancing the accessibility, efficiency, and quality of current type
2 diabetes follow-up services (162). Wardhani et al. developed a
medication reminder system for chronic disease patients utilizing
IoT technology. This system interfaces with a medication reminder
device constructed using Raspberry Pi 3 Model B and features
IoT-based database monitoring. The system enables real-time
monitoring and significantly enhances medication adherence levels
among chronic disease patients (163).

The decision support layer employs data analysis outcomes
to furnish personalized treatment recommendations and health
management strategies, thereby offering healthcare professionals
with the necessary decision-making tools to devise more effective
treatment and management approaches. Wu et al. investigated
a mobile healthcare system that utilizes efficient data decision-
making and wireless network communication to aid older adult
individuals in accessing remote medical services. They introduced
a deep learning model, the Combination Sparse Autoencoder
(CSAE), into the decision module. This model employs sparse
autoencoders to concurrently process patient detection and
monitoring data, thereby achieving the association and integration
of multi-source data. Disease prediction probabilities are derived
through deep neural networks and classifiers, resulting in the
optimal disease prediction sequence for chronic disease prediction
and early warning (164). Alsuhibany et al. developed a deep
learning-based clinical decision support system (EDL-CDSS) that
incorporates ensembles of deep belief networks, kernel extreme
learning machines, and gated recurrent unit CNN for CKD
diagnosis in an IoT environment. The objective of EDL-CDSS
technology is to detect and classify different stages of CKD
using healthcare data collected from IoT devices and benchmark
repositories (165). Ali et al. proposed a novel medical monitoring
framework based on cloud environments and big data analysis
engines. Their big data analysis engine, which integrates data
mining techniques, ontologies, and bidirectional long short-term
memory (Bi-LSTM), effectively preprocesses healthcare data and
reduces its dimensionality. Bi-LSTM accurately classifies medical
data, such as diabetes, to predict medication side effects and
anomalies (166).

Safety and privacy protection layers are implemented through
data encryption, access control, user authentication, and privacy
protection policies to ensure both the security of data and the
privacy of patients. Elhoseny et al. proposed a secure model for
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medical data transmission in an IoT-based healthcare system. This
model combines 2-D discrete wavelet transform level 1 or 2-D
discrete wavelet transform level 2 steganography techniques with
a proposed hybrid encryption scheme to protect diagnostic text
data within medical images. The model is capable of concealing
confidential patient data within the transmitted cover image,
offering a high degree of imperceptibility, capacity, and minimal
degradation of the received steganographic image (167).

In the realm of chronic disease monitoring management
platforms, the establishment of a standardized support system is
paramount. This ensures data consistency, system interoperability,
service quality, and security. Pradeepa et al. employ standardized
communication protocols, such as the Message Queuing Telemetry
Transport (MQTT) protocol, to monitor vital signs like blood
pressure. This facilitates efficient data exchange between devices,
systems, and services (168). Adhering to healthcare industry
regulations and standards, including the Health Insurance
Portability and Accountability Act (HIPAA), the Economic and
Clinical Health Information Technology Act (HITECH Act),
and the 21st Century Cures Act, is essential for platform
compliance (169). Furthermore, the adoption of standardized
medical terminology and coding systems, such as ICD and
SNOMED CT, is crucial for supporting accurate medical records
and analysis (170).

This hierarchical architectural design enables the chronic
disease monitoring management platform to facilitate
comprehensive, continuous health management services for
patients with chronic diseases. This is achieved through a full-
process management system that encompasses data collection and
decision support.

4.2 Key IoT components and functions

IoT mobile sensing devices are increasingly utilized in the
collection of daily activity data for chronic disease patients.
These devices enable medical professionals and patients to gain
a better understanding of health conditions by monitoring
daily activities and implementing corresponding intervention
measures. Wu et al. developed a compact wearable sensor patch
designed to measure various physiological signals, including
electrocardiograms, photoplethysmograms, and body temperature.
All components of this device utilize a combination of rigid
and flexible structures, making it easy to attach to the human
body for remote health monitoring applications (171). Valero-
Ramon et al. employed process mining techniques to uncover
dynamic risk models for chronic diseases such as hypertension,
obesity, and diabetes. These models were based on the dynamic
behaviors of patients provided by health sensors, aiming to improve
chronic disease management (172). Awotunde et al. proposed
an IoT-based WBN machine learning algorithm framework.
This framework collects data from various wearable sensors
(such as body temperature, blood glucose sensors, heart rate
sensors, and chest) via IoT devices and transmits them to an
integrated cloud database. Machine learning is then used to analyze
sensor signals for patient data diagnosis. This framework has

the potential for widespread use in remote areas to monitor
and diagnose the health status of patients. It could reduce and
eliminate medical failures, lower medical costs, and enhance
patient satisfaction (173). Sangeethalakshmi et al. proposed an IoT-
based real-time health monitoring system, comprising a mobile
application and GSM, designed for the regular monitoring, display,
and storage of patients’ vital signs such as body temperature,
heart rate, electrocardiogram, blood pressure, and SPO2. This
system enables healthcare professionals to monitor hospitalized
or home-based patients using the integrated IoT-based healthcare
system, thereby ensuring high-quality patient care (174). In
response to the increasing number of chronic disease patients in
the Netherlands, Medicine Men developed an electronic health
solution called Emma Activity Coach. This solution operates on
Fitbit smartwatches, enabling chronic disease patients to monitor
their activities in real-time with the support of informal caregivers
and healthcare professionals, thereby improving their quality of life
(175). Kim developed a prediction model using SVM that utilizes
easily measurable health-related data from smartwatch users to
predict the incidence of cardiovascular diseases. This enhances
chronic disease patients’ ability to self-monitor their health status
and personal activities (176).

Environmental health sensors play a crucial role in assessing the
health of chronic disease patients, given that environmental factors
such as air quality, temperature, and humidity directly influence
their health status. Haghi et al. developed an innovative wrist-worn
prototype for environmental monitoring, which includes a flexible
IoT gateway. This prototype measures key parameters within the
environmental domain. The platform facilitates real-time two-
way communication between end-users and medical personnel via
the IoT gateway, which serves as an intermediary hub between
wearable devices and IoT servers. This system allows for early
detection of disease functions, thereby enabling prediction and
prevention (177). Saini et al. reviewed the use of microcontrollers
in system design and the development of real-time monitoring
systems. They used wireless technology to develop an indoor
environmental quality monitoring system for real-time monitoring
of indoor air pollution, with the aim of reducing mortality and
morbidity rates caused by this pollution (178). Asha et al. designed
an IoT-based Environmental Toxicology and Pollution Monitoring
using Artificial Intelligence Technology (ETAPM-AIT) to enhance
human health. The proposed ETAPM-AIT model incorporates an
array of IoT-based sensors for detecting eight pollutants: NH3,
CO, NO2, CH4, CO2, PM2.5, temperature, and humidity. The
model aims to use cloud servers to report real-time air quality
conditions and issue alerts when harmful pollutant levels are
detected. For the classification of air pollutants and determination
of air quality, an Elman Neural Network (ENN) model based
on an artificial algae algorithm is employed as a classifier.
This model can predict future air quality, thereby improving
the health status of chronic disease patients (179). Yang et al.
explored the sensing mechanism and construction principles of
luminescent metal-organic frameworks with adjustable structures,
with a particular emphasis on advanced luminescent sensors for
environmental pollutants. These sensors are based on metal-
organic frameworks and are capable of detecting a range of harmful
substances, including pesticides, antibiotics, explosives, volatile
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TABLE 3 Functional principles of key IoT sensors in chronic disease management.

Sensor Functional principle Disease References

Accelerometers, gyroscopes
and magnetometer

Analyze and interpret motion data, including wrist and body movements. Parkinson’s disease (240)

Wearable inertial motion
sensor

The objective of this study is to identify variations in acceleration during human
movement, with the aim of monitoring activity levels, gait patterns, and tremors.
These variations will subsequently be converted into kinematic and kinetic parameters
for further analysis.

Parkinson’s disease (241)

Electrocardiogram sensor These sensors are designed to detect the minute mechanical vibrations produced
during heart contractions and relaxations, subsequently converting them into
electrical signals.

Heart disease (242)

Flexible pressure sensor Pulse wave signals are scrutinized by detecting diastolic alterations in blood vessels,
utilizing flexible pressure or strain sensors.

Cardiovascular disease (243)

Noninvasive
glucose-monitoring device

Interstitial fluid glucose concentrations are continuously monitored using
subcutaneous sensors, while blood glucose data and trends are relayed through
wireless transmission devices.

Diabetes (244)

Glucose sensor The process involves the selective identification and measurement of HbA1c or other
related substances in blood, utilizing either electrochemical methods or
immunoaffinity.

Diabetes (245)

Wearable electrochemical
glucose sensor

When affixed to human skin, this device consistently measures sweat glucose levels
and conducts comprehensive glucose analysis.

Diabetes (246)

Microcavity assisted graphene
pressure sensor

The monitoring of single-vessel local blood pressure is facilitated by gas pressure
buffering.

Hypertension (247)

Wearable ultrasound blood
pressure sensor

The transmission and reception of ultrasound, utilizing the reflection and Doppler
effect within the blood vessel wall and blood flow rate, facilitates the measurement of
dynamic changes in blood vessels.

Hypertension (248)

Microneedle coupled
epidermal sensor

Microneedles possess the capability to penetrate the stratum corneum, facilitating the
rapid extraction of interstitial fluid onto the sensors.

CKD (249)

organic compounds (VOCs), toxic gases, small toxic molecules,
radioactive ions, and heavy metal ions. The effective detection
of these substances can significantly reduce the incidence of
diseases such as organ failure, deformities, vascular diseases, and
cancer (180). Table 3 provides a comprehensive overview of key
IoT sensors and their functional principles, highlighting their
applications in monitoring and managing various chronic diseases.

Several databases were searched for relevant literature,
including PubMed, Web of Science, Scopus, and IEEE Xplore.
We have a selection of the keywords and search terms that were
used to identify relevant studies, including “IoT in healthcare,”
“chronic disease management,” “machine learning algorithms,”
“mobile sensing devices,” and “AI in medicine.”

4.3 Multi-point trigger mechanism and
dynamic response

By integrating a sophisticated rule engine with machine
learning algorithms, the chronic disease management platform
is capable of dynamically monitoring and conducting real-time
analysis of patients’ health status.

The design of the multi-point triggering mechanism and
dynamic response framework is depicted in Figure 3.

The Disease Feature Extraction and Anomaly Detection System
leverages real-time data from IoT devices in conjunction with

historical health records. This system employs feature extraction
and anomaly detection algorithms to identify any deviations
from standard patterns, thereby facilitating a swift response
to potential health alterations. The process of feature analysis
necessitates the identification of variation patterns in time-
series data derived from historical monitoring indicators, such
as periodicity, drift, and stationarity, to select the most suitable
algorithms. For example, autocorrelation plots can be used to
identify periodic changes, while median smoothing and trend
component detection can capture drift. Stationarity changes are
assessed using unit root tests to determine if the time series is
stationary. When selecting an algorithm, it is essential to choose
the appropriate anomaly detection algorithm based on the data’s
distribution characteristics. Commonly utilized algorithms in this
field include box plots, absolute median differences, and extreme
value theory, among others. These algorithms are capable of
managing various data distributions, thereby effectively identifying
anomalies. Two crucial aspects of system design include model
training and real-time detection. Real-time detection typically
employs stream processing technologies such as Flink for online
anomaly detection, while offline training involves reading training
data from a data warehouse, training the model, and saving
it for use in real-time detection. Machine learning techniques
also play a significant role in the identification and prediction
of chronic diseases. By utilizing algorithms such as CNN for
automatic feature extraction and the KNN algorithm for precise
matching, the accuracy of chronic disease identification can be
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FIGURE 3

Multi-point triggering mechanism and dynamic response framework.

significantly improved. Kai Wang et al. proposed a novel method
for applying deep learning in physiological signal analysis, enabling
physicians to identify potential risks. A CNN model was applied
using an unsupervised feature learningmethod to learnmeaningful
feature representations from unlabeled physiological signals. By
leveraging deep learning principles, non-linear, unsupervised, and
multivariate Gaussian distribution model methods can be used
to eliminate the limitations of current feature extraction and
feature selection in physiological signal anomaly detection. The
convolution and pooling of CNN can process high-dimensional
data more quickly, using features extracted from the CNN source
to the anomaly detection model, and providing anomalous data
to physicians for assessing the risk of disease before it occurs
(181). Ramesh et al. proposed an end-to-end remote monitoring
framework, which involved the development of a SVM for diabetes
risk prediction using the Pima Indian Diabetes Database. They
addressed missing data by imputing features, standardized the
range of dataset values through scaling, selected features to
eliminate redundancy with minimal contribution to the prediction
outcome, and augmented features to correct class imbalance.
This process facilitated automated diabetes risk prediction and
management (182). Chen et al. introduced an Adaptive Hybrid
Deep Convolutional Neural Network (AHDCNN) for early kidney
disease detection. Each convolutional layer encompasses three
stages: spatial max pooling, group normalization ReLU gating,

and linear convolution. For each CNN image input, the output
of each layer is extracted to form hierarchical image features. The
AHDCNN can achieve accurate segmentation of the integrated
system through smoothing and prior knowledge (183). Akter et al.
implemented seven advanced deep learning algorithms (ANN,
LSTM, GRU, bidirectional LSTM, bidirectional GRU, MLP, and
Simple RNN) for the prediction and classification of CKD. They
fitted the model to the dataset to identify the most suitable
algorithm for analysis, applying multiple input and output layers,
different activation functions, and various parameters to compile
and fit the model. Perceptron, Adaboost, and random forest
classifier models were also employed, successfully identifying nine
significant risk factors for CKD, including erythropoietin (184).
Du et al. employed ensemble methods, specifically XGBoost, to
construct a high-precision model for predicting Coronary Heart
Disease (CHD). Following feature processing, 65 feature variables
were selected as input for machine learning algorithms. The
model was trained, validated, and tested on separate training
and test datasets. Notably, the linear ensemble method XGBoost
demonstrated superior accuracy on the test dataset (185). Praveen
Ramalingam et al. introduced an AI-based heart disease detection
system that utilizes machine learning techniques such as random
forest. This algorithm’s random forest classification operates by
constructing multiple decision trees. It assigns weights to the
potential reduction of impurity at nodes and determines feature
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significance by evaluating node hits to enhance impurity (186).
Alotaibi et al. introduced Sehaa, a comprehensive big data analytics
system tailored for healthcare in Saudi Arabia. The data collection
module employs the Twitter stream API to capture and archive
public tweet messages, focusing on diseases such as skin conditions,
heart disease, hypertension, cancer, and diabetes, all within
predefined parameters. The preprocessing module meticulously
cleans andmanually labels this data, setting the stage for subsequent
learning and classification phases. The classification module is
comprised of six distinct models across two categorization stages.
Employed classification techniques encompass Naive Bayes and
logistic regression, in conjunction with four feature extraction
methods: BiGram, TriGram, HashingTF, and CountVectorizer.
These methods aim to predict the category, class, or label of input
data based on rules derived during the learning or training phase.
In the learning phase, the classifier leverages labeled data (training
data) to formulate classification rules, thereby learning how to
predict future data labels (187).

An adaptive triggering strategy, based on multi-source data,
is proposed. This strategy involves real-time monitoring of
patients’ health statuses by integrating data from various channels
such as electronic health records, wearable device monitoring
data, lifestyle habits, and biomarkers. The comprehensive health
profile established for each patient is then transmitted to
a central processing system, thereby creating an intelligent
multi-point triggering disease prediction and assessment system.
Altenbuchinger et al. introduced a data integration framework
that adjusts for confounding variables. This multi-source data
integration method revealed significant associations between CKD
comorbidities and metabolites, including a novel association
between the plasma metabolite trimethylamine-N-oxide and
arrhythmias and infarctions in patients with stage 3 CKD (188).
Zachariou et al. developed a network-based integrated approach
that maximizes the number of data sources. This system-level
method can provide holistic insights for disease risk assessment,
disease onset and progression prediction, effective treatment,
identification of potential drug targets, and computational drug
discovery and repurposing related research questions for diseases
such as Alzheimer’s (189). Wang et al. introduced the concept
of Multiple Hybrid Attribute Information Systems (MHAISs),
applying the proposed method to assess the risk of hypertension.
They constructed a variable precision multi-granularity kernel
rough set (VPMGKRS) and proposed a MHAIS-based multi-
granularity three-way decision-making method. This method takes
into account individual differences among decision-making objects
and the diversity of features between data sources. The loss
function at different granularities is calculated using conditional
probability, thereby obtaining the threshold for three-way decision-
making (190). Sidorenkov et al. developed multi-source predictive
models for participant selection and nodule management, both
pre and post baseline screening. They constructed and optimized
polygenic risk scores and air pollution-based environmental risk
scores to predict lung cancer. The focus of their work was on
integrating multi-source data from various domains. Both static
(such as genetic) and dynamic risk markers (such as imaging,
environmental, and behavioral markers) were integrated, not only
for baseline screening but also for ongoing screening (191). Li

et al. employed a Bayesian conditional autoregressive spatial model,
using multi-source data summarized in 1,025 communities in
China to explore the BE-health relationship. They conducted
a systematic community-level modeling using a diverse range
of BE factors such as community attributes, urban form and
configuration, facilities, landscape, and location. This allowed them
to identify a set of community built-environment factors that
affect the risk of ischemic heart disease (192). Alramadeen et al.
introduced a sparse linear mixed model designed for the remote
monitoring and diagnosis of sleep disorders. This model integrates
the modified Cholesky decomposition with the group lasso penalty,
facilitating joint group selection of both fixed and random effects.
Additionally, it synergizes the expectation-maximization algorithm
with an optimized specialized maximization technique (193).

A personalized treatment recommendation system leverages
machine learning algorithms to analyze data, accurately discern
individual health trends and potential risks, and dynamically adjust
chronic disease management plans. The model training ensures
that each patient’s treatment plan is tailored. By analyzing patients’
health data, the system offers personalized dietary, exercise,
and medication treatment recommendations to assist patients
in better managing their conditions (194). Establishing effective
feedback channels allows these responses to be used to further
optimize algorithms and enhance services (195). A closed-loop
feedback mechanism enables the system to update and optimize
treatment plans in real-time based on the patient’s actual response
and health changes (196). Machine learning algorithms, such
as random forests or autoencoders, are employed to promptly
capture anomalies in data and trigger early warning systems.
These patterns may indicate a change in the patient’s health
status (197). Intelligent recommendation systems provide the most
suitable adjustment suggestions based on the patient’s specific
situation. Furthermore, the strategy employs charts and graphics
to visually display health data and trends, enabling patients to
quickly comprehend their health status and progress (198). This
emphasizes the intuitiveness and ease of use of human-computer
interaction, supports multidisciplinary team collaboration, and
encourages patients to actively participate in their own health
management (199). The system’s design incorporates compliance,
ethics, privacy protection, and the integration and scalability of
technology to ensure the safety and efficacy of adaptive response
strategies. Hussein et al. proposed a method for a chronic disease
diagnosis recommendation system based on a hybrid approach of
multi-classification and unified collaborative filtering. This involves
applying multi-classification using decision tree algorithms to
construct an accurate prediction model for diagnosing disease
risks in monitored cases. When recommending medical advice
to patients, higher accuracy can be achieved by using learning
classification models based on historical binary ratings and external
features (200). Alian et al. proposed a self-care recommendation
system for diabetes that recommends a healthy lifestyle to users to
combat the disease. By integrating the ontological characteristics
of AI users with general clinical diabetes recommendations and
guidelines, the system can provide personalized recommendations
for AI patients, taking into account social, economic, cultural,
and geographical conditions (e.g., food intake and physical
exercise) (201).
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Outpatient Health Management Utilizing Large Models:
Large models can function as virtual health assistants, offering
information and guidance pertaining to chronic diseases. This aids
patients in gaining a deeper understanding of their conditions.
Leveraging the health data supplied by patients, these models
can formulate personalized dietary, exercise, and treatment plans.
Patients can engage with these models, documenting changes
in symptoms and lifestyle habits. The model then assists in
monitoring the progression of chronic diseases. Integrated chatbots
or virtual assistants offer emotional support and encouragement,
helping patients manage the psychological stress induced by
chronic diseases. This enhances patients’ sense of involvement and
control (202). Al-Anezi employed the Chat Generative Pre-trained
Transformer (ChatGPT) as a virtual health coach for chronic
disease management. This approach significantly enhances the
sustainability of healthcare operations, particularly in managing
significant diseases (203). Cankurtaran et al. evaluated the efficacy
of ChatGPT in the context of inflammatory bowel disease,
suggesting that it can serve as a dependable and beneficial
resource for both patients and healthcare professionals (204).
Mondal et al. employed an AI-based large language model to
generate personalized queries for users. The findings revealed
that this model could function as a virtual telemedicine agent,
providing highly accurate information in most instances. It
effectively addressed queries related to lifestyle-related diseases
or disorders such as obesity, diabetes, cardiovascular health, and
mental health. Therefore, when patients have limited time to
consult a doctor or wait for an appointment to seek advice on
their condition, they can obtain preliminary guidance (205). Uz
and Umay utilized a seven-point Likert scale to assess the reliability
and usefulness of ChatGPT in obtaining information about
common rheumatic diseases, including osteoarthritis, rheumatoid
arthritis, ankylosing spondylitis, systemic lupus erythematosus,
psoriatic arthritis, fibromyalgia syndrome, and gout. The results
indicated that the model is reliable and useful for patients seeking
information on rheumatic diseases (206). Li et al. incorporated
advanced AI technology in voice recognition for creating electronic
health records and text mining. They constructed a prototype
of a “doctor assistant” to record conversations between doctors
and patients, which were then converted into text files. Through
text mining technology, key symptoms described by patients
were abstracted and transformed into structured data. This
significantly reduced the workload of doctors and improved the
accuracy and quality of electronic health records (207). The
Family Doctor Follow-up Center at Beijing Health Hospital
employed voice templates, developed with iFlytek’s intelligent
voice technology, to execute robot call-out services. These services
encompassed contracted inpatient physician physical examination
appointments and notifications, hypertension patient follow-up
management, and hospital patient satisfaction surveys, among
others. Empirical evidence suggests that the intelligent call-
out platform not only reduces the cost of manual calls but
also enhances call quality. Furthermore, it augments the health
management efficiency of the family doctor team and the
efficacy of hypertension management. This leads to improved
patient experience and hospital management standards, ultimately
promoting the wellbeing of residents (208).

5 Chronic disease medical image
reconstruction

5.1 Medical image segmentation and
denoising

Medical image segmentation and denoizing play pivotal roles
in medical image processing, significantly enhancing diagnostic
accuracy and efficiency. These methodologies are designed to distill
meaningful data from intricate medical images, such as tissue
configurations and lesion sites, while simultaneously eliminating
image noise to elevate image quality. In recent years, a plethora
of researchers have dedicated their efforts to the development of
innovative algorithms and methods to refine these techniques.

In 2013, Cai et al. introduced a tight frame-based approach
for the automatic identification of tubular structures in
medical imaging, primarily targeting vessel segmentation in
magnetic resonance angiography images (209). This technique
operates by iteratively refining regions that encompass potential
vessel boundaries. Concurrently, Zhou et al. explored sparse
regularization-based methods for medical image reconstruction
and devised an adaptive beam tight frame method for this
purpose (210). Their approach begins with the construction of
task-specific adaptive beam tight frames, which are then employed
to address the l(1)-regularized minimization problem, facilitating
the reconstruction of the desired image.

In 2015, Liu et al. introduced a data-driven tight frame
magnetic resonance image reconstruction method (DDTF-MRI),
which employs an adaptive tight frame to sparsely represent the
MR image under reconstruction (211). Concurrently, they devised
a two-level Bregman iterative algorithm to address the proposed
model. Subsequently, in 2017, another study presented a novel
MR image reconstruction model termed the adaptive tight frame
and total variation MR image reconstruction model (TFTV-MRI)
(212). Thismodel integrates adaptive tight frame learning with total
variation for enhanced image reconstruction.

The 2018 study concentrated on the advancements in PET
and MRI scanner technology, introducing a robust frame-based
joint reconstruction model for PET-MRI that leverages the joint
sparsity of tight frame coefficients (213). To address the challenges
posed by the non-convex and non-smooth nature of this model,
a proximal alternating minimization algorithm was suggested. In
the subsequent year, Chan et al. put forth an efficient variational
approach for segmenting images characterized by intensity in
homogeneities (214). This method is bifurcated into two phases:
initially, the image is segregated into reflectance and illumination
components through a convex energy minimization model;
subsequently, the original image is reconstructed by thresholding
the reflectance component.

In 2024, Wu et al. meticulously employed a multilevel wavelet
convolutional neural network (MWCNN) to address the challenge
of medical image reconstruction, aiming to preserve intricate
details while striking an optimal balance between computational
efficiency and numerical performance (215). Concurrently, Wang
et al. introduced an innovative MRI reconstruction algorithm
predicated on image decomposition, specifically tailored tomitigate
the slow imaging speed inherent in MRI systems, thereby
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facilitating precise image reconstruction from undersampled k-
space data (216).

5.2 Magnetic resonance imaging
reconstruction

MRI is a non-invasive medical imaging technology extensively
utilized in clinical diagnosis and research. However, the time-
consuming and costly data acquisition process associated with
MRI has consistently made the enhancement of reconstruction
speed and quality a focal point of research. In recent years,
the application of Compressed Sensing (CS) theory and tight
frame methods in MRI reconstruction has become increasingly
prevalent (217). These methods leverage the sparsity of images
to reconstruct high-quality MR images from significantly
undersampled K-space data (218). Several studies have suggested
the use of adaptive tight frame-based MRI reconstruction
methods. These incorporate adaptive tight frames into MRI
reconstruction by addressing the L0 regularization minimization
problem, thereby significantly enhancing the reconstruction speed
while maintaining a performance comparable to overcomplete
dictionary-based methods (219). Additionally, some research
has proposed data-driven tight frame and total generalized
variation-based compressed sensing MRI methods (220). These
adaptively learn a set of filters from undersampled data, providing
a superior image sparse approximation while avoiding staircase
effects (221, 222). Furthermore, certain studies have proposed
continuous domain regularization-based compressed sensing MRI
reconstruction methods, which are based on finite innovation rates
(223). These methods achieve a sparse representation of images by
assuming that the discontinuities or edges of images are located in
the null sets of bandlimited periodic functions.

5.3 Computed tomography reconstruction

CT reconstruction serves as a pivotal technique in both
medical imaging and industrial non-destructive testing. This
method operates by acquiring projection data from various
angles of an object, subsequently employing mathematical
algorithms to reconstruct the object’s cross-sectional images. In
recent years, the amplification of computational power coupled
with advancements in algorithmic approaches has significantly
propelled the development of CT reconstruction technology. This
progress is particularly evident in the reduction of radiation
dose, enhancement of image quality, and resolution of limited
angle challenges.

In 2013, Zhao et al. explored the iterative reconstruction
technique based on tight frame (IRIR) for spectral breast CT,
aiming to enhance image quality with limited projection data (224).
In 2016, a study introduced a spatial-Radon domain CT image
reconstruction model using data-driven tight frame (SRD-DDTF)
(225). This model integrates the concepts from Dong et al.’s joint
image and radon domain painting model with the data-driven
tight frame for image denoising. Distinctively, the SRD-DDTF
model simultaneously reconstructs both the CT image and its
associated high-quality projection image. In 2018, an algorithm

was proposed that leverages wavelet tight frame and l(0) quasi-
norm to address the exterior CT problem, aiming to minimize
artifacts and produce high-quality images (226). That same year,
another study introduced an adaptive reconstruction method for
the limited angle CT problem, employing both total variation
(TV) and data-driven tight frame-based spatial and Radon domain
regularization models concurrently (227). Additionally, there was a
proposal for an image reconstruction approach that merges TV and
wavelet tight frame techniques for the limited angle CT challenge
(228). In 2019, Kong et al. introduced an innovative algorithm
utilizing tight frame wavelets and total variation for spectral CT
(229). By 2020, Goudarzi et al. unveiled a groundbreaking method
employing generative adversarial networks (GAN) in ultrasound
imaging, targeting superior axial resolution without compromising
imaging depth (230). Finally, in 2021, a study put forth a novel
CT image reconstruction model predicated on non-local low rank
regularity combined with data-driven tight frame (NLR-DDTF)
(231). Upon comparing these papers, it is evident that they share a
common goal of enhancing the image quality of CT reconstruction,
minimizing artifacts, and addressing challenges such as limited
angle. They uniformly employ tight frames, total variation, or other
regularization techniques to bolster the reconstruction outcome.
However, each paper introduces distinct methods and algorithms
tailored to specific problems or application contexts. For instance,
some papers concentrate on spectral CT, others on limited-angle
CT, and some on ultrasound imaging. Furthermore, the techniques
andmethodologies they utilize vary, including wavelet tight frames,
data-driven tight frames, and generative adversarial networks. In
summary, while these papers have all significantly advanced the
field of CT reconstruction technology, their methodologies and
focal points differ.

5.4 The utilization of tight frames in
medical imaging

Medical image processing constitutes a crucial aspect of
medical imaging, wherein the Tight Frame method significantly
contributes to the restoration and reconstruction of medical
images. The Tight Frame is a mathematical instrument utilized
for representing and processing signals or images, distinguished
by its superior reconstruction stability. This effectively facilitates
the recovery of detailed and structural information embedded
in images.

In 2016, Choi et al. examined the two-dimensional
reconstruction problem associated with X-ray CT (232). They
focused on projections truncated along the spatial direction in the
Radon domain and introduced a novel model that demonstrated
superior numerical simulation results compared to existing
sparsity-based models. Concurrently, another study also addressed
the CT’s two-dimensional reconstruction issue (233). However, this
research attempted to reconstruct the entire CT image from limited
data using tight frame regularization and sinogram extrapolation
in tandem. This model, too, exhibited more promising numerical
simulation results than the prevailing sparsity-based models.

In 2017, a study introduced a novel method for myocardial
perfusion-positron emission tomography (MPPET) image recovery
within a tight framework (234). This approach leverages the
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theory of low-rank sparse decomposition to segregate MPPET
images and capitalizes on the sparsity of the target image’s
transformation coefficients within this tight framework. By
imposing sparse constraints on the MPPET images, the method
effectively recovers them. Experimental evidence suggests that this
technique outperforms those that apply constraints in isolation.
Concurrently, Luo et al. presented an image restoration algorithm
that integrates tight frame wavelets with total generalized variation
(228). This algorithm addresses the limitations of conventional
total variation regularization techniques, which often result in
step-like pseudo-edges and a loss of texture detail in restored
images. These studies collectively investigate the utilization of tight
frames in medical image processing, with a particular emphasis
on image recovery and reconstruction. While they all leverage
the theory and methodologies of tight frames to enhance image
recovery quality, their specific applications and methodologies
vary. For instance, both Choi et al. and another study address
the two-dimensional reconstruction challenge in CT scans, but
their approaches and focal points differ. Zhang et al. and Liang
et al., on the other hand, introduce distinct image restoration
algorithms. Furthermore, Tian et al.’s work is primarily centered
on devising emergency medical rescue strategies. Collectively, these
papers underscore the extensive applicability and significance of
tight frames in medical image processing.

6 Discussion and future prospects

The technical strengths of the reviewed articles (Specific
examples are shown in Table 1):

(1) Advanced model integration: the reviewed articles showcase
the integration of cutting-edge models such as deep learning
and reinforcement learning within IoT-enabled healthcare
systems. These models have demonstrated significant
improvements in disease prediction, risk assessment, and
personalized treatment plans.

(2) Data-driven approach: a key strength lies in the data-driven
approach to chronic disease management. The use of IoT
devices for data collection, coupled with machine learning
algorithms, allows for a more precise and personalized
management of chronic conditions.

(3) Innovative use of technology: the manuscripts reviewed
highlight the innovative use of IoT devices and advanced
machine learningmodels, pushing the boundaries of chronic
disease monitoring and management and offering new
insights into patient care.

(4) Methodological rigor: the reviewed articles employ
robust methodologies, such as large-scale multi-center
cohort studies and rigorous machine learning algorithms,
contributing to the reliability and validity of their findings.

The technical weaknesses of the reviewed articles:

(1) Data collection biases: a common weakness in the reviewed
articles is the potential bias in data collected by IoT devices.
Inconsistent readings due to variations in sensor sensitivity
or user adherence issues can lead to biased health metrics.

(2) Algorithmic limitations: some machine learning algorithms
may lack representativeness for specific populations, leading
to potential misdiagnoses. Overfitting to training data
can result in poor performance when applied to diverse
patient populations.

(3) User interaction challenges: the digital divide affects the
accessibility and usability of IoT devices among different
demographic groups, potentially leading to a biased user
base that may not fully represent the broader population.

(4) Data security and privacy concerns: with the increasing
use of IoT devices, concerns regarding data security and
patient privacy have become more prominent. The reviewed
articles may not fully address the need for robust encryption
methods and anonymization techniques to protect sensitive
health data.

(5) Lack of standardization: the heterogeneity of IoT devices and
the lack of standardization in data formats pose significant
challenges for data integration and analysis. The reviewed
articles do not uniformly propose solutions for ensuring
seamless data exchange and interoperability.

(6) Computational resource demands: the growing volume of
health data presents a challenge in terms of processing and
analyzing this data in real-time, which requires significant
computational resources. The reviewed articles may not fully
explore the potential role of edge computing and cloud
infrastructure in addressing this challenge.

We discuss the potential inaccuracies in data collected
by certain IoT devices, which may lead to biased health
metrics. For instance, wearable devices can sometimes provide
inconsistent readings due to variations in sensor sensitivity or user
adherence issues. We highlight the limitations of certain machine
learning algorithms that may lack representativeness for specific
populations. For example, some algorithms may be overfitted to
the training data and perform poorly when applied to a diverse
patient population, leading to potential misdiagnoses. We address
the challenges in user interaction, such as the digital divide that
affects the accessibility and usability of IoT devices among different
demographic groups. This can result in a biased user base that may
not fully represent the broader population.

With the increasing use of IoT devices, concerns regarding data
security and patient privacy have become more prominent. We
discuss the need for robust encryptionmethods and anonymization
techniques to protect sensitive health data. The heterogeneity
of IoT devices and the lack of standardization in data formats
pose significant challenges for data integration and analysis. We
highlight the importance of developing uniform standards to
ensure seamless data exchange and interoperability. We address
the potential for algorithmic bias in machine learning models,
which can lead to unfair predictions in disease risk assessment. We
emphasize the need for transparent and explainable AI to mitigate
these biases. As the volume of health data grows, the challenge of
processing and analyzing this data in real-time requires significant
computational resources. We discuss the potential role of edge
computing and cloud infrastructure in addressing this challenge.
The use of AI in healthcare raises ethical questions about decision-
making, accountability, and the potential for AI to replace human
judgment. We explore the ethical frameworks that can guide the
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responsible use of AI in chronic disease management. Despite
technological advancements, the integration of IoT and AI into
clinical practice remains a challenge due to factors such as cost,
clinician resistance, and the need for evidence-based outcomes. We
discuss strategies to facilitate the adoption of these technologies
in healthcare settings. Ensuring that all patients, regardless of
their digital literacy or socioeconomic status, can benefit from
IoT and AI technologies is a critical challenge. We highlight the
need for inclusive design and accessible interfaces to bridge the
digital divide.

The potential applications of emerging technologies in chronic
disease management are vast, particularly when integrated with
quantum computing, biosensors, IoT, and machine learning
algorithms. Quantum computing, characterized by its ultra-fast
processing speed and capabilities, is revolutionizing the field of
medical AI. This technology can efficiently process and analyze
large datasets, offering significant value in areas such as drug
development, medical big data, and healthcare. For example,
in drug development, quantum computing can predict the
outcomes of chemical combinations, simulate various precursors
formed by different functional groups, rapidly screen promising
combinations, thereby reducing research and development time
and costs.

Aggarwal et al. introduced a precision-based fine-grained
patient diagnostic method, an algorithm that describes the
process of patient diagnostic modeling using quantum computing.
This involves initializing quantum bits, pairing values, assigning
probability values, cross-validation, and forming quantum circuits.
The method requires patients to report symptoms, healthcare
experts to contact regarding various factors, precise examinations,
and a detailed understanding of health status (both past and present
medical history). Subsequently, precise interventions are made
through the comprehension of biomolecular simulations (264).
Enad et al. employed quantum neural networks and quantum
SVM to predict heart disease. Their approach aims to enhance the
accuracy and speed of identifying various cardiac issues or risk
factors by integrating quantum computing concepts into machine
learning algorithms. The framework is designed to manage
extensive computations and large datasets, ultimately leveraging
the scalability and processing power of cloud infrastructure to
improve high-definition predictive models. The ultimate goal is to
achieve precise diagnostics, provide highly reliable risk assessments,
and enable real-time or near-real-time instance classification to
improve healthcare diagnostics and mitigation measures in cardiac
health monitoring (265). Balamurugan et al. used optimized
machine learning models and quantum computing techniques
such as Lasso regression for feature selection, Bayesian neural
networks for classification, and optical biosensors for cancer cell
detection. The accuracy of this research method exceeded that
of previously published studies (266). Karthick and Pankajavall
developed the IoT-Spiro system, introducing an advanced machine
learning prediction framework. This system is capable of detecting
various volatile organic compounds present in exhaled breath
and analyzing parameters in real time. The proposed framework
integrates a hybrid genetic explosion-implosion algorithm for
optimal feature selection from real-time datasets, along with a
fuzzy-based quantum neural network classifier for the diagnosis
of chronic obstructive pulmonary disease (267). Munshi et al.

investigated the efficacy of two quantum machine learning
algorithms, specifically quantum support vector classifiers and
variational quantum classifiers, in predicting chronic heart disease
within the context of healthcare 4.0. Their findings indicated that
the quantum support vector classifier outperformed the variational
quantum classifier, achieving an accuracy rate of 82% (268).

The integration of quantum computing, biosensors, IoT, and
machine learning algorithms is poised to significantly enhance
chronic disease management. This amalgamation promises to
deliver more efficient, precise, and tailored healthcare services. As
these technologies evolve and find practical applications, patients
with chronic conditions are anticipated to experience improved
health management and therapeutic results.

The amalgamation of IoT, AI, and other technologies such as
bioinformatics and nanotechnology presents significant potential
in the realm of chronic disease management. This is particularly
evident in the areas of data collection and analysis.

In the realm of chronic disease management, bioinformatics
technologies are employed to scrutinize genetic data, pinpoint
disease susceptibility genes, and identify biomarkers. When
integrated with biosensor technology, these tools facilitate real-
time monitoring of patients’ biomolecules, thereby laying the
groundwork for personalized treatment approaches. Cao et al.
utilized bioinformatics analysis and machine learning to discern
biomarkers for diagnosing CKD and non-alcoholic fatty liver
disease. Their findings revealed that four genes associated with
non-alcoholic fatty liver disease (DUSP1, NR4A1, FOSB, ZFP36)
could potentially serve as diagnostic markers for CKD patients
complicated by non-alcoholic fatty liver disease. This discovery
offers both diagnostic markers and therapeutic targets for CKD
patients suffering from non-alcoholic fatty liver disease (269).
Zhu et al. conducted a comprehensive bioinformatics analysis
and machine learning to screen for immune-related secretory
proteins associated with CKD and calcific aortic valve disease.
They employed machine learning algorithms, such as Lasso
regression and random forest, to identify candidate biomarkers
and developed a diagnostic nomogram to predict CKD-related
calcific aortic valve disease (270). Zhang et al. delved into the
genetic mechanisms of diabetic nephropathy complicated by
inflammatory bowel disease using data mining and bioinformatics
analysis. Their findings suggest that oxidative stress, chronic
inflammatory responses, and immune dysfunction may be
the underlying mechanisms for the co-occurrence of diabetic
nephropathy and inflammatory bowel disease (271). Lu et al.
identified diagnostic biomarkers for idiopathic pulmonary arterial
hypertensionwithmetabolic syndrome through bioinformatics and
machine learning. They utilized random forest algorithms and the
least absolute shrinkage and selection operator algorithm to screen
for candidate diagnostic genes at the intersection of differentially
expressed genes and weighted gene co-expression network module
genes (272).

The incorporation of nanotechnology into drug delivery
systems can augment the bioavailability and therapeutic efficacy
of drugs, while simultaneously reducing their side effects.
Furthermore, nanosensors have the capacity to detect minute
changes in biomarkers, thereby facilitating early diagnosis
and disease monitoring. Wang et al. employed functionally
reconstructed materials and techniques with specific targeting
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capabilities at the nanoscale level. They posited that drugs
enhanced by nanotechnology hold the potential to revolutionize
the treatment paradigm for neurodegenerative diseases, while
minimizing systemic side effects (273). Chintapula et al.
explored nanotech-based immunomodulatory approaches
that could potentially be utilized as therapeutic interventions
for prominent age-related diseases, including cardiovascular
diseases, autoimmune diseases, neurodegenerative diseases, and
infectious diseases (274). Shoaib et al. employed biofluid-based
glucose sensors, utilizing minimally invasive, invasive, and non-
invasive techniques to assess the impact of nanotechnology on
biosensors. The benefits of low invasiveness and continuous
glucose monitoring in new medical devices can enhance patient
comfort and understanding of their blood glucose conditions,
thereby improving the healthcare system and overall clinical
outcomes (275). Through the integration of these technologies,
chronic disease management is progressing toward a more
intelligent, personalized, and precise direction, thereby providing
patients with superior quality medical services.

The development of smart chronic disease management
involves a complex, multi-tiered cooperation model among
governments, private enterprises, and medical institutions. This
model primarily emphasizes the integration of resources from all
stakeholders to collaboratively advance the creation of chronic
disease monitoring platforms that utilize IoT and machine
learning algorithms.

Governments typically bear the responsibility for establishing
pertinent policies and standards, offering financial backing,
and providing policy guidance to guarantee the quality and
efficiency of medical services. A prime example of this is the
“Integration of Medical Services and Prevention” chronic disease
service management capacity enhancement project, spearheaded
by China’s National Health Commission. This project, as part
of the “Fifth Round of the Three-Year Action Plan for Public
Health,” seeks to establish an integrated and precise model for
chronic disease health management, underpinned by information
technology. Private enterprises are instrumental in technological
innovation, product research and development, and market
promotion. They contribute to chronic disease management by
developing smart medical devices, health management platforms,
and data analysis tools. For instance, Huawei’s Smart Health
City solution employs cloud computing, big data, AI, and other
technologies to create a unified architecture that enables second-
level access to images and pathology (276). Medical institutions,
as primary service providers, employ IoT devices to gather
patient data. They then utilize machine learning algorithms
for analysis and formulate personalized treatment plans. These
institutions also play a pivotal role in the design and optimization
of chronic disease management platforms to ensure they align
with clinical requirements. For instance, the Chronic Disease
Health Management Support Center, established by the Shanghai
Municipal Center for Disease Control and Prevention, employs
comprehensive prevention and treatment technologies to precisely
collect and monitor comprehensive risk factors for chronic
diseases (277).

The Public-Private Partnership (PPP) model holds significant
promise for chronic disease management. This model facilitates
joint investment, risk sharing, and benefit distribution between

governments and the private sector. For instance, the General
Office of the State Council has implemented policy measures to
expedite the growth of private medical services. These measures
encourage societal forces to offer multi-tiered and diverse medical
services, while also supporting private medical institutions in
collaboration with public hospitals to establish new non-profit
medical institutions (278).

In the realm of chronic disease management, technological
innovation and enhanced service quality are fundamental to
effective collaboration. For example, the Shanghai Medical Care
Cloud Information Platform amalgamates medical theories with
expert consensus guidelines. By leveraging the Internet, IoT, and AI
technologies, it facilitates multi-role collaboration among medical
professionals. This platform offers patients comprehensive chronic
disease management services, thereby elevating the treatment
outcomes for diabetic patients in Shanghai (279). These cooperative
models can effectively facilitate the development of chronic disease
monitoring management platforms, leveraging IoT and machine
learning algorithms. This advancement enables early detection,
prevention, treatment, and rehabilitation of chronic diseases,
thereby enhancing the quality and efficiency of medical services.

Medical image reconstruction, a pivotal research area in
medical imaging, aims to restore comprehensive medical images
from incomplete or compromised data. Despite significant
advancements in computer technology and algorithmic
development in recent years, this field continues to present
numerous challenges and opportunities for further exploration.
Recent studies have demonstrated the extensive application
of Tight Frame technology in medical image reconstruction.
This method amalgamates compressed sensing, total variation,
and other regularization techniques to effectively address the
reconstruction challenges associated with medical images such as
MRI and CT. Notably, data-driven Tight Frame methods offer
innovative solutions for enhancing image quality and expediting
the reconstruction process. Furthermore, the integration of
deep learning technology with Tight Frame technology has
been explored to further optimize the reconstruction outcomes.
Despite significant advancements, medical image reconstruction
continues to grapple with several challenges. Firstly, the optimal
management of noise and artifacts, along with the acquisition
of high-quality images under conditions of low dose or limited
angle, remains a focal point of research. Secondly, there is a
pressing need for the development of more tailored and efficient
reconstruction algorithms specific to various medical imaging
modalities and application contexts. Furthermore, in light of the
expanding realm of medical big data, leveraging this vast pool of
information for model training and optimization has emerged
as a pivotal area of inquiry. Looking ahead, we foresee several
key trends in medical image reconstruction research. Firstly, the
role of deep learning and artificial intelligence technologies is
expected to expand, particularly in the automated design and
optimization of models. Secondly, there will be increased focus on
cross-modality and multi-modality medical image reconstruction
to facilitate information fusion and harness the complementary
strengths of various imaging techniques. Additionally, real-time
and dynamic medical image reconstruction will gain prominence
to address the demands of clinical applications. Lastly, as
personalized medicine advances, the challenge of tailoring medical
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image reconstruction to individual differences will emerge as
a significant research area. In conclusion, the field of medical
image reconstruction is undergoing continuous deepening and
expansion. This ongoing research will undoubtedly provide more
efficient and accurate imaging support for clinical medicine in
the future.

The integration of IoT devices and machine learning
algorithms substantially diminishes healthcare costs by curbing
unnecessary hospital visits and readmission rates. For instance, the
implementation of remote monitoring and prompt interventions
can decrease the frequency of emergency room visits and
hospitalizations for patients, thereby leading to considerable cost
reductions. Through precise forecasting of patient requirements
and disease trajectories, healthcare resources can be judiciously
allocated, thereby minimizing inefficiencies. For example, machine
learning algorithms can identify patients at an elevated risk of
readmission, facilitating timely allocation of healthcare resources
for preventive interventions. Mitigation of long-term care
expenditures: the utilization of IoT devices for the self-management
of chronic patients can decelerate disease progression, decrease the
necessity for long-term care, and consequently reduce associated
costs. Enhancing workflow efficiency: ML algorithms have the
potential to automate numerous mundane data processing tasks,
thereby enabling medical professionals to allocate more time
toward direct patient care and subsequently enhance overall
workflow efficiency.

IoT devices offer tailored reminders and suggestions,
facilitating patients in more effectively adhering to their treatment
regimens. This, in turn, optimizes therapeutic outcomes and
bolsters patient compliance. Real-time monitoring and early
intervention can more effectively manage the conditions of
patients with chronic diseases, thereby reducing acute episodes.
This significantly improves the quality of life for these patients. The
integration of IoT and ML technologies facilitates access to high-
caliber medical services for patients in remote locations, thereby
mitigating the disparity between urban and rural healthcare
provision and fostering health equity. The integration of IoT
devices and applications facilitates patients’ comprehension of
their health status, thereby actively engaging them in disease
management. This, in turn, significantly bolsters the patient’s
capacity for self-management. Large-scale management of chronic
diseases can lead to a reduction in both the incidence and mortality
rates associated with these conditions, thereby elevating the overall
public health standard within society. The integration of IoT and
ML technologies has catalyzed technological advancements within
the medical domain, thereby paving the way for the evolution of
novel medical devices and therapeutic approaches.

7 Conclusion

Our findings not only highlight the technical feasibility of IoT
and machine learning algorithms in chronic disease management
but also underscore their profound implications for healthcare
delivery. The integration of these technologies is anticipated to lead
to more efficient resource allocation, reduced hospitalization rates,
and enhanced patient self-management capabilities. This approach
has the potential to revolutionize patient care by providing

personalized treatment plans, improving disease monitoring, and
facilitating timely interventions, ultimately leading to better health
outcomes and a reduced burden on healthcare systems. The
significant economic and social advantages, coupled with the
improved quality of life for patients, solidify the position of IoT
and machine learning as a transformative model for the future of
chronic disease management.

This review underscores the pivotal role of integrating
IoT mobile sensing devices with machine learning algorithms
and frame theory in chronic disease management and medical
image reconstruction. This integration optimizes data collection,
enhances disease diagnosis, tailors personalized treatment, and
improves disease management and prevention. At a technological
level, IoT enables continuous lifestyle and health monitoring,
while machine learning excels at disease prediction, risk
assessment, and personalization of treatment plans. The synergistic
relationship between smart healthcare systems and mobile health
applications offers patients personalized nutrition and health
management services. It also enhances recovery efficiency through
telerehabilitation and enriches patient experiences by promoting
engagement, education, and satisfaction. This solidifies the position
of IoT and machine learning as a transformative model for chronic
disease management, offering tangible improvements in patient
care and healthcare system efficiency.
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