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Background: Artificial intelligence is based on algorithms that enable machines 
to perform tasks and activities that generally require human intelligence, and 
its use offers innovative solutions in various fields. Machine learning, a subset 
of artificial intelligence, concentrates on empowering computers to learn and 
enhance from data autonomously; this narrative review seeks to elucidate the 
utilization of artificial intelligence in fostering physical activity, training, exercise, 
and health outcomes, addressing a significant gap in the comprehension of 
practical applications.

Methods: Only Randomized Controlled Trials (RCTs) published in English were 
included. Inclusion criteria: all RCTs that use artificial intelligence to program, 
supervise, manage, or assist physical activity, training, exercise, or health 
programs. Only studies published from January 1, 2014, were considered. 
Exclusion criteria: all the studies that used robot-assisted, robot-supported, or 
robotic training were excluded.

Results: A total of 1772 studies were identified. After the first stage, where the 
duplicates were removed, 1,004 articles were screened by title and abstract. 
A total of 24 studies were identified, and finally, after a full-text review, 15 
studies were identified as meeting all eligibility criteria for inclusion. The findings 
suggest that artificial intelligence holds promise in promoting physical activity 
across diverse populations, including children, adolescents, adults, older adult, 
and individuals with disabilities.

Conclusion: Our research found that artificial intelligence, machine learning 
and deep learning techniques were used: (a) as part of applications to generate 
automatic messages and be able to communicate with users; (b) as a predictive 
approach and for gesture and posture recognition; (c) as a control system; (d) as 
data collector; and (e) as a guided trainer.
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Introduction

Physical activity has been recognized as an effective approach for 
enhancing public health. Promoted by multiple medical organizations, 
it is helpful in the prevention and treatment of various diseases (1). It 
is essential for improving individuals’ overall health by providing 
significant advantages, including the reduction of chronic illness risk 
and the enhancement of mental well-being (1–4). The potential of 
artificial intelligence in training, exercise, physical activity, and health 
programs stems from its capacity to evaluate, compute, and reveal 
findings. Its use in medicine is increasingly broadening, presently 
manifesting in social media, video games, smartphones, and 
smartwatches (5–9). This can make us realize how easy it is to find 
ourselves in the context of the presence of artificial intelligence, which 
can push us to use it to our advantage. Therefore, in the context of 
training or health programs, it becomes easy to think about the use of 
artificial intelligence as a way to communicate with users via 
messaging apps, as a potential predictive and recognition tool, or as a 
device for data analysis and collection (10–12).

Artificial intelligence is based on algorithms that enable 
machines to perform tasks and activities that generally require 
human intelligence, and its use offers innovative solutions in 
various fields (13, 14). The use of artificial intelligence can 
be important in public health. In a systematic review of the use of 
chatbots (artificial intelligence systems) for healthcare applications, 
Xu et  al. (15) describe integrating these elements into clinical 
practice, equipping healthcare workers with a valuable resource 
while preserving the fundamental function of human involvement 
in medical care (15). Artificial intelligence includes machine 
learning, a subset that uses statistical techniques and 
computational algorithms to analyze data and discern patterns 
(16–18). Machine learning can be  classified by task type into 
supervised learning, unsupervised learning, and reinforcement 
learning (16, 19).

Supervised learning emphasizes predictive tasks. It utilizes labeled 
samples to train algorithms that identify or forecast specified 
outcomes. It is very effective for formulating risk and prognosis scores 
to identify individuals who could benefit from preventive or tailored 
therapies (20–23). Banker et  al. utilized supervised learning with 
adaptive, multi-step algorithms to analyze wearable accelerometer 
data and assess the influence of physical exercise on biological 
aging (24).

Unlike supervised learning, unsupervised machine learning was 
developed to identify novel patterns and correlations in irregularly 
sampled data without the utilization of human-generated labels.

Unsupervised learning does not focus on a particular 
identification task but instead tries to uncover the overall structure 
underlying a dataset, discovering possible trends, correlations, and 
associations along both spatial and spectral domains. This method 
offers an exploratory data analysis without focusing on specific areas 
of interest. The structure that is found in the data can be used to assist 
human interpretation, but it can also help in reducing the 
computational load for subsequent analysis (25–28). Unsupervised 
learning could be used to identify patterns in physical activity data 
without predefined labels. Gupta et al. used unsupervised learning to 
identify patterns of COVID-19 symptoms associated with long and 
short COVID-19 in a nonhospitalized cohort, to assess the presence 
of distinct patterns of physical activity trajectory, and to evaluate an 

association between COVID-19 and patterns of physical activity 
trajectory (29).

Reinforcement learning is a machine learning methodology in 
which an agent optimizes actions via trial and error, gaining incentives 
for favorable behaviors within an interactive environment. In contrast 
to supervised learning, it depends on a progressive reward system 
instead of direct instructions (30, 31). Reinforcement learning could 
be  used as a way to communicate with users via smartphones. 
Yom-Tov et al. developed a mobile application that operates in the 
background on the smartphones of diabetes patients, monitoring their 
physical activity levels (32). They used a reinforcement learning 
algorithm that assessed which SMS message would likely increase the 
participants’ physical activity the next day, and subsequently, that 
message was sent to them (32).

Deep learning, a kind of machine learning, is the predominant 
technique in numerous applications. It employs multilayer neural 
networks to autonomously acquire data representations, converting 
input into various levels of abstraction. This technique is good for 
handling large-scale, high-density data (13, 33, 34). In a recent study, 
Hamid et al. used deep learning models to accurately approximate 
energy cost, in terms of metabolic equivalents of physical activity, 
using sensor readings from wearable accelerometers in children (35). 
The authors analyzed activities encompassing prevalent locomotor 
and object control motions in children. Their analysis examined the 
influence of sensor placement on the model’s predictive efficacy, 
providing recommendations for optimal sensor sites for each activity 
category (35).

Therefore, the use of artificial intelligence in training, exercise, 
physical activity and health programs can vary, depending on the type 
of artificial intelligence used. Given the rapid integration of artificial 
intelligence in several health domains, this narrative review aims to 
understand how artificial intelligence is being used to promote 
physical activity, training, exercise, and health outcomes, filling a 
critical gap in understanding the practical applications.

Materials and methods

Search strategy

This narrative review was carried out following the narrative 
checklist (36). The PubMed online database was used as a research 
tool, on August 16, 2024, using the following strings: “Artificial 
Intelligence and physical activity,” “Artificial Intelligence and fitness,” 
“Artificial Intelligence and movement,” “Artificial Intelligence and 
training,” “Machine learning and physical activity,” “Machine learning 
and fitness,” “Machine learning and movement,” and “Machine 
learning and training.” The RCTs option has been marked for the 
search performed on PubMed.

Study selection

Only RCTs written in English were included. Inclusion 
criteria: all Randomized Controlled Trials (RCTs) that use 
artificial intelligence to program, supervise, manage, or assist 
physical activity, training, exercise, or health programs. Only 
studies published from January 1, 2014, were considered. 
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Exclusion criteria: all the studies that used robot-assisted, robot-
supported, or robotic training were excluded. After extraction, all 
articles reviewed from the PubMed online database were entered 
into EndNote 21 software. In the first stage, two investigators 
worked independently by removing duplicates and analyzing 
articles by title and abstract. In the second phase, all included 
articles were reviewed through a full-text reading to assess 
whether they fell within the inclusion criteria. The opinion of a 
third researcher was considered in case of disagreement between 
the two researchers.

Data extraction

Data on “date and author, participants, artificial intelligence 
function, intervention, and outcomes” were collected, put into a 
Microsoft Word spreadsheet, and then analyzed in the discussion.

Results

Studies’ identification

A number of 1772 studies were identified. After an initial phase, 
where duplicates were cleared, a screening was then conducted on 
the remaining 1,004 articles based on title and abstract. A total of 24 
studies were identified, and finally, after a full-text review, 15 studies 
were identified as meeting all eligibility criteria for inclusion. 
Figure 1 provides a detailed flow diagram outlining the process of 
the study identification, screening, and inclusion (37). Table  1 
summarizes the characteristics of the included studies, including 
participants, artificial intelligence functionalities, intervention, 
and outcomes.

Study characteristics

A total of 2,626 subjects were evaluated, in total, in nine studies 
(38–46) participants were divided into two groups, in five studies 
(47–51) into three groups, and in one study (52) into four groups. In 
addition, artificial intelligence was used to send messages and 
notifications in six studies (38, 39, 43–45, 49), as a predictive model in 
four studies (39, 47, 50, 51), as a model to analyze gestures and 
postures in three studies (40, 42, 46), as a data collector in one study 
(48), and as a training and control guide in two studies (41, 52). 
Regarding the interventions, stretching exercises, maintaining good 
posture and mindfulness (38) were provided; notifications regarding 
self-monitoring diet, physical activity, weight and personalized daily 
feedback messages were suggested in the included studies (39); also 
stretching (46), lunging (46), boxing (46), side-bending (46), squatting 
(46), jumping exercise (46) were offered; continuing with resistance 
(50, 52), strength (40, 44, 45, 47–49, 51), gaming (41, 46), 
cardiopulmonary endurance (48), endurance (51), flexibility (44, 45, 
48, 49), balance (48) training programs, and a bicycle train program 
(42) were conducted; Yi Jin Jing (47, 50) and Wu Qin Xi (51) exercises 
were performed; daily education content and recommendations of 
physical activity (44, 45, 49), and advice on diet (43), exercise (43), 
sleep (43), mood (43), and weight (43) were also suggested.

Discussion

This narrative review reveals that the use and application of 
artificial intelligence in physical activity, exercise, training contexts 
is still emerging, particularly when compared to its extensive use in 
medical fields (53–57). The rapid advancements in artificial 
intelligence, particularly from 2017 to 2024 as reflected in the 
included studies, underscore its evolving role in wellness and health 
intervention. The included studies utilized diverse artificial 
intelligence functionalities, ranging from artificial intelligence 
messaging systems to predictive models and data collection, and 
from artificial intelligence systems for gesture recognition, analysis, 
and control to artificial intelligence-guided training methods. These 
approaches targeted outcomes such as pain reduction, predictive 
events, and performance improvements, demonstrating the 
versatility of artificial intelligence to promote physical activity and 
health programs.

Artificial intelligence function

Texting messages and notifications
In their study, Anan et al. (38) looked at improving pain/stiffness 

symptoms in the neck/shoulder districts in workers and used an 
interactive artificial intelligence-assisted health promotion system via 
a messaging app to communicate with them. Anan et  al. (38) 
programmed the artificial intelligence to send messages to workers 
both with exercise instructions and to suggest what they could do to 
improve symptoms. While Nakata et al. (43) developed a smartphone 
healthcare application where users could record physical activity, daily 
diet, sleep quality, and mood to calculate their dietary intake and give 
recommendations using artificial intelligence technology. Instead, 
Nordstoga et al. (44), Marcuzzi et al. (49), and Øverås et al. (45) used 
the selfBACK app in their studies. The app contained three major 
components of self-management such as video instructions for 
flexibility and strength exercises, recommendations of physical 
activity, and daily educational content. Weekly recommendations for 
self-management were delivered for each of the components and were 
tailored to individual characteristics, progression, and symptoms 
using case-based reasoning methodology, a branch of knowledge-
driven artificial intelligence. Also, the app included tools such as 
mindfulness audios, setting goals, sleep reminders, and low back pain 
(LBP) relief exercises. Subjects were given encouraging push 
notifications, activated based on their self-management behavior, to 
motivate and reinforce their desired behavior. Likewise, Bizhanova 
et al. (39) used the SMARTER app to communicate with users by 
sending feedback messages. The application allowed subjects to 
be  sent up to three daily feedback messages tailored to the self-
monitoring data collected. The algorithm randomly sent messages to 
the participants’ smartphones during the morning, afternoon, and 
evening hours.

Predictive model
Wei et al. (50, 51) and He et al. (47) in three different studies, used 

an explainable artificial intelligence (XAI) in order to predict if 
subjects could reverse frailty, 8 and 10 classical machine learning 
classification models, and a stacking model in order to predict if 
sarcopenia might regress in subjects after the intervention. Also, 
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Bizhanova et al. (39) used machine learning prediction models for the 
average percentage of adherence to physical activity (PA) goal.

Device to analyze gestures and postures
Cao et al. (40) investigated the effect of functional strength 

training on football players’ abilities and used machine learning to 
examine players’ movements. Specifically, Cao et  al. (40) used 

machine learning technics, in particular, back-propagation neural 
network (BPNN) in the context of deep learning, to investigate the 
actions of soccer players. They used sensitivity, force, and 
movement speed as BPNN input vectors to confront images of 
players’ movements, while they used the standard movements and 
similarity among soccer actions as output results to improve 
training efficiency. Meanwhile, Oh et  al. (46) used an artificial 

FIGURE 1

Study selection and eligibility screening flow diagram.
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TABLE 1 The list of studies included in the narrative review.

Date and author Participants AI Function Intervention Outcomes

2021, Anan (38) Middle Aged Women and Men

 • Intervention group n = 48

 • Control group n = 46

Texting messages and 

notifications

Stretching, maintaining good 

posture, mindfulness

Subjective assessment of the 

degree of pain, subjective rate of 

pain improvement

2023, Bates (52) Adults

 • Control n = 9

 • Train n = 13

 • Clin n = 27

 • Combo n = 20

Artificial intelligence guided 

training

Moderate-intensity resistance 

training

6-min walking test (6MWT), 

Biering-Sorenson’s exam, 

Numeric Pain Rating scale 

(NPRS), Tampa scale of 

kinesiophobia (TSK), Patient 

Reported Outcomes 

Measurement Information 

System (PROMIS) physical 

function, and PROMIS pain 

interference

2023, Bizhanova (39) Adults with overweight or obesity

 • Self-monitoring of diet, 

physical activity, and weight 

(SM) n = 251

 • Self- monitoring of diet, 

physical activity, and weight 

combined with daily tailored 

feedback messages 

(SM + FB) n = 251

Text generation and machine 

learning prediction models 

for the average percentage of 

adherence to the physical 

activity goal

Self-monitoring of diet, physical 

activity, weight and daily tailored 

feedback messages

Fitbit tracker (MVPA), Self-

efficacy and Exercise Habits 

Survey, Center for 

Epidemiologic Studies 

Depression (CES-D), and Tanita 

scale

2023, Cao (40) Students (age range of 8–13)

 • Intervention group n = 60

 • Control group n = 56

Machine learning-based 

approach for postural 

recognition – back-

propagation neural network 

(BPNN) in the context of 

deep learning to analyze 

soccer player’s actions

Functional strength training 10- and 30-meter sprint tests 

(speed), Illinois agility test and 

5*25-meter shuttle run 

(sensitivity), throws and set 

kicking drills (strength), analysis 

of kicking actions (BPNN)

2024, He (47) Older adult

 • Self-determined sequence 

exercise program group 

(SDSG) n = 34

 • Strength training group 

(STG) n = 30

 • Control group n = 30

Machine learning 

classification models - 

explainable artificial 

intelligence (XAI) – and a 

stacking model to predict 

whether sarcopenia could 

regress in subjects after the 

intervention

Strength training and Yi Jin Jing 

exercise

Hydraulic hand dynamometer, 

6-meter gait speed, appendicular 

skeletal muscle mass (ASM) – 

L3 skeletal muscle area 

(L3SMA), L3 skeletal muscle 

density (L3SMD), L3 skeletal 

muscle interstitial fat area 

(L3SMFA), L3 skeletal muscle 

interstitial fat density 

(L3SMFD), relative skeletal 

muscle mass index (RSMI), 

muscle fat infiltration (MFI)

2021, Kristoffersen (41) Adults with unilateral upper limb 

absence:

 • Game group n = 2

 • Conventional group n = 2

Control system composed by 

feature extraction, regression 

between EMG features and 

hand movement commands, 

post-processing of movement 

commands to improve 

usability and suppress 

possible errors and a feed-

forward neural network was 

used as a regressor to 

compute hand movement 

commands from the pre- 

processed EMG data

Gaming training and conventional 

training using a computer 

program

Southampton Hand Assessment 

Procedure (SHAP), The 

Clothespin Relocation Test 

(CRT)

(Continued)
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TABLE 1 (Continued)

Date and author Participants AI Function Intervention Outcomes

2021, Lao (48) Older adult

 • Exercising wearing the 

bracelet n = 20

 • Exercising without the 

bracelet n = 20

 • Control n = 20

Data collect by artificial 

intelligence sports bracelets

Cardiopulmonary endurance 

training, muscle strength training, 

flexibility training, and balance 

training

Exercise motivation scale 

(EMS), and Borg rating of 

perceived exertion scale (RPE 

scale)

2023, Marcuzzi (49) Adults

 • Usual care group n = 97

 • App group (selfBACK) n = 99

 • E-Help group n = 98

Texting messages and 

notifications

Video instructions for strength 

and flexibility exercises, daily 

educational content, and 

recommendations of physical 

activity

Musculoskeletal Health 

Questionnaire (MSK-HQ), 

Roland-Morris Disability 

Questionnaire (RMDQ), 

Numeric Rating Scale (NRS), 

Pain Self-Efficacy Questionnaire 

(PSEQ), Brief Illness Perception 

Questionnaire (BIPQ), EuroQol 

5-dimension questionnaire and 

Global Perceived Effect scale

2017, Mendoza (42) Fifth grade students

 • Intervention n = 24

 • Control n = 30

Machine learning algorithms 

to identify cycling behaviors

Bicycle train program Questionnaire to assess the 

percentage of trips made to 

school by cycling and MVPA 

(accelerometer and GPS)

2022, Nakata (43) Adults

 • Intervention n = 71

 • Control n = 69

Texting messages and 

notifications

Advice based on the diet, exercise, 

sleep, mood, and weight recorded 

by users

Weight scale, test kit (blood), 

brief self-administered diet 

history questionnaire (BDHQ), 

triaxial accelerometer (for the 

intensity of physical activity 

based on metabolic equivalents 

from published algorithm)

2023, Nordstoga (44) Adults

≤12 weeks

 • Control n = 93

 • selfBACK n = 101

≥12 weeks

 • Control n = 136

 • selfBACK n = 131

Low (≤5)

 • Control n = 131

 • selfBACK n = 145

Low (≥5)

 • Control n = 98

 • selfBACK n = 87

Texting messages and 

notifications

Video instructions for strength 

and flexibility exercises, daily 

educational content, and 

recommendations of physical 

activity

Roland-Morris Disability 

Questionnaire (RMDQ), 

Numeric Rating Scale (NRS), 

Pain Self-Efficacy Questionnaire, 

and Global Perceived Effect 

scale

2022, Oh (46) Children and adolescents with 

obesity:

 • SUKIA games group n = 12

 • NINS group n = 12

Convolutional neural network 

(CNN) in a deep-learning 

algorithm for gesture 

recognition

Boxing, lunging, squatting, side-

bending, upper extremity 

stretching, arm and jumping 

exercise (SUKIA game) and 

Nintendo Switch (NINS) health-

oriented role-playing game

Calorie consumption, VO2max, 

6-min walking test (6MWT), 

body mass index (BMI), and the 

Borg rating of perceived 

exertion scale (RPE), post-

questionnaire questions on 

perceived exercise effectiveness, 

motivation and fun

(Continued)
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intelligence-program gaming technique, they were concerned with 
studying the effects of total body motion movement through Super 
Kids Adventure (SUKIA), a gesture recognition app based on 
artificial intelligence using a convolutional neural network (CNN) 
in deep learning algorithm, and the Nintendo Switch (NINS) in 
adolescents with obesity. Instead, Mendoza et al. (42) used machine 
learning algorithms to detect cycling patterns of behavior. They 
developed and validated machine learning algorithms based on 
simultaneously recorded accelerometer and GPS data to identify 
the timing and activity of cycling in children.

Data collector
Lao et al. (48) used artificial intelligence smart bracelets to collect 

data and track physiological records during exercise so that users 
could obtain a clearer idea of their physical status during exercise.

Training and control guide
Like Oh et  al. (46), Kristoffersen et  al. (41) used an artificial 

intelligence program game technique. Specifically, Kristoffersen et al. 
(41) were concerned with comparing game training with conventional 
training for subjects with upper limb absence (ULA) using a machine 
learning-based control system that consisted of regression between 
electromyogram (EMG) features and hand movement commands, 
post-processing of movement commands to improve usability and 
suppress possible errors, and feature extraction. While Bates et al. (52) 
used an artificial intelligence-guided training. Precisely, the groups of 
intervention were conducted on a Tonal exercise trainer. Bates et al. 
(52) determined resistance selection with the artificial intelligence 
calibration by the Tonal trainer for all individuals. During the 
calibration, all subjects executed three repetitions of side pulls, 
deadlifts, overhead press, and bench press at maximum force, and 

TABLE 1 (Continued)

Date and author Participants AI Function Intervention Outcomes

2022, Øverås (45) Adults

Multimorbidity NO

 • Usual care group n = 68

 • selfBACK group n = 81

Multimorbidity YES

 • Usual care group n = 161

 • selfBACK group n = 151

No. of co.occurring 

musculoskeletal pain sites 0–1

 • Usual care group n = 89

 • selfBACK group n = 101

No. of co.occurring 

musculoskeletal pain sites 2+

 • Usual care group n = 140

 • selfBACK group n = 131

Texting messages and 

notifications

Video instructions for strength 

and flexibility exercises, daily 

educational content, and 

recommendations of physical 

activity

Roland-Morris Disability 

Questionnaire (RMDQ), 

Health-related quality of life 

(EQ-5D), Perceived Stress Scale, 

Patient Health Questionnaire-8, 

General Health, Brief Illness 

Perception Questionnaire 

(BIPQ), Pain Self-Efficacy 

Questionnaire (PSEQ), Saltin-

Grimby Physical Activity Level 

Scale, and Patient’s Global 

Perceived Effect (GPE)

2022, Wei (50) Older adults

 • Yi Jin Jing and resistance 

training (YR) group n = 30

 • Resistance training (RT) 

group n = 30

 • Control group n = 30

Machine learning 

classification models - 

explainable artificial 

intelligence (XAI) - and a 

stacking model to predict 

whether sarcopenia could 

regress in subjects after the 

intervention

Yi Jin Jing exercise and resistance 

training

Hydraulic hand dynamometer, 

6-meter gait speed, and 

appendicular skeletal muscle 

mass (ASM) – L3 skeletal 

muscle area (L3SMA), L3 

skeletal muscle density 

(L3SMD), L3 skeletal muscle 

interstitial fat area (L3SMFA), 

L3 skeletal muscle interstitial fat 

density (L3SMFD), relative 

skeletal muscle mass index 

(RSMI), muscle fat infiltration 

(MFI)

2023, Wei (51) Older adults

 • Wu Qin Xi group 

(WQX) n = 52

 • Strength and endurance 

training group (SE) n = 57

 • WQXSE n = 54

Explainable artificial 

intelligence (XAI) to predict 

whether subjects could 

reverse frailty

Wu Qin Xi exercise, strength and 

endurance training

Unintentional weight loss, self-

reported fatigue, physical 

activity scale for older adult in 

Chine (PASE-C), Timed up-

and-go test (TUGT), hydraulic 

hand dynamometer, 6 min walk 

test (6MWT), 10 m maximum 

walking speed (10 m MWS), and 

10 m walking time (gait 

velocity)
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depending on the quantity of power delivered in these tasks, the Tonal 
artificial intelligence trainer estimated and suggested resistances for 
all tasks in the training program. Based on data collected in real-time, 
this software algorithm provides real-time feedback to an active user. 
Bates et al. (52) used this algorithm to monitor variables such as speed, 
range of motion, and power of performance to make automatic 
adjustments to the amount of unique resistance for all subjects 
according to their performance. In addition, the artificial intelligence-
guided tasks were supervised by the research team’s physical trainers 
to provide safety for the participants and give feedback on the subjects’ 
form and technique (52).

Exercise programs

Strength, flexibility, and endurance training
A total of seven studies used strength, flexibility, and endurance 

exercises (40, 44, 45, 47–49, 51). Specifically, educational content and 
physical activity recommendations were also suggested in three 
articles (44, 45, 49), balance exercises were also performed in one 
article (48), and finally, Yi Jin Jing and Wu Qin Xi exercises were also 
performed in two different studies (47, 51).

In the study by Cao et  al. (40), the experimental group that 
performed functional strength training showed improvements in 
some performance compared to the baseline regarding speed, 
sensitivity, and strength performance. However, Cao et  al. (40) 
observed no statistically meaningful differences in performance 
between the control group and the experimental group, especially in 
speed performance and set kicking test. As previously mentioned then 
no meaningful differences between the two groups were observed in 
either the 10-meter or 30-meter sprint test but Cao et al. (40) found 
significant between-group differences regarding the Illinois running 
test, the 5*25-meter shuttle running test, and the throwing test. 
Finally, no major between-group differences were noted in kicking 
actions, measured with backpropagation neural network (BPNN), at 
baseline and after the experimental study, in fact, at the baseline, the 
accuracy of the experimental group’s kick actions was 73.2%, while 
that of the control group was 74.3%, whereas at post-test, the 
experimental group achieved an 83.4% accuracy, while the control 
group reached 84.1% (40). The lack of meaningful differences between 
groups in some performance metrics suggests the need for further 
exploration of artificial intelligence’s role in functional strength 
training (40). In the studies by Nordstoga et al. (44), Øverås et al. (45), 
and Marcuzzi et al. (49) video instructions for strength and flexibility 
exercises were offered. Specifically, Nordstoga et al. (44) showed that 
185 subjects initially exhibited LBP intensity exceeding five on the 
Numeric Rating Scale (NRS) scale, whereas 267 experienced LBP 
episodes lasting longer than 12 weeks. After three months, the efficacy 
of the program was comparable irrespective of pain length; however, 
selfBACK users reported a 0.2-point decrease in LBP-related disability 
for low-intensity pain (≤5 NRS) and a 1.8-point decrease for high-
intensity pain (≥5 NRS). Meanwhile, Øverås et al. (45) observed that 
persons with multimorbidity or numerous musculoskeletal pain sites 
were generally older, predominantly female, and had greater pain 
intensity, diminished physical activity, and decreased work levels. 
Prevalent long-term ailments encompassed mental health disorders 
and gastrointestinal problems, with hips and thighs frequently 

identified as co-occurring locations of musculoskeletal discomfort. 
The average number of co-occurring musculoskeletal pain locations 
was 2.14  in the intervention group and 2.34  in the control group. 
Moreover, Øverås et al. (45) did not find, in any of the outcomes 
studied, evidence regarding whether multimorbidity could modify the 
effect of the intervention. Although, the adjusted mean difference in 
the Roland-Morris Disability Questionnaire (RMDQ) score 
comparing the two groups at 3 months showed a slight positive effect 
for subjects with multimorbidity at baseline compared with those 
without multimorbidity, whereas the effect ended at 9 months of 
follow-up. About RMDQ, they noted that subjects with ≥2 LCTs had 
less reduction than subjects without any or one LTC plus LBP. Øverås 
et al. (45) also observed that participants with MSK co-occurring pain 
sites, LBP, and ≥ 4 pain sites, showed less improvement than 
participants with less pain co-occurring sites. Øverås et  al. (45) 
observed that all groups showed minimum enhancement for every 
outcome (secondary outcomes) across all time points. Specifically, 
subjects without LTC and with LBP with 0–1 additional MSK pain site 
showed greater improvement in measures of general health, stress, and 
depression, while subjects with LBP and two or more LTC and four or 
more additional MSK pain sites showed minor enhancement in 
perceived self-efficacy, perceived global affect, and perceived illness. 
Finally, concerning the EuroQol 5-dimension questionnaire (EQ5D), 
Øverås et al. (45) found similar small increases across all groups over 
time. While, Marcuzzi et al. (49) observed that the app group exhibited 
superior Musculoskeletal Health Questionnaire (MSK-HQ) ratings at 
3 months relative to the usual care and e-Help groups, although the 
differences were minimal by 6 months. At 3 months, 59.0% of app 
users indicated a ≥ 4-point enhancement in MSK-HQ, in contrast to 
44.2% for usual care and 46.8% for e-Help (49). Secondary outcomes 
revealed no significant differences across groups, with the exception 
of GPE scores, which were elevated in the app group at 3 months (49). 
These studies point out that apps have the ability to send feedback and 
advice to a large number of users, but the fact that users have to 
perform specific exercises on their own, despite the feedback received 
through the app, could be a limitation (44, 45, 49). Instead, in the 
study by He et al. (47) strength training and Yi Jin Jing exercises were 
performed. They observed highly significant group-time interactions 
in handgrip strength, L3 skeletal muscle density (L3SMD), RSMI, and 
L3SMA. Specifically, at week 24, grip strength, L3SMA, RSMI, and 
L3SMD improved significantly in the self-determined sequence group 
(SDSG) and strength training group (STG). In addition, the SDSG 
group reached meaningfully higher RSMI and handgrip strength 
compared with the control group and STG group at week 24 (47). 
However, no significant interactions were found in L3 skeletal muscle 
interstitial fat area (L3SMFA), L3 skeletal muscle interstitial fat density 
(L3SMFD), and Muscle Fat Infiltration (MFI). About the stacking 
model, He et al. (47) showed that it had a high accuracy and that the 
handgrip strength was a major contributor to the model’s prediction 
performance. Finally, Wei et al. (51) found no statistically meaningful 
differences in subjects’ pre-intervention levels of fitness in each group, 
but after the intervention, they observed meaningful interaction time-
group effects in the 10 m Maximum Walking Speed (10 m MWS) and 
grip strength. Also, Wei et  al. (51), after 24 weeks of Wu Qin Xi 
exercises, and strength and endurance training, found a significant 
improvement in grip strength between the individuals in the group 
that performed both Wu Qin Xi and strength training (WQXSE) and 
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those that performed strength training (SE) compared with subjects 
in the Wu Qin Xi group (WQX), and the WQXSE group also showed 
meaningful enhancement in Timed Up and Go Test (TUGT) when 
compared with the WQX group. In addition, they noted that the SE 
group had a meaningful enhancement in the 6-min walk test 
(6MWT), but the WQXSE group had meaningful enhancement in the 
10 m MWS when compared to both WQX and SE groups (51). 
Regarding the results of the machine learning models, Wei et al. (51) 
found that the model’s multiple assessment metrics showed that the 
stacking model performed positively to predict successfully subjects’ 
frailty status after the intervention. Wei et al. (51) noted through this 
model, how handgrip strength exhibited the greatest contribuition 
between every characteristic, followed by 10 m WMS. This might 
suggest that when targeting to improve the health of the physically 
frail older adult, special focus on improving the performance of 
handgrip strength and 10 m MWS should be given. These studies 
suggest that artificial intelligence, after analyzing a set of data, can 
be used as an excellent predictive model (47, 51). Finally, Lao et al. 
(48) noted that before the experiment, there were no meaningful 
differences between the three groups. However, after 12 weeks of 
muscle strength training, cardiopulmonary endurance, balance, and 
flexibility training, the group that trained using the sports bracelets 
and the group that exercised without the sports bracelets showed 
significant improvements on the exercise motivation scale. These 
improvements were slightly greater in the group that trained using the 
bracelet than in the group that trained without the bracelet. The 
control group showed no significant changes. Artificial intelligence 
sports bracelets have proven to be excellent devices for collecting data 
on distance traveled, time spent exercising and sleeping, and 
calculating calories consumed based on the amount of exercise (48).

Resistance training
A total of two studies performed resistance training, of which Yi 

Jin Jing exercises were performed in one study.
In another study, Wei et al. (50) showed how, after 24 weeks of Yi 

Jin Jing exercise and resistance training, 27.8% of subjects had a 
reversal of sarcopenia, specifically 52.0% of participants in the group 
that performed both Yi Jin Jing exercise and resistance training (YR) 
(13/30) and 48.0% of subjects in the group that performed resistance 
training (RT) (12/30). They also noted that subjects in YR and RT had 
meaningful enhancements in L3 skeletal muscle area (L3SMA), 
Relative Skeletal Muscle Mass Index (RSMI), and handgrip strength, 
and in particular, the YR group when compared to the RT and control 
group, showed significantly better RSMI and L3SMA. Finally, the 
stacking model was able, with 85.7% accuracy, to predict sarcopenia 
in the older adult (50). Also in this study, as in the previous one, we see 
that artificial intelligence can be used as an excellent predictive model 
(50). Instead, Bates et  al. (52), using artificial-intelligence-guided 
moderate-resistance training on subjects suffering from LBP, noted 
that for the Biering-Sorenson Examination, the overall time duration 
of isometric extensor resistance enhanced from baseline to week 8 in 
the group with subjects actively seeking clinical care (CLIN) and in 
the group with subjects actively seeking clinical care and artificial 
intelligence-supervised-guided training (COMBO). In addition, for 
the 6MWT, Bates et al. (52) observed that the distance walked had 
increased at week 8 for the CLIN group, had neared significance for 
the COMBO group, and had not changed either for the group with 

subjects who were not clinical and who and who were not given 
intervention (CONTROL) or for the group with subjects who had 
artificial intelligence-supervised-guided training (TRAIN). 
Continuing, Bates et al. (52) noted that the Numeric Pain Rating Scale 
(NPRS) score was decreased in the TRAIN group and seemed to tend 
to decline in the CLIN and COMBO groups. Regarding the Tampa 
Scale of Kinesiophobia (TSK) score, it was observed that the CLIN 
group had decreased scores at week 8. Regarding Patient Reported 
Outcomes Measurement Information System (PROMIS) physical 
function scores, Bates et al. (52) observed an increase at week 8 in the 
CONTROL, TRAIN, and COMBO groups, while the CLIN group had 
no change. Finally, from PROMIS pain interference scores, Bates et al. 
(52) noted a decrease from baseline to week 8 in the TRAIN, CLIN, 
and COMBO groups, while no meaningful PROMIS scores of pain 
interference were found in the CONTROL group. The study supports 
the possible role of artificial intelligence-guided resistance training in 
alleviating LBP and improving function and pain, highlighting 
possible gains and utility for LBP prevention if combined with clinical 
care (52).

Stretching and game training
In a total of three studies, stretching, and game training exercises 

were performed, specifically in one study, boxing, squatting, side-
bending, lunging, arm, and jumping exercises were also performed 
(38, 41, 46).

In the study by Anan et al. (38), participants’ adherence was 92%. At 
the end of the health program, in which stretching exercises were also 
suggested, Anan et al. (38) found an improvement in neck-shoulder 
stiffness-pain or LBP in the experimental group compared with the 
control group, furthermore, the percentage of subjects who had 
symptoms of severe importance decreased for 77 to 33% in the 
experimental group, while from 76 to 67% in the control. Finally, after 
12 weeks of the artificial intelligence-assisted health program, 75% of the 
experimental group perceived improvements versus only 7% in the 
control group (38). This highlights the potential of artificial intelligence-
based messaging systems to enhance the adherence and achieve 
significant improvements in symptom management (38). While, 
Kristoffersen et al. (41) in their study found no significant improvement 
in the two groups after the gaming training program was performed. In 
addition, baseline measurements with the user’s prosthesis were 
significantly higher than those performed with the machine learning. 
The study points out that although there was the possibility of using a 
machine learning-based control in the target population, one of the 
important limits of the study, as also reported by the authors, was the 
small number of subjects (41). Finally, Oh et al. (46) found significant 
differences in caloric intake and Borg rating of perceived exertion (RPE) 
scale between the SUKIA and NINS groups; in particular, the group that 
performed SUKIA game training had better caloric consumption and 
cardiopulmonary endurance. Continuing, Oh et  al. (46) found no 
meaningful differences between the two groups concerning Body Mass 
Index (BMI) at post-test, suggesting that both types of training 
intervention were effective in reducing fat mass. Regarding VO2 max, 
Oh et al. (46) found significant differences between measurements at 
baseline and post-test. Oh et al.’s (46) analysis showed an improvement 
in VO2 max in the group that performed SUKIA game training 
compared to the NINS group but at the same time, both groups 
improved their parameters compared to baseline, suggesting an 
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important influence on cardiopulmonary function. The SUKIA game 
training group also showed improvements in the 6MWT compared to 
the NINS group and, as for VO2 max, both groups showed 
improvements at post-test compared with baseline. Finally, regarding the 
post-questionnaire for motivation, perceived exercise effectiveness, and 
fun, no meaningful differences were observed between the two groups 
as the subjects who participated in the study were satisfied in both 
groups (46). The results show the potential of artificial intelligence-
enhanced gaming to promote cardiopulmonary health and motivation, 
though further studies are needed to confirm these effects across diverse 
populations (46).

Bicycle train program, self-monitoring physical 
activity, and advice based on exercise

Regarding the other three studies, in one a bicycle train program 
was performed, while in the other two studies self-monitoring physical 
activity were conducted and advices based on exercise were given (39, 
42, 43).

In the study of Mendoza et al. (42) each school intervention had a 
bicycle train path, which required children 10 to 45 min to complete. 
They noted that the intervention groups increased the average 
percentage of daily bicycle trips and in MVPA compared to the control 
groups. This study emphasizes the excellent ability of artificial 
intelligence to discriminate one type of activity from another and to 
analyze specific parameters using accelerometers and GPS (42). 
Moreover, Bizhanova et al. (39) observed that the significant predictors 
included (a) sex, (b) rate of weight change by week 4, and (c) rate of 
adherence to PA goal for week 1. They also observed that higher rates 
of PA goal adherence for week 1, older age, more years of education, 
male sex, no history of obstructive sleep apnea (OSA), and being single 
were related to higher PA goal compliance rates for 52 weeks. Finally, 
they found that the rate of compliance with the PA goal, at week 1, was 
similar between the groups, while at week 52, the adherence rate was 
higher in the group performing self-monitoring of diet, weight, and PA 
combined with personalized daily feedback messages than in the group 
performing only self-monitoring of diet, weight, and PA (39). Finally, 
Nakata et al. (43) developed applications enabling users to record their 
daily nutrition, mood, exercise, and sleep quality. Over 3 months, 
Nakata et al. (43) noted a decrease in calorie consumption within the 
intervention group, declining from 1833 kcal to 1,682 kcal. 
Nevertheless, although physical activity generally decreased in both 
groups, the intervention group demonstrated superior preservation, 
albeit without statistically significant differences (43). This study 
emphasizes the capability of health applications to monitor user actions 
and utilize artificial intelligence for focused assessments (43).

Conclusion

This study evaluates the use, applications, and potential of 
artificial intelligence across various domains of physical activity and 
health. The findings suggest that artificial intelligence holds promise 
in promoting physical activity across diverse populations, including 
children, adolescents, adults, older adult and individuals with 
disabilities. Our research found that artificial intelligence, machine 
learning and deep learning techniques were used: (a) as part of 
applications to generate automatic messages and be  able to 

communicate with users; (b) as a predictive approach and for gesture 
and posture recognition; (c) as a control system; (d) as data collector; 
and (e) as a guided trainer. Future research should prioritize 
investigating of the incorporation of artificial intelligence, machine 
learning, and deep learning techniques into physical activity and 
wellness programs, with a focus on long-term efficacy, accessibility, 
and scalability.
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