AUTHOR=Canzone Alberto , Belmonte Giacomo , Patti Antonino , Vicari Domenico Savio Salvatore , Rapisarda Fabio , Giustino Valerio , Drid Patrik , Bianco Antonino TITLE=The multiple uses of artificial intelligence in exercise programs: a narrative review JOURNAL=Frontiers in Public Health VOLUME=Volume 13 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2025.1510801 DOI=10.3389/fpubh.2025.1510801 ISSN=2296-2565 ABSTRACT=BackgroundArtificial intelligence is based on algorithms that enable machines to perform tasks and activities that generally require human intelligence, and its use offers innovative solutions in various fields. Machine learning, a subset of artificial intelligence, concentrates on empowering computers to learn and enhance from data autonomously; this narrative review seeks to elucidate the utilization of artificial intelligence in fostering physical activity, training, exercise, and health outcomes, addressing a significant gap in the comprehension of practical applications.MethodsOnly Randomized Controlled Trials (RCTs) published in English were included. Inclusion criteria: all RCTs that use artificial intelligence to program, supervise, manage, or assist physical activity, training, exercise, or health programs. Only studies published from January 1, 2014, were considered. Exclusion criteria: all the studies that used robot-assisted, robot-supported, or robotic training were excluded.ResultsA total of 1772 studies were identified. After the first stage, where the duplicates were removed, 1,004 articles were screened by title and abstract. A total of 24 studies were identified, and finally, after a full-text review, 15 studies were identified as meeting all eligibility criteria for inclusion. The findings suggest that artificial intelligence holds promise in promoting physical activity across diverse populations, including children, adolescents, adults, older adult, and individuals with disabilities.ConclusionOur research found that artificial intelligence, machine learning and deep learning techniques were used: (a) as part of applications to generate automatic messages and be able to communicate with users; (b) as a predictive approach and for gesture and posture recognition; (c) as a control system; (d) as data collector; and (e) as a guided trainer.