AUTHOR=Zeng Siyu , Li Lele , Li Jialing , He Xiaozhou TITLE=Two-stage DRG grouping of cerebral infarction based on comorbidity and complications classification JOURNAL=Frontiers in Public Health VOLUME=Volume 13 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2025.1513744 DOI=10.3389/fpubh.2025.1513744 ISSN=2296-2565 ABSTRACT=BackgroundSince 2017, cerebral infarction (CI) has become a leading cause of mortality in China, with rising treatment costs posing significant challenges to the healthcare system. The Diagnosis-Related Groups (DRG) payment system has been recognized as a potential solution to curb rising healthcare expenditures. However, in its implementation, China faces considerable hurdles due to its vast geographical size, regional economic disparities, and heterogeneous disease spectrum.ObjectiveThis study proposes a novel two-stage grouping strategy with a two-stage method tailored to address the local context of western China. The method adaptively accommodates regional variations in disease burden and healthcare resource distribution.MethodsUsing hospitalization data from 111,025 CI patients collected by the Healthcare Security Administration of a western Chinese city between 2016 and 2018 (during the pre-DRG implementation period), we developed a two-stage DRG method. In the first stage, regression analysis identified and prioritized comorbidities and complications that influence medical costs. In the second stage, a decision tree algorithm established standardized classification protocols for DRG grouping, ensuring regional adaptability.ResultsThe average hospitalization cost for CI patients was USD$ 1,565, with total expenditures reaching USD$ 1.71 million in the target city. By employing this localized two-stage grouping model, the proportion of inter-group variations, as measured by the coefficient of variation (CV), is below 1, reaching 100%, satisfying the technical criteria for DRG categorization. This optimization reduced the number of DRG from 18 to 4. It increased the proportion of groups with CV to <0.8 from 67 to 100%, signifying a substantial enhancement in group heterogeneity compared to the existing grouping method, China Healthcare Security Diagnosis-Related Groups (CHS-DRG).ConclusionThis study demonstrates the effectiveness of our proposed two-stage method using real data. Implementation of this localized method in the target city could result in potential savings of USD$ 8.59 million, surpassing the existing CHS-DRG method. These findings suggest that this adaptive method may be a scalable strategy for resource-limited regions undergoing healthcare system reforms.