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Purpose: This study aimed to evaluate the impact of both cumulative and non-
cumulative exposure to air pollutants on hospitalizations due to Coronavirus 
Disease 2019 (COVID-19) in Tehran.

Methods: A time-stratified case-crossover approach was employed to estimate 
the relative risks and assess the attributable fraction and attributable number 
of COVID-19 hospitalizations associated with air pollution exposure. Data on 
hospitalizations were collected from a teaching hospital in Tehran between 
March 20, 2020, and September 20, 2022, and were categorized by gender and 
age. Air pollution data including fine particulate matter (particles with a diameter 
less than 2.5 micrometers), nitrogen dioxide, sulfur dioxide, coarse particulate 
matter (particles with a diameter less than 10 micrometers), ozone, and carbon 
monoxide were obtained from the Environmental Protection and Air Quality 
Control Organization of Tehran. Quasi-Poisson conditional regression and 
distributed lag non-linear models were applied to estimate the relative risk of 
hospitalizations associated with pollutant exposure.

Results: The findings indicate a significant association between exposure to 
fine particulate matter, nitrogen dioxide, and ozone with increased COVID-19 
hospitalizations. The estimated relative risks for hospitalizations were 1.36 (95% 
confidence interval: 1.15–1.62), 1.17 (95% confidence interval: 1.07–1.29), and 
1.37 (95% confidence interval, 1.19–1.58), respectively. No significant association 
was observed between coarse particulate matter exposure and hospitalizations. 
The number of hospitalizations attributed to ozone (6,000 cases) and nitrogen 
dioxide (3,300 cases) exceeded those associated with other pollutants.

Conclusion: This study highlights the impact of air pollution on increased 
hospitalization risk for COVID-19. These findings underscore the urgent need 
for health authorities to implement stringent air quality regulations and pollution 
control measures to mitigate the adverse health effects of air pollution.
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1 Introduction

Air pollution is widely recognized as a major global environmental 
health risk, contributing significantly to increased healthcare 
expenditures and premature mortality (1). According to the World 
Health Organization (WHO), ambient (outdoor) air pollution was 
responsible for approximately 4.2 million premature deaths worldwide 
in 2019, primarily due to ischemic heart disease, stroke, chronic 
obstructive pulmonary disease (COPD), lung cancer, and acute 
respiratory infections (2, 3).

The respiratory system is particularly vulnerable to the harmful 
effects of air pollutants. Numerous studies have established a strong 
association between exposure to elevated concentrations of ambient 
pollutants and the exacerbation of respiratory diseases (4–7). For 
instance, research has linked pollutant exposure to chronic bronchitis 
and a higher prevalence of respiratory conditions in children (8). 
WHO estimates that air pollution contributes to 29% of lung cancer 
deaths and 43% of deaths related to COPD (9).

Global health has suffered dramatically in the last few years due 
to COVID-19, a respiratory illness (10). As of early 2024, over 770 
million confirmed cases and nearly 7 million deaths have been 
reported worldwide. Air pollution has been proposed as a contributing 
factor in the transmission, severity, and mortality associated with 
COVID-19. Several studies suggest that SARS-CoV-2 particles can 
remain suspended in aerosols, potentially facilitating airborne 
transmission under certain environmental conditions (11–14).

Moreover, recent cohort and ecological studies have demonstrated 
significant associations between exposure to ambient air pollution 
particularly fine particulate matter (PM₂.₅) and nitrogen dioxide 
(NO₂) and an increased risk of COVID-19-related hospitalization and 
mortality (15–17). For example, a U. S.-based cohort study reported 
that PM₂.₅ exposure during the 7 days prior to a COVID-19 diagnosis 
was associated with a 1.18-fold increased risk of hospitalization (95% 
CI: 1.17–1.19) (15). Similar patterns have been observed in various 
global contexts, including OECD countries and during waves 
involving variants of concern, such as the Delta variant (18, 19).

Despite the growing body of international evidence, there remains 
a scarcity of research investigating this association in Iran particularly 
in Tehran, a megacity of more than 8.5 million residents and one of 
the most polluted urban centers globally. According to WHO 
estimates, air pollution adversely affects the health of nearly 1 million 
people annually in Tehran. In this context, rigorous epidemiological 
research is essential to assess the health impacts of air pollution in this 
high-risk setting.

Unlike many prior studies that primarily employed time-series 
models, the present study utilizes a time-stratified case-crossover 
design to examine the short-term effects of air pollutants on 
COVID-19 hospitalizations. This design allows for effective control of 
long-term trends and seasonal variations, thereby minimizing 
confounding (20). In addition, we estimated attributable fractions and 
the number of hospitalizations attributable to each pollutant, 
providing practical, policy-relevant metrics to assist health authorities 
in identifying and prioritizing environmental risk factors both during 
and beyond the COVID-19 pandemic. Therefore, the aim of this study 
is to quantify the short-term association between air pollution 
exposure and COVID-19 hospitalizations in Tehran, and to estimate 
the health burden attributable to specific pollutants in order to inform 
targeted public health interventions.

2 Methods

The present study employed a time-stratified case-crossover 
design in Tehran to estimate both cumulative and non-cumulative 
relative risks (RRs) of COVID-19 hospitalizations (CHs) associated 
with exposure to air pollutants across various lag periods. In addition, 
using this modeling framework, we calculated key epidemiological 
indicators, including the attributable number (AN) and attributable 
fraction (AF) of CHs linked to air pollution exposure. Detailed 
descriptions of the model specification and data collection procedures 
are provided in the following sections.

2.1 Data collection

We collected daily counts of COVID-19 hospitalizations from 
Baqiyatallah Teaching Hospital in Tehran over the study period, 
spanning from March 20, 2020, to September 20, 2022. Hospitalization 
data were stratified by age and sex, with age categorized into two 
groups: individuals younger than 65 and those aged 65 and above.

Daily concentrations of six major air pollutants including fine 
particulate matter (PM₂.₅), nitrogen dioxide (NO₂), sulfur dioxide 
(SO₂), coarse particulate matter (PM₁₀), ozone (O₃), and carbon 
monoxide (CO) were obtained from the Environmental Protection 
Organization1 and the Air Quality Control Company.2 While air 
pollution data were originally recorded hourly at monitoring stations, 
we  aggregated them into different averaging periods based on 
standard guidelines: 24-h averages for PM₂.₅ and PM₁₀, 8-h moving 
averages for O₃ and CO, and maximum 1-h averages for NO₂ and SO₂. 
These averaging approaches follow recommendations by the World 
Health Organization (WHO) and the U.S. Environmental Protection 
Agency (EPA), reflecting the distinct atmospheric behavior, health 
effects, and emission sources of each pollutant.

Only monitoring stations with at least 75% valid daily data were 
included in the analysis. Additionally, outliers and negative values 
were excluded. Meteorological variables used as confounding factors 
were retrieved from the Iran Meteorological Organization and 
measured by three monitoring stations in Tehran. Given the absence 
of strict nationwide lockdown measures during the study period in 
Iran, we assumed relatively consistent levels of population mobility 
and pollutant exposure throughout the entire duration. Therefore, no 
specific adjustments were made for potential lockdown effects.

There were no missing data for hospitalizations or meteorological 
parameters. The air pollution dataset had less than 10% missing 
values, which were handled using linear interpolation, a standard 
method in environmental epidemiology. This approach ensures the 
temporal continuity of the dataset while minimizing potential biases.

2.2 Statistical analysis

We employed a conditional quasi-Poisson regression model 
integrated with distributed lag non-linear models (DLNM) to assess 

1 http://aqms.doe.ir/

2 https://airnow.tehran.ir/
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the short-term associations between air pollutant exposure and CHs 
(21). To minimize potential overlap bias in the estimates, 
we implemented a fixed, non-overlapping time-stratified design (22, 
23). In this approach, the day of hospitalization, along with the same 
weekdays in the weeks before and after the event within the same 
calendar month, was selected as the control period. Unlike the 
conditional logistic model, the quasi-Poisson approach conditions 
stratum-specific parameters within the model rather than estimating 
them directly.

The conditional quasi-Poisson model offers simplicity in 
implementation and accounts for both overdispersion and 
autocorrelation in the outcome variable (24). DLNM, on the other 
hand, enables modeling of nonlinear and lagged effects of exposure, 
capturing delayed associations across time. The final model equation 
is expressed as:

 

( ) ( ) ( )
( ) ( )

α= + + =
+ = + =
+ + ε

,

t

log , 3
, 3  , 3

t t lY Cb Pollutant NS Temperature Df
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Here, Yt  is the number of CHs on day t, α is the intercept, and 
Cb denotes the cross-basis function capturing both the exposure-
response and lag-response dimensions (21) (Equation 1). Natural 
spline (NS) functions were applied to temperature, humidity, and 
wind speed to control for potential nonlinear confounding effects, 
with three degrees of freedom for each. The binary “Holiday” 
variable accounts for national holidays, and εt is the error term 
(25). The cross-basis function allows for defining linear or 
nonlinear relationships independently for the exposure and lag 
dimensions (23, 26, 27). In this study, we utilized natural cubic 
B-splines for both dimensions, as supported by previous research 
and sensitivity analyses (28, 29).

To estimate both cumulative and non-cumulative relative risks, 
we applied a pollutant-specific increment approach using reference 
values derived from percentiles of the pollutant distribution. The 
following increments were used: 10 μg/m3 for PM₂.₅ and PM₁₀, 10 ppb 
for O₃ and NO₂, 1 ppb for SO₂, and 1 ppm for CO (30). The reference 
values were set at the 25th percentile for PM₂.₅, CO, and O₃, and the 
50th percentile for PM₁₀, NO₂, and SO₂.

For the exposure-response function, we placed three knots at the 
10th, 75th, and 90th percentiles. For the lag-response function, 
we used two knots equally spaced on a logarithmic scale (31). The 
number and placement of knots, as well as the degrees of freedom, 
were selected based on sensitivity analyses using the Akaike 
Information Criterion (AIC).

The maximum lag period used to estimate the relative risks was 
14 days. This period approximately corresponds to the typical 
incubation time and the interval between symptom onset and 
hospitalization for COVID-19. Since COVID-19 symptoms often 
appear within 2 to 14 days following exposure, and hospitalization 
typically occurs within this timeframe for severe cases, a 14-day lag is 
clinically justifiable. Moreover, the majority of previous epidemiological 
studies have adopted this lag period to assess short-term exposure 
effects. Therefore, to maintain consistency with prior research and 
support future meta-analyses, we selected a 14-day lag in our study. 
Additionally, sensitivity analyses were conducted for longer periods, 
including up to 21 days, to test the robustness of the results.

2.2.1 Attributed risk (fraction/number)
In epidemiological research, the attributable fraction (AF) 

quantifies the proportion of disease cases that can be attributed to 
exposure to a specific risk factor, under the assumption of a causal 
relationship. It reflects the potential reduction in disease burden that 
could theoretically be achieved if the exposure were eliminated. Within 
the distributed lag non-linear model (DLNM) framework, we estimated 
both the AF and the attributable number (AN) of COVID-19 
hospitalizations associated with air pollution exposure over the study 
period. This approach accounts for both the delayed and non-linear 
effects of air pollutants, providing a more accurate estimate of their 
contribution to the total disease burden. These metrics are particularly 
valuable for public health planning, as they help quantify the impact of 
environmental exposures and support the prioritization of mitigation 
strategies (32, 33). These metrics were computed for the overall range 
of pollutant concentrations, as well as within specific exposure 
categories: low (10th–25th percentile), medium (25th–50th percentile), 
high (50th–90th percentile), and very high (90th–99th percentile).

AF was calculated using the following equation:

 ( )β
−=

= − −∑




 

,01 exp
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Where AF is the attributable fraction (23) of COVID-19 
hospitalizations related to x exposure at time t, βx represents the risk 
associated with exposure (x) at time t corresponding to the relative 
risk in this research (32). Here, we employ a backward perspective that 
calculates the attributable risk over past lags (t − ℓ0,…,t − L) 
(Equation 2). The upper and lower limits of the confidence interval 
were calculated using the Monte Carlo method (34).

The AN of COVID-19 hospitalizations to air pollutants can 
be obtained based on the AF and the COVID-19 hospitalizations in 
time t (days). The general formula of AN is as follows:

 = ∗, ,x t x t tAN AF n  (3)

In Equation 3, AN is the number of hospitalizations attributable 
to pollutant x on day t, and nt is the observed count of COVID-19 
hospitalizations on that day. Because AF and AN are expressed as 
proportions and counts, respectively, they provide interpretable 
indicators for public health planning and policy-making particularly 
in identifying priority pollutants for intervention during respiratory 
epidemics such as COVID-19. All statistical analyses were conducted 
using R software (version 4.2.2), with statistical significance set at 
p < 0.05.

3 Results

3.1 Descriptive analysis

A total of 21,711 CHs were recorded during the study period. 
Among these, 12,251 (56%) were male and 9,460 (44%) were female. 
In terms of age distribution, 27% of patients were aged 65 years and 
older, while 73% were under the age of 65. Table  1 presents a 
descriptive analysis of the study variables, including the mean, 
minimum, and maximum values for CHs and independent variables 
such as air pollutants and meteorological parameters.
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The maximum number of daily hospitalizations observed was 104, 
with a mean of 23.73 cases per day (SD = 21.87). The mean 
concentrations of PM₂.₅, NO₂, SO₂, PM₁₀, O₃, and CO were 30.68 μg/
m3, 75.54 ppb, 15.28 ppb, 81.03 μg/m3, 43.03 ppb, and 3 ppm, 
respectively. According to the guidelines set by the World Health 
Organization (WHO) and the U. S. Environmental Protection Agency 
(EPA), the recommended limits for these pollutants are as follows: 15 μg/
m3 (WHO) and 35 μg/m3 (EPA, 24-h) for PM₂.₅; 25 μg/m3 (WHO) and 
100 ppb (EPA, 1-h) for NO₂; 40 μg/m3 (WHO) and 75 ppb (EPA, 1-h) 
for SO₂; 45 μg/m3 (WHO) and 150 μg/m3 (EPA, 24-h) for PM₁₀; 100 μg/
m3 (WHO) and 70 ppb (EPA, 8-h) for O₃; and 9 ppm (EPA, 8-h) for CO.

Based on these standards, the daily average concentrations of PM₂.₅, 
PM₁₀, and NO₂ exceeded the WHO-recommended thresholds. The 
average daily temperature, wind speed, and relative humidity during the 
study period were 19.58°C, 2.26 m/s, and 33.37%, respectively.

3.2 Time trend

During the investigation period, the number of CHs and air 
pollutant levels exhibited noticeable temporal patterns. CHs initially 
declined in the spring of 2020 but sharply increased by the summer of 
2021, with the highest number recorded in 2021. This trend aligns with 
national reports showing elevated hospital emergency triage activity in 
Iran since the onset of the SARS-CoV-2 pandemic (March 2019). Most 
pollutants, including PM₂.₅, PM₁₀, NO₂, SO₂, and CO, followed similar 
trends over time. In contrast, O₃ displayed a different temporal pattern. 
These variations are illustrated in Supplementary Figure 1.

3.3 Total CHs

To evaluate the short-term effects of air pollutants on CHs, 
we analyzed both cumulative and non-cumulative relative risks across 
various lag periods. The results, illustrated in Figure 1, demonstrate 
that PM₂.₅ exhibited the highest non-cumulative RRs between lags 8 to 

14, reaching a peak at lag 14 with an RR of 1.05 (95% CI: 0.99, 1.10) per 
10 μg/m3 increase in concentration. For cumulative exposure, the most 
pronounced effect of PM₂.₅ occurred between cumulative lags 11 to 14, 
with the highest RR observed at lag 14 (RR = 1.36; 95% CI: 1.15, 1.62).

Other pollutants also showed statistically significant associations at 
certain time lags. For instance, a 10 ppb increase in NO₂ was associated 
with elevated non-cumulative RRs at lags 3, 4, and 12, with the highest 
value at lag 3 (RR = 1.02; 95% CI: 1.00, 1.04). In terms of cumulative 
exposure, NO₂ showed a consistent rise in relative risk from lag 4 through 
lag 14, with the maximum cumulative RR observed at lag 14 (RR = 1.17; 
95% CI: 1.07, 1.29). For SO₂ and PM₁₀, elevated health risks were observed 
at non-cumulative lags 10, 11, and 12. In the case of SO₂, the cumulative 
relative risks of CHs were statistically significant at lags 11 through 14, 
with the highest risk occurring at lag 14 (RR = 1.07). In contrast, 
cumulative lags for PM₁₀ did not reach statistical significance. Carbon 
monoxide (CO) showed the highest non-cumulative relative risk at lag 13, 
indicating a delayed but notable impact on hospitalizations (Figure 1).

Ozone, however, exhibited a distinct exposure-risk pattern 
compared to other pollutants (Figure 1). A 10 ppb increase in O3 
concentration was associated with a significantly increased risk of 
hospitalization from lag 0 to non-cumulative lag 5, after which the risk 
declined. Importantly, the cumulative relative risks of O₃ exposure 
remained statistically significant across all lag days (1–14), with the 
highest observed risk at lag 8 (RR = 1.48).

3.4 Gender groups

Exposure to PM₂.₅ showed significant non-cumulative effects on 
hospitalization risks for males at lags 9–13, while significant 
associations for females were observed at lags 6–9 and again at lag 13. 
In terms of cumulative exposure, PM₂.₅ was significantly associated 
with increased hospitalization risk from lags 10–14 among males, and 
at lag 14 among females (Figure 2).

Exposure to a 10 ppb increase in the concentration of NO₂ 
significantly increased the relative risks of hospitalization due to 

TABLE 1 Descriptive statistics of COVID-19 hospitalizations and daily average values of the studied variables in Tehran, Iran, during 2020–2022.

Variables Mean SD Min Max P25 P50 P75 P90

COVID-19 

hospitalization 

(CHs)

Total 23.73 21.87 0.00 104.00 7.00 17.00 34.50 55.00

Male 13.39 12.49 0.00 61.00 3.00 9.00 21.00 32.00

Female 10.34 9.91 0.00 49.00 3.00 8.00 15.00 25.00

≥65 6.40 5.06 0.00 25.00 2.00 6.00 10.00 13.00

<65 17.33 17.93 0.00 88.00 4.00 11.00 25.00 42.00

Pollutants O3 (ppb)a 43.03 20.29 5.31 98.34 27.53 43.54 56.33 69.84

CO (ppm)b 3.03 0.48 1.86 4.90 2.67 2.99 3.34 3.67

NO2 (ppb) 75.54 18.29 31.67 154.51 61.83 73.81 86.73 100.53

SO2 (ppb) 15.28 8.96 4.07 78.79 9.96 12.81 17.55 24.25

PM10 (μg/m3)c 81.03 42.94 14.11 598.14 58.08 74.59 92.40 120.32

PM 2.5 (μg/m3) 30.68 14.97 6.49 142.56 21.98 26.81 34.82 50.06

Weather factors Temperature (°c) 19.58 9.52 −1.30 34.63 10.78 20.93 28.51 30.91

Humidity (%) 33.37 18.31 9.02 96.96 19.61 28.62 43.25 60.66

Wind speed (m/s) 2.26 0.94 0.51 6.13 1.68 2.11 2.63 3.47

aparts per billion, bparts per million, cmicrograms per cubic meter.
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COVID-19 for the male group during cumulative lags 4–14. For the 
female group, significant risks were observed from lags 9–14. The 
non-cumulative relative risk results for this pollutant indicated a 
significant risk increase at lags 12, 13, and 14 for the male group. However, 
the non-cumulative lags were not significant for the female group.

The results for the increase in PM₁₀ concentrations compared to 
the reference value showed that for the male group, the risk increase 
was significant at lags 8 to 12, whereas it was not statistically significant 
for the female group. Additionally, the relative risks of hospitalization 
due to PM₁₀ exposure during cumulative lags were not significant for 
either gender. The non-cumulative relative risks of hospitalization due 
to a 1 ppm increase in CO were significant for males at lags 13 and 14, 
while no statistically significant increase was observed during either 
cumulative or non-cumulative lags for the female group.

The effects of O₃ differed from the other pollutants. The 
non-cumulative relative risk increase occurred immediately for both 
groups and continued up to lag 5. Moreover, the increase in risk was 
significant during all cumulative lags (Figure 2).

3.5 Age groups

To evaluate age-specific differences in the association between air 
pollution and CHs, we assessed both cumulative and non-cumulative 
relative risks across age groups (<65 and ≥65 years). As shown in 
Figure 3, PM₂.₅ exposure was significantly associated with increased 
non-cumulative hospitalization risk in individuals under 65 at lags 8 
through 13, while among those aged 65 and older, a significant effect 

FIGURE 1

Cumulative and non-cumulative relative risks of CHs due to air pollutants across different lag during 2020–2022.
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was observed only at lag 13. For cumulative exposures, significant 
associations were found at lags 9–14 for the younger age group, 
whereas no significant effects were observed for the older group. For 
NO₂ exposure, non-cumulative lags 3, 4, and 9 to 13, as well as 
cumulative lags 4–14, showed significant associations with 
hospitalization in individuals under 65. Similarly, PM₁₀ exposure was 

linked to an increased risk at non-cumulative lags 8 to 11 in the same 
age group, although no significant cumulative effects were found. SO₂ 
exposure also demonstrated significant associations with CHs in those 
under 65 at non-cumulative lags 9–12 and cumulative lags 11–14. In 
the case of CO exposure, a significant increase in hospitalization risk 
was found in the younger age group at non-cumulative lags 8–13, 

FIGURE 2

Cumulative and non-cumulative relative risks of CHs for the gender group due to air pollutants across different lag during 2020–2022.
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while for individuals aged 65 and older, significant associations were 
observed at lags 6–9. In the case of O3, the situation was different. 
Instantaneously, non-cumulative lag zero (day of occurrence) to lag 6 
for people younger than 65 and lag 2 and 3 for people over 65 were 
significant. Additionally, the risk of hospitalization was statistically 
significant during all cumulative lags for people under 65 and lags 2–8 
for people over 65 years old.

3.6 Cumulative lag of 14 days

Cumulative RRs of CHs due to ambient air pollutants over 
14 days are presented in Table 2, categorized by the total number of 
CHs, age, and gender groups. Exposure to these pollutants over the 
specified 14-day lag period was associated with an increased relative 
risk of hospitalization. Among the pollutants, the cumulative relative 

FIGURE 3

Cumulative and non-cumulative relative risks of CHs for the age group due to air pollutants across different lag during 2020–2022.
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risks for total CHs were highest with exposure to PM₂.₅ and O₃. 
However, these risks varied across sex and age groups.

An increase of 10 μg/m3 in PM₂.₅ concentration relative to the 
reference value was associated with a significant increase in RR for 
males (RR = 1.46; 95% CI: 1.21, 1.77), compared to females (RR = 1.26; 
95% CI: 1.01, 1.57). Additionally, the effect of PM₂.₅ was observed in 
individuals under 65 years of age, but it was not statistically significant 
for those aged 65 and above. Interestingly, a one-unit increase in CO 
concentration (1 ppm) had a significant effect on the male group 
(RR = 1.50; 95% CI: 1.01, 2.23), while no significant associations were 
found for the female group in relation to CO or SO₂ exposures. 
Moreover, no significant effects were detected for total CHs with a 
10-unit increase in PM₁₀ concentration.

3.7 Attributable fraction/number

Figure 4 illustrates the number of CHs attributed to air pollutants. The 
bar chart demonstrates that the highest number of total hospitalizations is 
attributed to O₃ and NO₂ pollutants, which are responsible for 
approximately 6,000 and 3,300 hospitalizations, respectively. Analysis 
across the four concentration ranges reveals that the highest number of 
CHs is associated with exposures in the high concentration ranges for all 
pollutants (depicted by the red bars in Figure 4). Very high concentration 
ranges for PM₂.₅ and O₃ pollutants were not found to be significant, 
suggesting that the maximum number of hospitalizations cannot 
be attributed to these extremely high concentration levels. As expected, 
lower concentration levels of pollutants were linked to fewer 
hospitalizations (indicated by the green bars in Figure 4).

The AF analysis for air pollutants, along with their corresponding 
95% confidence intervals, is presented in Table 3. The AF results were 
calculated across distinct concentration ranges: total, low, medium, 
high, and very high. The findings show that significant proportions of 
hospitalized patients are attributable to PM₂.₅, NO₂, and O₃, with 
overall concentration ranges accounting for 8.8, 15.2, and 27.9%, 
respectively.

3.8 Sensitivity analysis

Supplementary Table 1 delineates the outcomes of the sensitivity 
analysis conducted over a 21-day lag period. Overall, the estimated 
cumulative RRs of air pollutants over this extended lag period were 
largely consistent with the results obtained for the 14-day lag (Table 2), 

indicating the robustness of the findings. However, some pollutants 
exhibited higher effect estimates when the exposure window was 
extended. For example, the cumulative RR of O₃ for the overall 
population increased from 1.37 (95% CI: 1.19–1.58) at 14 days to 1.54 
(95% CI: 1.31–1.82) at 21 days, suggesting a stronger delayed effect. 
Similarly, for CO, the RR rose from 1.33 (95% CI: 0.93–1.88) to 1.53 
(95% CI: 1.06–2.23), with the association becoming statistically 
significant only at the 21-day lag. Notably, this increase in risk was 
more prominent in males and individuals under 65 years of age. These 
findings underscore the importance of considering longer lag periods 
in examining the health impacts of air pollution exposure, particularly 
for pollutants with potential delayed effects.

4 Discussion

This study focused on the short-term association between air 
pollutants and hospitalization due to COVID-19 in Iran. The results 
showed that air pollutants increase the risk of hospitalization after a 
14-day lag.

Evidence from various countries confirms that these pollutants 
play a role in COVID-19 hospitalizations and deaths. For example, a 
US-based study found that exposure to PM2.5 7 days before a positive 
COVID-19 result was associated with a relative risk of hospitalization 
(RR = 1.18; 95% CI: 1.17, 1.19) (15). Meanwhile, another study 
showed that a one-unit increase in PM2.5 concentration was correlated 
with an 8% increase in COVID-19 mortality (95% CI: 2–15%) (35). 
Moreover, research in different European countries has shown that 
NO2 exposure can increase COVID-19 deaths (36). Similarly, a multi-
country study across OECD nations found that long-term exposure 
to elevated PM₂.₅ levels was significantly associated with increased 
COVID-19 morbidity and mortality at multiple time points during 
the early stages of the pandemic, further supporting the role of 
particulate matter as a critical risk factor (18). Other evidence also 
indicates that the negative impacts of PM2.5 and NO2 pollutants on 
COVID-19 hospitalization are consistent with our study’s results (37, 
38). In the study area, geographical location and traffic volume are 
key factors contributing to the continuously high levels of air 
pollutants throughout the year. The temperature inversion 
phenomenon is an additional factor that exacerbates pollutant 
accumulation. Therefore, these pollutants enter people’s bodies daily, 
worsening respiratory diseases.

Our study, while unable to establish a direct association between 
PM10 and the cumulative relative risks of hospitalization due to 

TABLE 2 Cumulative relative risks of CHs for the total number and age-gender groups exposed to pollutants over 14 days as lag during 2020–2022.

Air 
pollutants

Hospitalization

Overall Male Female <65 ≥65

PM2.5 1.36 (1.15, 1.62) SE = 0.086 1.46 (1.21, 1.77) SE = 0.096 1.26 (1.01, 1.57) SE = 0.112 1.49 (1.23, 1.79) SE = 0.095 1.10 (0.86, 1.42) SE = 0.126

NO2 1.17 (1.07, 1.29) SE = 0.048 1.20 (1.08,1.33) SE = 0.054 1.15 (1.02, 1.29) SE = 0.061 1.21 (1.09, 1.34) SE = 0.052 1.07 (0.93, 1.24) SE = 0.071

SO2 1.07 (1.00,1.14) SE = 0.031 1.08 (1.01, 1.16) SE = 0.034 1.05 (0.97, 1.14) SE = 0.039 1.08 (1.01, 1.16) SE = 0.034 1.04 (0.95, 1.13) SE = 0.044

PM10 1.06 (0.96, 1.18) SE = 0.053 1.09 (0.96, 1.24) SE = 0.063 1.03 (0.90, 1.17) SE = 0.068 1.06 (0.95, 1.19) SE = 0.058 1.05 (0.90, 1.22) SE = 0.075

O3 1.37 (1.19, 1.58) SE = 0.071 1.39 (1.18, 1.63) SE = 0.081 1.35 (1.12, 1.62) SE = 0.092 1.46 (1.25, 1.71) SE = 0.078 1.13 (0.91, 1.40) SE = 0.108

CO 1.33 (0.93, 1.88) SE = 0.177 1.50 (1.01, 2.23) SE = 0.201 1.14 (0.74, 1.77) SE = 0.222 1.38 (0.94, 2.03) SE = 0.194 1.31 (0.80, 2.13) SE = 0.248

The bold values are significant based on 95% confidence interval.
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COVID-19, is supported by findings from several other studies that 
reported similar non-significant associations. For example, Jiang et al. 
examined the effect of ambient air pollutants and meteorological 
variables on COVID-19 incidence and found that PM2.5 and humidity 
are significantly associated with an increased risk of COVID-19, while 
PM10 and temperature appear to be associated with a decreased risk (39). 
Similarly, a study reported that PM10 did not show a meaningful 
correlation with COVID-19 hospitalization or mortality, in contrast to 
other pollutants like NO₂ and PM2.5 (40). These results collectively 
reinforce the notion that PM10 may not have a uniformly strong or direct 
association with COVID-19-related hospitalization or disease severity.

Our study found a positive association between SO₂ exposure and 
the number of hospitalizations among men and individuals under the 

age of 65. However, no significant relationship was observed for women 
or those aged 65 and older. This aligns with some existing evidence, 
though findings across studies remain inconsistent. For instance, a study 
involving 33 European countries suggested that SO₂ may negatively 
impact COVID-19 related morbidity and mortality (41). In contrast, 
research by Ying reported a negative association between SO₂ and 
COVID-19 outcomes (42), while another study found no significant 
relationship between SO₂ exposure and COVID-19 hospitalizations (43).

The AF results for SO₂ indicate that statistically significant 
associations were observed at low and high concentration levels of this 
pollutant, while no significant association was found at the medium 
concentration level. This discrepancy may be  attributed to the 
nonlinear exposure-response relationship captured by the distributed 

FIGURE 4

Number of CHs attributed to air pollutants during 2020–2022.

TABLE 3 The percentage of CHs attributed to air pollutants during 2020–2022.

Pollutants Overall Low Medium High Very high

PM2.5 8.8 (0.3, 14.3) SE = 4.33 8.8 (−2.8, −0.2) SE = 5.91 2.8 (1.3, 4.1) SE = 0.76 9.5 (4.4, 13.9) SE = 2.60 −1.2 (−4.2, −0.5) SE=1.07

NO2 15.2 (8, 22.1) SE=3.67 5.2 (2.3, 7.6) SE = 1.47 4.3 (0.5, 8.0) SE = 1.93 5.3 (2.8, 8.6) SE = 1.27 1.0 (−3, -1.2) SE = 1.12

SO2 8.1 (−1.1, 15.9) SE = 4.69 3.6 (0.4, 6.6) SE = 1.63 −0.5 (−2.2, −1.1) SE = 0.86 7.0 (1.1, 12.5) SE = 3.01 −2.3 (−5.2, 0.2) SE = 1.48

PM10 2.9 (−2.1, 6.9) SE = 2.55 0.4 (−1.6, 2.4) SE = 1.02 −0.3 (−2.0, 1.3) SE = 0.86 2.3 (−1.0, 5.8) SE = 1.68 0.5 (−1.5, 2.2) SE = 1.02

O3 27.9 (13.9, 38.8) SE = 7.14 −1.1 (−2.3, 0.0) SE = 0.61 5.6 (2.5, 8.1) SE = 1.58 17.5 (4.5, 26.8) SE = 6.63 7.1 (4.9, 8.8) SE = 1.12

CO −1.6 (−13.5, 8.1) SE = 6.07 0.6 (−0.9, 1.7) SE = 0.76 −1.8 (−4.7, 1.1) SE = 1.47 −3.1 (−13.2, 5.4) SE = 5.15 2.7 (1.1, 4.0) SE = 0.81

The bold values are significant based on 95% confidence interval.
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lag nonlinear model (DLNM). In such models, different concentration 
categories can have varying effects on health outcomes, and not all 
levels are necessarily associated with statistically significant results.

Among the pollutants examined in this study, O₃ demonstrated 
the most pronounced impact on COVID-19 hospitalizations. Across 
the entire concentration range, the attributable fraction of O₃ was 
approximately 27%, corresponding to over 6,000 hospital admissions. 
This finding is consistent with results from a large cohort study 
conducted in Ontario, Canada, which found that long-term exposure 
to ambient O₃ was significantly associated with higher odds of 
COVID-19-related hospitalization, ICU admission, and mortality (16, 
44). These results highlight ozone as a critical environmental risk 
factor influencing the progression and severity of COVID-19.

In contrast, our study found that CO had a positive and significant 
effect only among hospitalized male patients. As a well-known traffic-
related air pollutant, CO exposure is often higher among men due to 
occupational factors that require more frequent presence in outdoor 
environments. In Iran, this lifestyle pattern results in greater cumulative 
exposure to air pollution for men compared to women. Interestingly, 
the number of hospitalizations attributable to carbon monoxide (CO) 
was positive at both very low and very high concentration levels, while 
it was negative at medium and high levels, leading to an overall negative 
attributable number (AN) across the total exposure range. This pattern 
may suggest a non-linear or potentially U-shaped exposure–response 
relationship, where both ends of the exposure spectrum are associated 
with increased health risks, whereas intermediate concentrations may 
be associated with null or even protective effects. Similar non-monotonic 
patterns have been previously reported in epidemiological studies 
investigating air pollution and health outcomes (45).

The observed peak in relative risk at a 14-day cumulative lag in our 
DLNM analysis likely reflects the delayed and cumulative physiological 
effects of air pollution on COVID-19 outcomes. Air pollutants such as 
PM₂.₅ can induce inflammatory responses and compromise immune 
function effects that may not manifest immediately but accumulate 
over time, potentially exacerbating the severity of COVID-19. This 
delayed impact is consistent with findings from a nationwide study in 
the Netherlands, which reported stronger associations between air 
pollution exposure and COVID-19 hospital admissions over a 14-day 
lag compared to a 7-day lag. Specifically, the relative risks for PM₂.₅ and 
PM₁₀ increased from 1.21 and 1.25 at lag 0–7 to 1.31 and 1.38 at lag 
0–14, respectively, indicating a cumulative effect of prolonged short-
term exposure (46). Additionally, the typical incubation period of 
COVID-19, ranging from 2 to 14 days, suggests that exposure to air 
pollution may influence disease progression and severity after a 
temporal delay rather than at the point of infection. Moreover, the 
results of our 21-day lag sensitivity analysis further supported this 
observation, showing that certain pollutants, such as carbon monoxide 
(CO), may exert stronger cumulative effects over extended lag periods. 
Specifically, we  found that applying a 21-day lag resulted in a 
significantly higher relative risk of COVID-19-related hospitalization 
across all age and gender groups. This pattern suggests that delayed 
physiological responses such as systemic inflammation, oxidative 
stress, or immune suppression may require longer exposure windows 
to manifest their full impact. Similar trends have been reported in 
other studies; for instance, a multicity analysis conducted in 120 
Chinese cities demonstrated that the risk of COVID-19 infection 
increased progressively over a 21-day exposure window compared to 
a 7-day period (43). These findings underscore the importance of 

including extended lag periods in air pollution–COVID-19 models to 
better capture the delayed and cumulative nature of health effects.

This study identified differential effects of atmospheric pollutants 
across gender and age groups. The risk estimates for the six pollutants 
examined were notably higher among males and individuals under the 
age of 65, compared to females and those aged 65 and above. Previous 
research has similarly highlighted varying susceptibility to air pollution 
among COVID-19 patients based on age and gender, although some 
studies have found these gender-based differences to be statistically 
non-significant (47). Furthermore, other studies have demonstrated 
that the relative risk of adverse COVID-19 outcomes linked to air 
pollution also differs across ethnic and racial groups (48). Additionally, 
pollutants at moderate and high concentrations were associated with 
significantly increased risks of COVID-19 hospitalization compared 
to those at low and extremely high concentrations. The diminished 
impact observed at very high concentrations may be attributed to their 
rarity. The infrequent occurrence of both very low and very high 
pollutant levels likely reduced the statistical power, resulting in 
nonsignificant findings, as illustrated in Supplementary Figure 2.

In our study, several factors may explain the observed differences 
in relative risk across sex and age groups: (1) In Iran, men are more 
likely to spend time outdoors due to occupational responsibilities, 
whereas a substantial proportion of Iranian women, who are 
predominantly homemakers, have less exposure to ambient air 
pollution. This disparity in cumulative exposure likely contributes to 
the observed differences in risk. (2) Retired adults over the age of 65 
tend to spend most of their time indoors, which further limits their 
exposure to outdoor air pollutants. (3) Women have generally shown 
higher adherence to public health guidelines compared to men, which 
may have led to lower COVID-19 infection rates and, consequently, 
reduced hospitalization rates among women.

Although the present study was conducted in Iran, where strict and 
prolonged lockdowns were not widely implemented, the findings from 
countries with more stringent confinement measures offer valuable 
insights. For example, a study conducted in Spain reported that the 
short-term impact of air pollutants on COVID-19 related outcomes 
such as hospital admission and mortality was more pronounced during 
the lockdown period compared to the post-lockdown phase (49). This 
was likely due to altered human activities, including reduced industrial 
operations and transportation, as well as increased indoor heating use. 
In contrast, Iran’s relatively continuous urban activity may have led to 
more stable pollution levels, making it challenging to identify distinct 
periods of exposure. Nevertheless, the Spanish findings support the 
notion that short-term fluctuations in pollutant levels even during 
periods of reduced human mobility can significantly affect COVID-19 
severity. This reinforces the relevance of closely monitoring air quality, 
regardless of the presence or absence of lockdown policies.

Overall, our study found that PM2.5, NO₂, and O₃ were the most 
influential pollutants associated with increased risk of COVID-19 
hospitalizations. These findings are consistent with international studies 
and can be  explained by several proposed biological mechanisms. 
Exposure to PM2.5 has been linked to systemic inflammation, oxidative 
stress, and immune dysfunction, all of which can weaken respiratory 
defenses and impair the body’s response to viral infections. NO₂ 
contributes to airway inflammation and epithelial damage, creating a 
more favorable environment for viral replication. O₃, as a strong oxidant, 
causes oxidative injury to lung tissue, thereby exacerbating respiratory 
illness. Furthermore, recent evidence suggests that air pollution may 
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upregulate the expression of ACE2, the receptor used by SARS-CoV-2 
to enter human cells (18). Altogether, these mechanisms help explain 
the significant role of these pollutants in worsening COVID-19 outcomes.

4.1 Limitations

Like any scientific research, this study has several limitations. 
First, the data were obtained from a single hospital in Tehran, which 
may limit the generalizability of the findings to other regions with 
different demographic characteristics, environmental conditions, or 
healthcare infrastructure. Second, due to the lack of residential 
address data, it was not possible to exclude non-residents who may 
have traveled from neighboring cities for hospitalization. This could 
have introduced bias by including individuals with different levels of 
exposure. Third, while the study focused on the short-term 
association between ambient air pollution and COVID-19 
hospitalization, it did not examine other important outcomes such as 
infection or mortality. Exploring these outcomes in future studies 
would provide a more comprehensive understanding of the health 
burden associated with air pollution during the COVID-19 pandemic.

Additionally, due to data limitations, potential confounding factors 
such as population density, socioeconomic status, underlying health 
conditions, and access to healthcare services were not accounted for, 
although they may influence both exposure and outcomes. Moreover, the 
study assessed only ambient air pollution, and did not consider indoor 
exposure, which could affect the accuracy of exposure estimates especially 
for older adults who spend most of their time indoors. Therefore, the 
possibility of exposure misclassification should be acknowledged. Future 
studies are encouraged to incorporate individual-level exposure data and 
adjust for a broader range of confounding variables to enhance the 
accuracy and generalizability of results.

5 Conclusion

In conclusion, our study demonstrates a significant association 
between exposure to certain ambient air pollutants specifically PM₂.₅, 
NO₂, and O₃ and the risk of hospitalization due to COVID-19  in 
Tehran. These findings were especially pronounced among males and 
individuals under the age of 65, likely due to increased outdoor 
activity and, consequently, greater pollutant exposure. In contrast, no 
significant association was observed with PM₁₀ or SO₂.

This evidence highlights the disproportionate health risks faced 
by specific population subgroups and underscores the urgent need for 
targeted public health interventions. Effective air quality management 
policies such as reducing emissions from traffic and industrial sources, 
promoting cleaner transportation, enforcing stricter emission 
standards, and increasing public awareness are critical to mitigating 
the health burden of air pollution. Furthermore, incorporating 
environmental health strategies into pandemic preparedness plans is 
essential for protecting vulnerable populations in future health crises.
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