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Epidemiological studies have found that exposure to fine particulate matter 
(PM2.5) poses potential human health risks, including respiratory, cardiovascular 
and cerebrovascular diseases. This study aimed to assess the potential human 
health risks associated with exposure to PM2.5 in the eMbalenhle community which 
is near gold mine Tailings Storage Facilities (TSFs). Ambient PM2.5 concentrations 
were measured for 1 year (from February 2022 to February 2023) using the Clarity 
Node-S low-cost monitor (LCM). The United States Environmental Protection Agency 
(USEPA) equations were used to estimate the carcinogenic and non-carcinogenic 
health risks associated with exposure to PM2.5 in toddlers, children, adults and the 
older adult. Lastly, a probabilistic Human Health Risk Assessment (HHRA) model, 
which employs Monte Carlo simulations (MCS), was applied to assess the sensitivity 
and uncertainty risks. The annual PM2.5 Geometric Mean (GM) concentration were 
17, with a Standard Deviation of (SD) of 10.4 and a Geometric Standard Deviation 
(GSD) of 1.69 μg/m3. This was below the South African annual National Ambient 
Air Quality Standards (NAAQS) of 20 μg/m3. However, this concentration exceeded 
the World Health Organization (WHO) guidelines and the USEPA annual limit 
values of 5 and 9 μg/m3, respectively. For the WHO guidelines, South African 
and USEPA NAAQS, the HQ was highest at the 95th percentile for all subgroups. 
For the South African NAAQS, the HQ was estimated to be 0.9 for all subgroups, 
indicating safe levels. When utilizing the USEPA NAAQS, a value of 2.5 was reported, 
while the WHO guidelines recorded the highest HQ of 3.5, indicating unsafe 
levels. This demonstrated that the SA NAAQS underestimated exposure to PM2.5 
concentrations. Probabilistic HHRA assessed potential cancer risk (CR) due to 
continuous exposure to PM2.5 concentrations. For both male and female elders, 
the CR was approximately 1 in 10, meaning that about 100,000 out of 1,000,000 
exposed elders were at an increased risk of developing cancer over their lifetime. 
The study recommends revising the current South African PM2.5 NAAQS to adopt 
more stringent measures and align them to international benchmarks to safeguard 
the public from adverse health effects due to PM2.5 exposure.
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1 Introduction

Ambient air pollution is regarded as a significant threat to human 
health. According to the World Health Organization (1), the combined 
effects of ambient air pollution and household air pollution account 
for 6.7 million premature deaths globally. Fine particulate matter, with 
an aerodynamic diameter of 2.5 μm (PM2.5), has been associated with 
many adverse health outcomes (2–5) because it can penetrate deeper 
into the alveolar regions of the lungs (6, 7). Human health risks of 
exposure to PM2.5 extend beyond respiratory diseases to include 
cerebrovascular and cardiovascular diseases (8, 9), lung cancer, 
cardiopulmonary mortality, stroke, asthma, arrhythmia (10, 11). 
Exposure to PM2.5 affects individuals differently based on their health 
status, age (12), gender and duration of exposure (13).

Vulnerable population sub-groups are likely to develop diseases 
due to lifetime PM2.5 exposure to PM2.5 (14). These groups include 
pregnant women, infants and children. Children breathe faster 
than adults because smaller lungs require more frequent breaths to 
meet oxygen demands (15, 16). Exposure to high PM2.5 in these 
groups can affect how their lungs develop over time, increasing 
their chances of developing lung diseases (17). Exposure to PM2.5 
during pregnancy can impact fetal development and may have 
long-term health consequences (18, 19). The physiological 
development, high Inhalation Rate (IR), Body Weight (BW), 
Exposure Duration (ED) and Exposure Frequency (EF) are some 
factors that make individuals vulnerable to the adverse health risks 
of PM2.5 exposure (20). Organs such as the lungs and heart undergo 
significant maturation over time (21). Exposure to PM2.5 during 
these stages of organ development can lead to long-term health 
risks (22). The older adult are more at risk of developing adverse 
health risks due to weakened respiratory and cardiovascular 
systems (23). Furthermore, pre-existing medical conditions, 
including asthma, heart disease and chronic obstructive pulmonary 
disease (24), increase their vulnerability to the harmful effects of 
pollution (25).

Fine particulate matter (PM2.5) is emitted from natural and 
anthropogenic sources (26). Natural sources of PM2.5 include forest 
fires and volcanic eruptions. Forest fires emit huge amounts of PM2.5 
from the combustion of vegetation and biomass (27). Volcanic 
eruptions release ash and PM2.5 into the atmosphere. Anthropogenic 
sources of PM2.5 include industrial processes, domestic fuel burning, 
mining operations and agricultural activities. Burning of wood, coal 
and other solid fuels for residential heating and cooking also emits 
PM2.5 (28). Gold mine tailings storage facilities (TSFs) are also a 
potential source of PM2.5 emissions. The TSFs are designed to store 
waste generated during mineral extraction and processing. These 
tailings consist of crushed rocks, particles and residuals of chemicals 
left over from the gold extraction process (29).

PM2.5 comprises a complex mixture of biological and chemical 
components (30). The chemical and biological components of PM2.5 
may originate from various sources (31). The biological components 
of PM2.5 include bacteria, fungi, viruses and pollen (32). The chemical 
components of PM2.5 include organic compounds (33), inorganic 
compounds (34) and trace elements (35). The physicochemical 
properties of fine particulate matter influence their toxicity and health 
impacts. Particles with larger surface areas and reactive chemical 
elements, can induce oxidative stress and inflammation, resulting in 
adverse respiratory and cardiovascular outcomes (36).

The assessment of exposure to PM2.5 is a complex process. It 
requires information about the sources, site selection and data quality 
assurance (37). PM2.5 concentrations vary spatially due to differences 
in emission sources, meteorological conditions, and topographical 
features. Furthermore, PM2.5 concentrations can fluctuate over time 
due to diurnal patterns and seasonal variations (38). Human health 
risks can be  assessed by applying the HHRA model (39), which 
estimates the likelihood of adverse human health risks associated with 
PM2.5 exposure (40). Most studies have used deterministic HHRA 
models to assess potential human health risks (41–43). A deterministic 
HHRA model uses single-point estimates for input parameters to 
calculate specific risk values. One of the advantages of deterministic 
risk assessment is its simplicity. The disadvantage is its inability to 
account for the variability among individuals and the uncertainties in 
environmental data (44).

This study used a probabilistic HHRA model to estimate the 
potential human health risks of continuous exposure to PM2.5 
concentrations. The probabilistic HHRA model was chosen because 
it uses statistical techniques to account for variability and uncertainty 
in risk estimates (45). Furthermore, the model employs Monte Carlo 
simulations to generate a distribution of risk estimates based on 
random sampling from the probability distributions of input 
parameters (46). The advantage of probabilistic HHRA provides a 
more complete picture of potential health risks by estimating the range 
and likelihood of different outcomes. The disadvantage is that it 
requires detailed data on the distribution of input parameters (47).

This study introduces a novel approach by applying a probabilistic 
Human Health Risk Assessment (HHRA) to evaluate the health risks 
associated with PM2.5 exposure in eMbalenhle, a community near gold 
mine tailings storage facilities (TSFs). While most existing studies rely 
on deterministic risk assessments that often fail to capture the inherent 
uncertainties and variability in PM2.5 exposure (39, 41, 43), this study 
addresses these limitations by adopting a probabilistic framework. 
Furthermore, the application of this method to communities affected 
by gold mine TSFs remains limited in the current literature. 
Importantly, this is the first study to assess human health risks in 
eMbalenhle using PM2.5 data collected from low-cost monitors 
(LCMs), offering a cost-effective and practical strategy for air quality 
and risk assessment in resource-constrained settings. The findings of 
this study will contribute to Sustainable Development Goal 3 (SDG 3). 
SDG 3 aims at ensuring good health and well-being for all. Monitoring 
the ambient PM2.5 contributes to achieving Target 3.9 of SDG 3, which 
addresses environmental pollution and its health consequences (48).

2 Methods and materials

2.1 Study design

The study followed a cross-sectional design following quantitative 
data collection and analysis methods.

2.2 Study area

eMbalenhle (−26°550613°S; 29.078937°E) is in the Govan Mbeki 
Municipality, Mpumalanga, South  Africa. eMbalenhle has a 
population of 118,889 people with an annual growth of 2.5% (49). 
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eMbalenhle is known for its gold and coal mining operations, which 
are potential sources of PM2.5. The area falls within the Highveld 
Priority Area (HPA). This area was declared an air pollution “hotspot” 
in terms of Section 18 (5) of the National Ambient Air Quality Act, 
Act 39 of 2004 (50). The town is close to industries, open-cast mines, 
and coal-fired power stations. As of the 16th of July 2024, the real-time 
Air Quality Index (AQI) displayed a PM2.5 concentration in 
eMbalenhle of 155 μg/m3, about 31 times above the WHO annual air 
quality Guideline value (51). This further indicated an unhealthy 
situation for vulnerable groups living in the area (52).

2.3 Data collection and analysis

The PM2.5 emissions were measured at the Sasol Recreation Centre 
(−26°550613°S; 29.078937°E) in eMbalenhle for 1 year (February 
2022 to February 2023) using Clarity Node-S low-cost monitors 
(LCM) (53). These LCM measured PM2.5 concentrations every 15 min 
in micrograms per cubic meter (μg/m3). The ambient PM2.5 data 
monitored by the government ambient air monitoring station (also 
collocated at the Sasol Community Recreation Centre) for the same 
period was used as reference data. The reference data was used to 
compare and validate the data collected with the LCM. Both data sets 
(LCM and reference data) underwent quality control to ensure that 
the monitored and reference data were not erroneous (54). The 
meteorological data for the same period (February 2022 to February 
2023) was obtained from the South African Air Quality Information 
System website (55). The average annual PM2.5 concentrations were 
calculated in a Microsoft Excel sheet and compared with the SA 
NAAQS, USEPA NAAQS and the WHO Guidelines. The PM2.5 annual 
Reference Concentrations (Rfc) values used in this study are given in 
Table 1.

2.4 Probabilistic human health risk 
assessment

The population of eMbalenhle was divided into eight sub-groups 
because of the differences in exposure duration and development 
stages. The eight sub-groups included male and female toddlers 
(1–2 years) because their bodies are still developing and they have low 
IR; male and female children (6–11 years) because their bodies have 
developed and they have increased IR; male and female adults 
(21–60 years) because their bodies are fully developed and they have 
a much higher IR as compared to the toddlers and children; and male 
and female elders (61–70 years) because their health is weakening (56).

2.4.1 Monte Carlo simulation
Monte Carlo Simulation (MCS) was employed to generate 

samples from probability distributions, using an Oracle Crystal Ball 
spreadsheet-based application for predictive modeling. parameters, 
including PM2.5 concentrations (Cair), EF, Exposure Time (ET), ED, 
and Average Time (AT), were considered as variables in the model. 
The ET, EF, ED and AT parameters were allocated triangular, 
uniform and normal distributions. The Cair was allocated a 
lognormal distribution. The model used Geometric Mean (GM) and 
Geometric Standard Deviation (GSD) of the annual PM2.5 
concentrations as Cair.

Table  2 lists all the variables used in the probabilistic HHRA 
model. The annual GM and GSD PM2.5 concentrations used in the 
model were measured from February 2022 to February 2023. The ET 
was assumed to be 16 (minimum), 18 (mode), and 20 (maximum) 
hours for toddlers and children (16, 22, 24), and 20, 22, 24 for adults 
and elders. The EF was estimated based on the assumption that all 
population sub-groups leave the area for a maximum of 1 month, 
which translates to 335 days per year and a minimum of 2 weeks for 
vacation (i.e., the minimum EF is 350 days per year). The worst-case 
scenario assumed that all population subgroups are exposed 365 days 
per year. The AT for CR was based on chronic exposure during the 
lifetime. Lifetime values were obtained from the life-expectancy data 
according to the national census and population estimates (57). 
Population estimates for life expectancy from 2002 to 2022 were used 
to compute the life expectancy arithmetic mean and the standard 
deviation values used in our model.

Once the distributions of the variables were determined as 
normal, lognormal or triangle, the model randomly selected a value 
for each variable and calculated the risk. In MCS, each calculation is 
called an iteration, and a set of iterations is called a simulation (58). 
The probabilistic health risk distribution was obtained by running 
10,000 iterations (59, 60).

The HQ was calculated using Equation 1 for each population 
sub-group to assess the non-carcinogenic health risks associated with 
exposure to PM2.5.

 −= air adjHQ C /Rfc (1)

Where:
HQ is unitless, representing the ratio of the concentration of PM2.5 

in the air (Cair) to the Reference Concentration (Rfc), (61). Since the 
Rfc assumes continuous exposure 24 h/7 days a week and 52 weeks/
year, the measured concentration of PM2.5 must be adjusted to the 
actual duration of the exposure. The adjusted PM2.5 concentrations 
(Cair-adj) were estimated using Equation 2 derived from the USEPA (61).

 ( ) ( )− = × × × × ×air adj airC C ET 1/24 hours EF 1/365 ED/AT (2)

Where:

 • Cair = Concentration of contaminant in air (μg/m3)
 • ET = Exposure time (hours/day)
 • EF = Exposure frequency (days/year)
 • ED = Exposure duration (years)
 • AT = Averaging time (years)

TABLE 1 Local and international ambient PM2.5 annual reference 
concentration values.

Standard Reference value Description

(μg/m3)

NAAQS (SA) 20 National Standard

US EPA (USA) 9 National Standard

WHO 5 Guidelines
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For non-carcinogenic health risks/sub-chronic exposure, or when 
evaluating acute exposures or short-term events where the exposure 
duration aligns with the exposure averaging time, AT equals ED; 
therefore, AT and ED can be  left out of Equation 2. In contrast, for 
carcinogenic risk/chronic exposure, the AT is equal to the estimated 
life expectancy.

The Rfc(s) represent the PM2.5 concentration values unlikely to cause 
adverse human health risks over a specified period. The Rfc(s) were 
derived from toxicological studies and are expressed in the same units as 
Cair (i.e., μg/m3). According to USEPA (62), if the HQ is less or equal to 
one (HQ ≤ 1), the concentration of PM2.5 (Cair) is equal to or less than the 
Rfc. If the HQ is greater than one (HQ > 1), there is an increased 
likelihood of developing non-carcinogenic adverse health outcomes.

The CR was calculated using Equation 3 for each population 
sub-group to assess the carcinogenic health risks associated with exposure 
to PM2.5.

 −= × air adjCR IUR C  (3)

Where:
CR is the cancer risk, which represents the estimated probability of 

developing cancer over a lifetime due to exposure to PM2.5 
through inhalation.

IUR is the inhalation unit risk, representing the increased risk of 
cancer per unit exposure to PM2.5 through inhalation. The IUR for PM2.5 
is 0.008 μg/m3 (63).

A value greater than 1 × 10−04 (1 in 10,000) indicates a significant CR 
and may indicate a need for regulatory action or intervention to reduce 
exposure, as it exceeds the accepted risk threshold. On the other hand, a 
value less than 1 × 10−06 (1  in 1,000,000) indicates a negligible or 
“acceptable” risk. It can be ignored as it does not require regulatory action 
or interventions to reduce exposure (64).

3 Ethical considerations

The study was approved by the University of the Witwatersrand 
Human Research Ethics Committee [HREC] (No: 
HRECNMW21/05/09).

4 Results

4.1 Probabilistic human health risk 
assessment

4.1.1 Adjusted PM2.5 concentrations for 
non-carcinogenic and carcinogenic health risks

The adjusted PM2.5 concentrations for non and carcinogenic 
health risks of the different population sub-groups in eMbalenhle are 
presented in Table 3. The 50th, 75th, and 95th percentile for adjusted 
PM2.5 concentrations for non-cancer risks was slightly higher in male 
and female adults compared to other subgroups due to the higher 

TABLE 2 Variables used in the probabilistic human health risk assessment model.

Parameter Unit Distribution Value Source

Cair μg/m3 Lognormal GM 17 (GSD 1.69)
PM2.5 Annual Average 

Concentrations (53)

ET (Toddler) hours/day Triangle Min-mode-max 18–22–24 (Section 2.3.1)

ET (Child) hours/day Triangle 16–22–24 (Section 2.3.1)

ET (Adult) hours/day Triangle 20–22–24 (Section 2.3.1)

ET (Elder) hours/day Triangle 20–22–24 (Section 2.3.1)

AT (CR) – All Males years Normal 57.26 ± 4.71 (49)

AT (CR) – All Females years Normal 62.19 ± 5.53 (49)

ED (Toddler) years Uniform Min-max 1–2 (Section 2.3.1)

ED (Child) years Uniform 6–11 (Section 2.3.1)

ED (Adult) years Uniform 21–60 (Section 2.3.1)

ED (older adult) years Uniform 61–70 (Section 2.3.1)

EF days/year Triangle 335–350–365 (Section 2.3.1)

Rfc (Annual PM2.5 -SA NAAQS) μg/m3 Not Applicable 20 (50)

Rfc (Annual PM2.5 – WHO Guidelines) μg/m3 Not Applicable 5 (51)

Rfc (Annual PM2.5 US EPA NAAQS) μg/m3 Not Applicable 9 (53)

IUR μg/m3 Not Applicable 0.008 (63)

Cair-adj (HQ) μg/m3 Not Applicable Calculated Output

Cair-adj (CR) μg/m3 Not Applicable Calculated Output

HQ (SA-NAAQS) Unitless Not Applicable Calculated Output

HQ (WHO Guidelines) Unitless Not Applicable Calculated Output

HQ (US EPA NAAQS) Unitless Not Applicable Calculated Output

Cancer Risk Unitless Not Applicable Calculated Output
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estimated ET. The 50th percentile (median) adjusted PM2.5 
concentrations for CR ranged from 0.4 μg/m3 (male and female 
toddlers and children) and 10.9 μg/m3 (male elders) due to the 
different estimates of the AT.

Non-carcinogenic health risks based on PM2.5 annual reference 
standards are presented in Table  4. Based on the annual PM2.5 SA 
NAAQS, all population sub-groups in eMbalenhle showed 95th 
percentile HQ values below 1. Using the USEPA NAAQS, all population 
subgroups showed HQ values greater than 1, using the 50th, 75th and 
95th percentiles of Cair-adj. Throughout all the reference standards 
(WHO Guidelines, SA and US EPA NAAQS), the 50th, 75th and 95th 
HQ percentiles indicated varying health risks of exposure to PM2.5 
eMbalenhle. The WHO Guidelines showed the highest potential to 
curb non-carcinogenic risks, followed by USEPA and the SA 
NAAQS. When estimating the hazard quotient (HQ) for the 95th 
percentile of the SA NAAQS, the risk of developing non-carcinogenic 
health effects was four times lower than WHO’s HQ. This difference 
indicates that using NAAQS to evaluate health risks could 
underestimate the risk for individuals exposed to PM2.5 in eMbalenhle.

4.1.2 Carcinogenic risk assessment of exposure 
to PM2.5 in eMbalenhle

The results in Table 5 and Figure 1 report the CR for male and 
female age groups in eMbalenhle based on exposure to adjusted PM2.5 
related to their characteristics. For both male and female elders, the CR 

was approximately 1 in 10, meaning that about 100,000 out of 1,000,000 
exposed elders were at an increased risk of developing cancer over their 
lifetime due to PM2.5 exposure at the reported levels. Even for toddlers 
born and raised in eMbalenhle, the probability of developing cancer 
during their lifetime exceeds the critical 1 × 10−04 level.

4.1.3 Sensitivity analysis of model inputs based on 
non-cancer and cancer risks

The contribution of input parameters to the variance in 
non-cancer risks is shown in Figures 2, 3. The variation of Cair showed 
the highest contribution to the variance in the non-cancer risk (72.4%, 
range of 57–87%), whereas on average, ET and EF contributed 25.5% 
(range of 11–41%) and 4% (range of 1–7%), respectively to the 
variance in non-cancer risks.

Figure 3 shows that the parameter sensitivity for the variance in 
CR for the older adult subgroups deviates from the other age groups. 
The highest contributions to the CR variance for the older adult were 
the Cair and the AT, whereas the ED showed the highest sensitivity for 
the other subgroups.

5 Discussion

This study reported an annual GM PM2.5 concentration of 
17 μg/m3. Various PM2.5 sources, including traffic emissions, industrial 

TABLE 3 The adjusted PM2.5 concentrations (μg/m3) for non and carcinogenic health risks.

Sub-groups 50th percentile 75th percentile 95th percentile

*NCR **CR *NCR **CR *NCR **CR

Male toddlers 14.4 0.4 15.6 0.5 17.4 0.6

Female toddlers 14.5 0.4 15.6 0.4 17.4 0.5

Male children 14.0 2.2 15.3 2.6 17.2 3.2

Female children 14.1 1.9 15.3 2.2 17.2 2.7

Male adults 14.9 10.5 16.0 13.1 17.8 16.4

Female adults 14.9 9.6 16.0 12.0 17.7 15.1

Male elders 14.9 17.0 16.0 18.7 17.7 21.6

Female elders 14.9 15.7 16.0 17.3 17.7 20.0

*NCR: Non-Carcinogenic Health Risks.
**CR: Carcinogenic Health Risks.

TABLE 4 Non-carcinogenic risk assessment of PM2.5 among population sub-groups in eMbalenhle.

Population Standard/guideline Percentile HQ

*All Population Sub-groups (Male and Female 

Toddlers, Children, Adults, and Elders)

SA NAAQS

50th 0.7

75th 0.8

95th 0.9

USEPA

50th 1.7

75th 1.8

95th 2.0

WHO

50th 3.0

75th 3.2

95th 3.5

*The computed HQ values for each subpopulation group are the same based on the NCR values presented in Table 3.
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activities, domestic cooking, space heating, waste-burning and dust 
from gold mine TSFs, could have contributed to the increased levels 
of PM2.5 in eMbalenhle. This annual concentration level was below the 
South African NAAQS of 20 μg/m3. However, it exceeded the WHO 
air quality guidelines and the USEPA NAAQS of 5 μg/m3 and 9 μg/m3, 
respectively. This indicated that although the local air quality standards 
are met, the exposed population may still experience significant health 
risks when the reported PM2.5 concentrations are compared with 
international reference standards. The exceedances of international 
standards from February 2022 to February 2023 indicated a potential 
public health concern, especially for vulnerable population sub-groups 

living close to sources of PM2.5 and gold mine TSFs. Although annual 
PM2.5 emissions reported in this study are slightly below the SA 
NAAQS, Millar et al. (65) that, for the past 10 years (2009–2019), the 
annual PM2.5 concentrations in eMbalenhle exceeded the SA NAAQS 
each year. The study used high-resolution data from the South African 
Weather Service (SAWS) air quality monitoring station.

Different countries have varying ambient PM2.5 NAAQSs. This 
is due to environmental, health, social, political and economic 
factors (66) affecting these countries. The WHO (51) provides 
guidelines for air quality, but countries adopt these recommendations 
differently based on their national circumstances. In most cases, 

TABLE 5 Carcinogenic human health risks of exposure to PM2.5.

Population sub-groups 50th-percentile 75th-percentile 95th-percentile

Male toddlers 3 × 10−3 4 × 10−3 4 × 10−3

Female toddlers 3 × 10−3 3 × 10−3 4 × 10−3

Male children 2 × 10−2 2 × 10−2 3 × 10−2

Female children 2 × 10−2 2 × 10−2 2 × 10−2

Male adults 8 × 10−2 10 × 10−2 1 × 10−1

Female adults 7 × 10−2 10 × 10−2 1 × 10−1

Male elders 1 × 10−1 2 × 10−1 2 × 10−1

Female elders 1 × 10−1 1 × 10−1 2 × 10−1

FIGURE 1

Maps showing the study area within the Country, Province, and District.
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developing countries may prioritize economic growth and 
industrialization over strict air quality standards to avoid limiting 
industrial expansion (67). In contrast, developed countries may 
impose more stringent regulations to protect public health and the 
environment. Moreover, countries with advanced air quality 
management and monitoring technologies may set and enforce 
stricter NAAQS (68). Countries with less technological capacity may 
set more lenient standards due to challenges in air quality 
monitoring (69).

For the probalistic HHRA, the PM2.5 concentrations were adjusted 
to reflect an accurate estimation of an equivalent full-day exposure 
over 1 year in the eMbalenhle population. The results showed that the 
median (50th percentile) for non-carcinogenic risk was low (below 1) 
across all population subgroups based on SA NAAQS. However, 
compared to the more restrictive USEPA and WHO air quality 
guidelines, even the median HQ values demonstrated a substantially 

increased risk with HQ values of 1.5 and 2.8, respectively. 
Amnuaylojaroen and Parasin (70) computed higher HQ values than 
this study. This is partly because they used RfC of 35 μg/m3 to calculate 
the HQ and worst-case assumptions regarding the risk parameters. 
The mean HQs were 2.93, 2.59, 2.28, 1.88, and 1.26 for newborns, 
toddlers, young children, school-age children, and adolescents, 
respectively.

Although the WHO air quality guidelines are widely adopted and 
used in many countries, they are not absolute and can be  overly 
simplistic. First, the guidelines fail to account for cumulative risks and 
variability in individual susceptibility. Second, the guidelines fail to 
account for risk tolerance, which can vary between populations and 
regulatory bodies. Given this, there is a greater need to develop more 
robust and advanced approaches that factor in these issues to reflect 
real-world exposures accurately and avoid underestimating or 
overestimating risk.
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For the cancer risk (CR), results showed values greater than 
1.0 × 10−4 (1  in 10,000) for all population subgroups, which is 
generally considered significant, calling for stricter regulatory action 
and interventions to prevent further exposure. For example, the 
50th, 75th and 95th percentile values indicated significant CRs (all 
greater than 1.0 × 10−4) across all population sub-groups. The CR 
became more significant in male and female elders. This result is 
similar to Wu et al. (71), who found the CR more significant in male 
elders. In contrast, Stapelfeld et al. (72) found that females were 
more at risk of developing cancer than males. In our study, the 
slightly higher CR for men was due to the lower life expectancy than 
women, but this difference is not statistically significant. 
Furthermore, males have different hormonal profiles compared to 
females (73) and as they age, the risk of developing cancer 
increases (74).

The female children showed the least chance of developing CR 
because of PM2.5 exposure compared to the other groups. Our 
estimations were determined by the ED/AT ratio, which was the 
lowest for toddlers and the highest for elders. Since toddlers and 
children are young, their risk for developing cancer is reduced because 
they have less accumulated genetic mutations (75). Contrary to this, 
Siegel et  al. (76) observed that pediatric cancers were more 
pronounced in male children than in females.

The sensitivity analysis indicated that Cair and ET had the 
most significant impact on non-cancer risks. Since Cair is 
measured, the estimates for ET are key for estimating the extent 
of non-cancer risk. These findings call for regulatory action and 
policies to reduce exposures, especially to vulnerable groups. 
Strategies could include promulgating stringent emission 
standards for petrochemical industries, power plants, coal mines 
and gold mines. Inside the community, there should be  an 
advocation for the transition to cleaner fuels, energy-efficient 
cookstoves and renewable energy sources to mitigate combustion-
related PM2.5 emissions (77). Other strategies could include the 
spatial resolution of air quality monitoring in the area by 
adopting low-cost sensors (78), issuing early warnings for high 
pollution days (79), and raising public awareness to empower 
communities to take protective measures. On the other hand, the 
ED was the most sensitive parameter for the CR due to the 
assumed uniform distribution in the adult subgroup. For the 
older adult, where the ED/AT ratio is close to one, the variation 
in Cair becomes more significant for the estimates of the CR. In a 
similar study, Amoatey et al. (80) observed that long durations of 
exposure to ambient PM2.5 increased adverse health outcomes 
amongst the Roman population.

Applying the probabilistic HHRA model may be more complex 
than the deterministic approach (81). The determinist HHRA 
approach uses fixed point estimates for input variables (ED, ET, EF, 
AT) (82). Often, the maximum values are used, resulting in worst-case 
assessments. In contrast, the probabilistic HHRA uses probability 
distributions for input variables to account for variability and 
uncertainty (83). Amnuaylojaroen and Parasin (70) applied a 
deterministic risk assessment model to assess the health impacts of 
exposure to PM2.5 in different age groups of children in Northern 
Thailand. Compared to the probabilistic HHRA model that was 
applied in this study, their model considered the body weight and 
inhalation rate as variables, as also in Morakinyo et al. (84). The study 
also postulated that PM2.5 exposure might affect children differently 

depending on gender, with males at a higher risk than females in 
adolescence (70).

6 Conclusion

The findings of the study demonstrated that the SA NAAQS may 
not adequately protect public health as it may underestimate the 
risks associated with PM2.5. To protect public health, there is a need 
for the government to adopt more stringent standards and align 
them closely with international standards, including the 
WHO guidelines.

Using a probabilistic human health risk assessment (HHRA) 
approach, the study revealed that non-carcinogenic risks were low 
when benchmarked against the SA NAAQS, but substantially elevated 
when compared with international guidelines. Vulnerable groups, 
particularly newborns and toddlers, exhibited higher hazard quotients 
(HQs), underscoring their increased susceptibility. For cancer risks 
(CR), results exceeded the generally acceptable threshold of 1  in 
10,000 across all population groups, particularly affecting the 
older adult.

PM2.5 concentrations were the most significant factor in 
increased non-cancer health problems in all sub-population 
groups. This emphasizes the need for control measures to reduce 
PM2.5 concentrations, including the maintenance of TSFs and 
increasing monitoring in hot spot areas. The ED was the most 
critical factor for the cancer risks, followed by the air 
concentration for all population sub-groups except for the older 
adult. Strategies to reduce the ED and EF, such as limiting 
outdoor activities during high pollution events could further 
minimize health risks associated with exposure to PM2.5. The 
sensitivity analysis indicated that ambient PM2.5 concentration 
(Cair) and exposure time (ET) had the most influence on 
non-cancer risk estimates, while exposure duration (ED) was key 
for cancer risks. These observations indicate the urgent need for 
targeted interventions to minimize exposure, especially among 
vulnerable populations. Policy actions could include tighter 
emissions controls, community-level interventions to promote 
dust control alternatives, TSF management strategies, and 
expanded air quality monitoring networks using low-cost sensors.

Considering the above, this study calls for an urgent review of the 
current South African NAAQS. However, policymakers should strike a 
good and functional balance between economic imperatives and public 
health outcomes. Even though the WHO provides global benchmarks, 
countries can adopt these to meet their socio-economic context, 
technological feasibility and regulatory frameworks.

7 Study limitations

The LCM measurement results over the year represent the temporal 
variations; however, spatial variations were not covered, limiting the 
representativeness of the PM2.5 concentration data for the general 
population of eMbalenhle. In addition to this measured parameter 
(Cair), the HQ and CR risk equations, distribution and values for all 
other parameters, except life expectancy, were only estimates and not 
based on actual data or information from the community. In-depth 
population studies are needed to collect more relevant information, 
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especially for the highest sensitivity risk parameters. Therefore, this 
study’s HQ and CR probability distributions can only be considered to 
flag potential health risks for the eMbalenhle residents. Lastly, this study 
made assumptions for the ED and EF for all population subgroups. This 
can limit the reliability and generalizability of the findings, as these 
parameters may not accurately reflect the diverse exposure patterns 
across the population subgroups. Uniform distribution patterns and 
assumptions of uniform exposure may overlook important activity 
data, including age-specific behaviours and varying susceptibility. This 
could lead to potential underestimation or overestimation of risks.
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Appendix A: sensitivity analysis for population sub-groups in eMbalenhle

FIGURE A1

Sensitivity analysis of the parameters based on non-cancer risks in eMbalenhle.
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