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Background: The aging problem in Shanghai is rapidly increasing, leading to the 
development of chronic comorbidities in older adults. Studying the correlations 
within comorbidity patterns can assist in managing disease prevention and 
implicate early control.

Objectives: This study was a cross-sectional analysis based on a large sample size 
of 3,779,756 medical records. A network analysis and community classification 
were performed to illustrate disease networks and the internal relationships 
within comorbidity patterns among older adults in Shanghai.

Methods: The network analysis and community classification were performed 
using the IsingFit and Fast-greedy community functions. Datasets, including 
disease codes and disease prevalence, were collected from medical records.

Results: The top five prevalent diseases were hypertension (64.78%), chronic 
ischemic heart disease (39.06%), type 2 diabetes mellitus (24.97%), lipid 
metabolism disorders (21.79%), and gastritis (19.71%). The sampled population 
showed susceptibility to 11 comorbidities associated with hypertension, 9 
with diabetes, 28 with ischemic heart disease, 26 with gastritis, and 2 with 
lipid metabolism disorders in male patients. Diseases such as lipid metabolism 
disorders, gastritis, fatty liver, polyps of the colon, osteoporosis, atherosclerosis, 
and heart failure exhibited strong centrality.

Conclusion: The most common comorbidity patterns were dominated by 
ischemic heart disease and gastritis, followed by a ternary pattern between 
hypertension, diabetes, and lipid metabolism disorders. Male patients were 
more likely to have comorbidities related to cardiovascular and sleep problems, 
while women were more likely to have comorbidities related to thyroid disease, 
inflammatory conditions, and hyperuricemia. It was suggested that healthcare 
professionals focus on monitoring relevant vital signs and mental health 
according to the specific comorbidity patterns in older adults with chronic 
diseases, to prevent the development of new or more severe comorbidities.
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1 Introduction

The World Health Organization (WHO) defines comorbidity as 
the presence of two or more persistent health conditions in the same 
individual, requiring prolonged intervention for maintenance (1). By 
the middle of this century, it is projected that the population aged 
60 years and above in China will reach 430 million (2). Chronic 
comorbidity has long been a significant health challenge among older 
adults. In Shanghai, one of the regions undergoing severe aging 
problems, the detection rate of chronic diseases among older adults 
has reached 70% (3). Compared to single-diagnosed diseases, 
comorbidity poses a more substantial threat to health, as the interplay 
of various diseases creates a complex network of risk factors, further 
increasing mortality risk among patients (4). The growing trend of 
comorbidity not only complicates diagnosis and treatment but also 
places a significant economic burden on families as well as society. 
Therefore, there is an urgent need for effective strategies to prevent 
and manage comorbidities, as well as to provide professional guidance 
for caregiving to older adults and their families.

Several domestic and international studies have conducted in-depth 
research on the prevalence of comorbidity and the associations between 
different chronic conditions among older adults in various regions, 
utilizing data collected from epidemiological surveys and medical records, 
combined with the practical application of various network theories. 
These studies also provided recommendations for control approaches of 
different comorbidity patterns. A study applied a self-organizing map 
(SOM) neural network to visually present the associations between 
various common chronic diseases among middle-aged and older adults 
in China. They explored the differences in comorbidity patterns affected 
by age, gender, urban–rural residence, and treatment outcomes through 
visual cluster analysis (5). A study used a network mapping strategy to 
explore comorbidity patterns among the Zhuang population in Guangxi, 
identifying nine patterns strongly associated with hypertension. These 
findings helped improve the health condition of the study population (6). 
Another study examined comorbidity networks in communities within 
Jiangsu Province based on large-scale network analysis tools to figure out 
comorbidity patterns, disease prevalence, clustering characteristics, risk 
factors, and preventive strategies (7). In addition, a South Korean study 
focused on comorbidity patterns among obese populations demonstrated 
the relationship between several chronic diseases and obesity across 
different genders (8). However, there were still some limitations to the 
current research progress. Previous studies had been limited to a few 
common diseases and had primarily focused on specific regions, lacking 
normality across the whole target population in China. Although some 
studies had collected data from whole areas within the country, the 
dataset required an update.

Currently, the situation regarding comorbidity among older adults 
in Shanghai remains unclear. This study applied visual network 
approaches to medical records from outpatient, emergency, and hospital 
visits among individuals aged 60 to 99 years in Shanghai, aiming to 
illustrate the coexistent diseases associated with the top five most 
prevalent conditions: hypertension, chronic ischaemic heart disease, 
type 2 diabetes mellitus, gastritis, and lipoprotein metabolism disorders. 
The study focused on analyzing potential comorbidities of these five 
diseases and aimed to provide insights into the prevention and 
management of chronic comorbidity among older adults in Shanghai. 
Additionally, it might lay a solid foundation for future exploration of 
potential associations and control of chronic disease incidence.

2 Materials and methods

2.1 Data processing and study population

The dataset was collected from the Shanghai Municipal Health 
Commission database (9). It was derived from a collection of medical 
records of outpatient visits, emergency visits, and hospitalized records 
from a total number of 520 public, private, and community hospitals, 
based on the enrollment of country’s national basic medical insurance 
programs. Medical visits were traced by ID number enrolled in the 
insurance system during July 2022 and June 2023. The accuracy of the 
medical records uploaded was inspected under rigorous quality 
control. Repeat visits under one ID for the same disease were only 
counted once and combined into one record. In this case, each line of 
record represented the occurrence of all diseases for a single patient 
without duplication, no matter how many times patients repeat their 
visits for the same disease. In this study, we defined that the number 
of visiting records represented the prevalence of each disease.

All disease codes were referred to ICD-10 (International 
Classification of Diseases, 10th Revision). Only the records that met 
ICD-10 coding rules were selected (e.g., A01.001). Incomplete, 
inaccurate, inconsistent, duplicate, and garbled codes were also 
directly excluded from the database. Additionally, records that 
contained only one disease under the same ID were excluded since 
they were not meaningful for comorbidity analysis. Diseases that were 
unrelated to chronic diseases were excluded. Diseases with a 
prevalence below 1% of the total number of records were also 
excluded. The dataset originally contained 129,682,778 records from 
4,847,895 patients aged 60 to 99 years. After processing, this study 
included 3,779,756 lines of records (1,734,188 for men and 2,045,568 
for women) (Figure 1). Then, 150,000 records were randomly sampled 
by gender for further network analysis and community classification.

2.2 Re-coding of diseases

ICD-10 codes contain similar diseases under the same code level, 
some of which were disordered and included insufficient subjects for 
analysis. For statistical feasibility, diseases that occur in the same body 
part with similar pathogenesis were combined to generate a new code. 
For example, EE03 referred to a combination of E03.8 and E03.9, 
which represented a sum of hypothyroidism. II2520 referred to a 
combination of diseases under I25 (chronic ischaemic heart disease) 
and I20 (angina pectoris) since I20 might be an outcome of I25.

Based on the new coding rules, the top five prevalent diseases 
were determined first. They were hypertension, ischaemic heart 
disease (IHD), type 2 diabetes mellitus (T2DM), lipoprotein 
metabolism disorders (LMD), and gastritis. Then, the top 40 diseases 
with their respective comorbidity rate of these five diseases were 
determined. A total number of 38 chronic diseases were retained after 
deleting duplication (new codes were listed in Table 1). The 38 diseases 
were hypertension, IHD, T2DM, gastritis, LMD, hypothyroidism, 
non-toxic diffuse goiter, sleep disorders, sleep apnea, acute myocardial 
infarction, cardiac arrhythmia, cerebral infarction, cerebrovascular 
disease, chronic rhinitis, chronic pharyngitis, bronchitis, gastro-
esophageal reflux disease with esophagitis (GERD with esophagitis), 
non-infective gastroenteritis and colitis, constipation, functional 
diarrhea, polyps of the colon, non-alcoholic fatty liver disease 
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(NAFLD), dermatitis, arthritis, osteoporosis, chronic kidney disease, 
dizziness and giddiness, anxiety disorders, neurotic disorders, atrial 
fibrillation and flutter, heart failure, atherosclerosis, chronic 
obstructive pulmonary disease (COPD), gastric ulcer, hyperuricemia, 
gonarthrosis, spondylosis, and (peri-)menopausal disorder.

2.3 Statistical analysis

The database was generated using Excel 2013. The characteristics 
of age were presented as weighted means with a standard deviation 
(SD). The number of medical visits of the study population by age 
group and the prevalence of the top five diseases were presented as 
weighted percentages.

2.4 Comorbidity network analysis

Network analysis was conducted using the IsingFit function 
(α = 0.05) with R version 4.3.0. This network estimation employed 
eLasso, which combines l1-regularized logistic regression with model 
selection based on the Extended Bayesian Information Criterion 

(EBIC), enabling the identification of relevant relationships 
between diseases:
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A coefficient wij greater than 0 indicates a higher frequency of two 
diseases occurring simultaneously, suggesting a higher likelihood of 
comorbidity. On the contrary, a coefficient smaller than 0 indicates a 
lower frequency of simultaneous occurrence. This is because the 
appearance of the two diseases in the 0/1 statistical matrix was 
decentralized, but the association still exists. In this study, positive and 
negative associations were used to describe the comorbidity frequency. 
The weight value of edges was used to describe this association in 
this study.

The network results included diseases as nodes and relevant 
associations as edges (10, 11). A node represents a single chronic 
disease. Edge connects two comorbid diseases. The thickness of the 

FIGURE 1

Flowchart of data processing and records exclusion.
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edge is proportional to the intensity of comorbidity. A thicker edge 
indicates a stronger correlation of comorbidity. Strength is defined as 
the sum of the weights of all nodes. Closeness quantified the indirect 

distance between two diseases. A greater closeness indicates a shorter 
distance between two diseases, and they may co-occur more easily. 
Betweenness indicates the number of times a disease acts as a 

TABLE 1 Results of the centrality of each disease in the comorbidity network of male and female patients.

New 
code

Disease category Male Female

Strength Closeness Betweenness Strength Closeness Betweenness

i10 Hypertension 2.617 0.005 0 3.882 0.006 14

ii2520* Chronic IHD** 10.879 0.008 83 10.327 0.008 95

ee1114 T2DM** 3.457 0.006 0 2.880 0.005 0

kk29* Gastritis 10.178 0.007 90 10.819 0.007 116

e78 LMD** 1.285 0.006 0 0 - 0

ee03 Hypothyroidism 1.781 0.005 35 3.446 0.005 34

ee04 Non-toxic diffuse goiter 1.100 0.004 0 1.207 0.004 0

g47_0 Sleep disorders 4.167 0.005 7 3.697 0.005 6

g47_3 Sleep apnea 1.285 0.006 14 0 - 0

i21 Acute myocardial infarction 4.085 0.007 0 2.656 0.007 0

i49 Cardiac arrhythmia 6.842 0.007 23 6.842 0.007 23

i63 Cerebral infarction 4.752 0.007 9 4.606 0.006 9

ii67 Cerebrovascular disease 6.197 0.007 26 5.822 0.007 23

j31_0 Chronic rhinitis 4.494 0.007 39 4.620 0.006 23

j31_2 Chronic pharyngitis 5.495 0.006 21 6.009 0.006 8

jj4042 Bronchitis 5.937 0.007 36 6.442 0.007 42

k21 GERD**with esophagitis 5.219 0.006 0 5.370 0.006 0

k52_9 Non-infective gastroenteritis and colitis 3.423 0.006 11 3.793 0.006 2

k59_0 Constipation 5.219 0.007 13 4.657 0.006 4

k59_1 Functional diarrhea 5.794 0.006 16 5.665 0.006 10

k63_5* Polyps of the colon 5.846 0.007 64 4.713 0.007 37

k76_0* NAFLD** 5.918 0.007 87 5.991 0.007 55

l30_9 Dermatitis 1.893 0.004 0 2.954 0.004 0

m13 Arthritis 6.480 0.007 24 6.480 0.007 24

m81* Osteoporosis 7.011 0.008 70 6.674 0.007 47

nn18 Chronic kidney disease 7.011 0.007 47 7.146 0.007 37

r42 Dizziness and giddiness 4.238 0.006 19 4.606 0.006 22

f41 Anxiety disorders 4.512 0.006 17 4.449 0.006 18

f48 Neurotic disorders 4.466 0.006 11 3.833 0.005 5

i48 Atrial fibrillation and flutter 5.221 0.007 22 5.628 0.007 21

i50* Heart failure 9.612 0.008 97 9.671 0.008 110

i70* Atherosclerosis 6.750 0.007 73 5.207 0.007 19

j44 Chronic obstructive pulmonary disease 3.804 0.007 33 4.135 0.007 39

k25 Gastric ulcer 2.435 0.006 0 2.245 0.007 0

me1079 Hyperuricemia 3.828 0.007 8 5.000 0.007 10

m17 Gonarthrosis 3.423 0.006 4 3.330 0.006 1

m47 Spondylosis 4.431 0.007 23 4，431 0.006 23

n95 (peri-)Menopausal disorders 0 - 0 2.919 0.005 1

*Diseases represented in bold text have a strength greater than 5, a closeness equal to or greater than 0.007, and a betweenness greater than 50. These diseases have strong centrality and are 
easily susceptible to comorbidity. **IHD, ischaemic heart disease; T2DM, type 2 diabetes mellitus; LMD, lipoprotein metabolism disorders; GERD, gastro-esophageal reflux disease; NAFLD, 
non-alcoholic fatty liver disease.
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connecting pathway to other pairs of comorbidity. A higher 
betweenness emphasizes the importance of the disease and its strong 
relationship with others (12).

2.5 Community classification

The comorbidity network conducted preliminary correlations 
among the studied diseases. Then, community classification was 
applied to further examine those positive correlations in depth to 
focus the results on comorbidity patterns. The analysis of clustering 
was based on the weights of the edges generated in the network, which 
introduced a concept of modularity, a quality index. The fast-greedy 
community function was applied to calculate modularity based on the 
weights of the edge. Modularity defined as
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where m is the number of edges, Aij is the element of the A 
adjacency matrix in disease i and disease j. ki is the sum of weights of 
adjacent edges for disease i. kj is the degree of disease j. ci and cj are 
the components of diseases i and j.γ is a resolution parameter to 
weight random null model and it is usually set to 1 (13).

2.6 Ethics statement

There was no personal information included in the dataset. The 
Shanghai Medical and Technology Information Institute Ethics 
Committee approved this study and the use of the dataset 
(No.2024004). All participants and procedures followed the required 
guidelines (14).

3 Results

3.1 Characteristics of the study population

This study initially analyzed the distribution of the study 
population based on their number of visits regarding single-diagnosed 
diseases across different age groups, stratified by gender. The overall 
percentage of medical visits of patients aged 60 to 69 years was 47.28% 
(men: 22.26%, women: 25.02%). The percentages for age groups 
70–79, 80–89, and 90–99 were 33.99% (men: 16.04%, women: 
17.95%), 14.37%, (men: 6.13%, women: 8.25%) and 4.36% (men: 
1.46%, women: 2.90%), respectively. The average age for the study 
population was 72.87 (SD, 8.578) years. 72.52 (SD, 8.320) for men and 
73.13 (SD, 8.758) for women (Table 2).

3.2 Top 10 most visiting diseases

Hypertension had the highest frequency of visits among all the 
study subjects, with a total of 11,422,288 visits for men and 1,306,260 
visits for women. The top 10 diseases were hypertension, IHD, T2DM, 
LMD, gastritis, sleep disorders, conjunctivitis, intestinal disorders, 
bronchitis, and respiratory disorders (Table 3).

3.3 The comorbidity network of the top 
five diseases within all 38 analyzed diseases

Both comorbidity networks for men and women, as illustrated 
in Figure 2, indicated that hypertension positively correlated with 
11 diseases. These included IHD, hyperuricemia, chronic kidney 
failure, cerebral infarction, T2DM, cerebrovascular disease, 
arthritis, cardiac arrhythmia, dizziness and giddiness, bronchitis, 
and NAFLD (weight of edges greater than 0, see 
Supplementary Tables 1, 2). Conversely, hypertension exhibited a 
negative correlation with chronic pharyngitis, gastritis, polyps of 
the colon, sleep disorders, and dermatitis (weight of edges lower 
than 0, see Supplementary Tables 1, 2). There was an additional 
negative association with neurotic disorder, chronic rhinitis, and 
COPD in men than in women. These diseases had a lower 
frequency of occurring simultaneously due to the decentralization 
of the records. Hypertension had an additional positive correlation 
between atrial fibrillation and flutter, constipation, and 
gonarthrosis, and an additional negative correlation with 
osteoporosis, spondylosis, hypothyroidism, and (peri-)
menopausal disorders.

T2DM was found to be positively associated with nine diseases 
and negatively associated with three diseases. The nine diseases were 
chronic kidney failure, NAFLD, hypertension, atherosclerosis, heart 
failure, IHD, cerebral infarction, osteoporosis, and constipation. The 
three diseases were chronic pharyngitis, sleep disorders, and gastritis. 
Additionally, men were more likely than women to have acute 
myocardial infarction and less likely to have dizziness and giddiness, 
polyps of the colon, bronchitis, hyperuricemia, and COPD alongside 
T2DM. In women, T2DM additionally exhibited positive associations 
with hyperuricemia, arthritis, bronchitis, gastroenteritis and colitis, 
and dermatitis.

There were positive correlations between IHD and 28 diseases 
which included cardiovascular pathology (e.g., acute myocardial 
infarction, heart failure, cardiac arrhythmia, atrial fibrillation and 
flutter, cerebrovascular disease, hypertension, cerebral infarction, 
atherosclerosis, and LMD), chronic kidney failure, osteoporosis, 
arthritis, bronchitis, chronic pharyngitis, sleep disorders, T2DM, 
functional diarrhea, NAFLD, chronic rhinitis, gonarthrosis, and 
gastroenteritis and colitis. Women were additionally found to have 
hyperuricemia, gastric ulcer, spondylosis, and dermatitis 
with IHD.

Gastritis was positively associated with gastrointestinal (GI) 
disorders such as GERD with esophagitis, gastric ulcers, polyps of the 
colon, gastroenteritis and colitis, functional diarrhea, and 
constipation. It was also positively correlated with 26 other diseases, 
such as chronic pharyngitis, chronic rhinitis, NAFLD, anxiety 
disorders, bronchitis, osteoporosis, cardiac arrhythmia, IHD, sleep 
disorders, and COPD. Furthermore, it was negatively correlated with 
T2DM and hypertension. As mentioned above, the negative 
correlation indicated a lower frequency of existing simultaneously. 
The comorbidity pairs still existed. Women additionally had cerebral 
infarction, hyperuricemia, and (peri-) menopausal disorders 
positively associated with gastritis.

In men, LMD was positively associated with atherosclerosis, 
IHD, and hyperuricemia. It should be noted that women were not 
sampled for LMD and its associated diseases due to the low frequency 
of comorbidity (Figure 2).
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3.4 Network centrality of the 38 analyzed 
diseases

This study identified diseases with a strength greater than 5, a 
closeness equal to or greater than 0.007, and a betweenness greater 
than 50 as having strong centrality and were easily susceptible to 
comorbidity. Regarding the top five prevalent diseases, IHD (men: 
s = 10.879, c = 0.008, b = 83; women: s = 10.327, c = 0.008, b = 95) 
and gastritis (men: s = 10.178, c = 0.007, b = 90; women: s = 10.819, 
c = 0.007, b = 116) were the major two diseases that would easily 
be susceptible to comorbidity in both men and women. Among the 
38 diseases, NAFLD (men: s = 5.918, c = 0.007, b = 87; women: 
s = 5.991, c = 0.007, b = 55), polyps of the colon (men: s = 5.846, 
c = 0.007, b = 64), osteoporosis (men: s = 7.011, c = 0.008, b = 70), 
and atherosclerosis (men: s = 6.750, c = 0.007, b = 73) were strongly 
associated with other diseases. Furthermore, the centrality of heart 
failure (men: s = 9.612, c = 0.008, b = 97; women: s = 9.671, c = 0.008, 
b = 110) was strong, indicating that this disease could commonly 
develop into outcome complications and thus correlated with the 
majority of the analyzed chronic diseases (Table 1).

3.5 Network-based community classification 
of the top five prevalent diseases

Modularities for clustering were both greater than 0.3 by gender 
(men: 0.34, women: 0.31), indicating that this method is effective in 

clearly categorizing the target diseases into smaller communities. In 
men, a cluster was observed among T2DM, hypertension, chronic 
kidney failure, hyperuricemia, NAFLD, atherosclerosis, LMD, and 
sleep apnea. A cluster was identified among IHD, cardiac arrhythmia, 
heart failure, acute myocardial infarction, and atrial fibrillation and 
flutter. Gastritis clustered with polyps of the colon, gastroenteritis and 
colitis, GERD with esophagitis, and gastric ulcers (Figure 3A). In 
women, a cluster was observed among T2DM, chronic kidney failure, 
hyperuricemia, hypothyroidism, NAFLD, atherosclerosis, non-toxic 
diffuse goiter, and hypertension. Gastritis clustered with polyps of the 
colon, gastritis, GERD with esophagitis, functional diarrhea, and 
gastric ulcers. IHD clustered with cardiac arrhythmias, atrial 
fibrillation flutter, heart failure, and acute myocardial infarction 
(Figure 3B).

Additional clusters were identified. In men, sleep disorders 
were clustered with cerebral infarction, cerebrovascular disease, 
dizziness and giddiness, neurotic disorders, constipation, and 
anxiety disorders. Bronchitis was associated with arthritis, 
dermatitis, COPD, chronic rhinitis and pharyngitis, osteoporosis, 
gonarthrosis, and spondylosis. Hypothyroidism was associated 
with non-toxic diffuse goiter. In women, sleep disorders were 
clustered with constipation, cerebral infarction, cerebrovascular 
disease, dizziness and giddiness, anxiety disorders, and neurotic 
disorders. Bronchitis was clustered with osteoporosis, arthritis, 
dermatitis, chronic rhinitis and pharyngitis, osteoarthrosis, 
gonarthrosis, spondylosis, (peri-)menopausal disorders, and 
COPD (Figure 3).

TABLE 2 Basic characteristics of the study population.

Characteristics Total Male Female

Age (year) No. of visits* % No. of visits % No. of visits %

60–69 1,787,022 47.28 841,369 22.26 945,653 25.02

70–79 1,284,756 33.99 606,310 16.04 678,446 17.95

80–89 543,220 14.37 231,466 6.13 311,754 8.25

90–99 164,758 4.36 55,043 1.46 109,715 2.90

Age (year) Average SD Average SD Average SD

60–99 72.87 8.578 72.52 8.320 73.13 8.758

*The number of visits represents the prevalence of each disease. There was no duplication of diagnosis in this study.

TABLE 3 Top 10 single-diagnosed diseases based on the number of medical visits of the study population.

Top 10 single-diagnosed diseases Total No. Visits (%*) Male Female

 1. Hypertension 2,448,548 (64.78) 1,142,288 1,306,260

 2. IHD** 1,476,396 (39.06) 637,315 839,081

 3. T2DM** 943,812 (24.97) 465,184 478,628

 4. LMD** 823,572 (21.79) 329,847 493,725

 5. Gastritis 744,880 (19.71) 311,084 433,796

 6. Sleep disorders 667,676 (17.66) 272,915 394,761

 7. Conjunctivitis 518,629 (13.72) 195,735 322,894

 8. Intestinal disorders 513,921 (13.60) 218,230 295,691

 9. Bronchitis 458,076 (12.12) 199,803 258,273

 10. Respiratory disorders 430,433 (11.39) 200,616 229,817

*Prevalence of each disease based on the total study population (3,779,756). **Explanation of abbreviation: IHD-ischaemic heart disease; T2DM-type 2 diabetes mellitus; LMD-lipoprotein 
metabolism disorders.
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4 Discussion

4.1 Chronic ischemic heart disease and its 
comorbidity patterns

IHD is associated with chronic diseases such as cardiovascular 
pathology, GI disorders, chronic kidney failure, osteoporosis, arthritis, 
bronchitis, chronic pharyngitis, sleep disorders, T2DM, NAFLD, 
chronic rhinitis, and gonarthrosis. IHD is one of the major types of 
cardiovascular disease (CVD) developing in China. Known studies 
have analyzed that IHD is closely associated with hypertension, 
T2DM, LMD, overweight or obesity, and unhealthy lifestyles. Risk 
factors are not significantly different between men and women (15). 
This study indicated that IHD is associated with not only commonly 
recognized CVD, cerebrovascular diseases, and T2DM but also 
abnormalities of hepatic and renal function, upper respiratory 
problems, lung diseases, bone and joint diseases, mental disorders, 
and GI disorders, which are susceptible to comorbidity in older 
patients with IHD. Deterioration of renal function is one of the most 
common comorbidities of IHD and CVD, which is often accompanied 
by heart failure as well (16, 17). NAFLD and CVD are manifestations 
of end-organ damage in the metabolic syndrome, and they are 
associated with each other through multiple mechanisms. Patients 
with IHD are likely to have atherosclerosis, cardiomyopathy, and 
arrhythmia, which contribute to CVD morbidity and mortality (18). 
CVD and IHD are also the most common comorbidities of COPD, 
accelerating disease progression, increasing risk factors, and resulting 
in the usage of therapeutic agents (19). Gastritis, gastric ulcers, 
osteoarthritis, and upper respiratory tract problems, such as chronic 
nasopharyngitis and bronchitis, induced by IHD are triggered by 

inflammatory mechanisms, a very common comorbidity pattern in 
older patients (20). Mental disorders such as sleep disorders, anxiety 
disorders, and vertigo are triggered by stress (21). This pattern is 
associated with a long duration of illness, high therapeutic difficulty, 
and high mortality of IHD. In addition, the comorbidity of 
hyperuricemia, dermatitis, and spondylosis in women with IHD was 
identified. Although asymptomatic hyperuricemia has long been 
considered to be a marker of metabolic disorders, several prospective 
large-scale clinical studies suggested that it may be an independent 
risk factor for CVD and IHD, and is strongly associated with poor 
outcomes of cardiac, vascular, and renal problems (22, 23).

4.2 Early detection and implications for 
disease control for chronic ischemic heart 
disease comorbidity patterns

Due to the complexity of IHD comorbidity patterns in older 
patients, it is necessary to apply a multidisciplinary diagnosis strategy 
to monitor these conditions in the early stage. It is crucial to regularly 
screen blood pressure, blood glucose, serum lipid level, hepatic and 
renal function, cardio-respiratory function, inflammatory response, 
and other physiological conditions for IHD patients (24–26). The 
intervention strategy should focus on preventing end-organ damages 
associated with metabolic syndrome, such as atherosclerosis, 
myocardial problems, and arrhythmias. Due to the strong association 
between IHD, heart failure, CVD, COPD, and decline in renal 
function, it is therefore recommended that monitoring cardiac, 
pulmonary, and renal functions plays an important role in preventing 
the potential morbidity of IHD (16). NAFLD and IHD interact 

FIGURE 2

Comorbidity network in men (A) and women (B) aged 60 to 99 years. Nodes represent chronic diseases. Node size is proportional to the strength of 
diseases. Edges connect comorbid diseases. Black edges indicate positive correlations and red edge indicates negative correlations. Edge thickness 
indicates the intensity of the correlation.
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through similar metabolic pathways. We recommended that IHD 
patients ease the double burden of the liver and cardiovascular system 
by weight management and glycaemic control. Women with IHD are 
more likely to have hyperuricemia, dermatitis, and spondylosis 
problems. It will be helpful to monitor inflammatory levels of the 
whole body to prevent adverse complications (27).

4.3 Chronic gastritis and its comorbidity 
patterns

Although the results of the community classification demonstrated 
that gastritis comorbidity patterns in older patients were 
predominantly associated with conventional GI diseases, network 
analysis provided a more general vision of all the potential diseases 
that are susceptible to gastritis. The comorbidity of gastritis with upper 
respiratory tract diseases may be  attributed to acid reflux, which 
irritates the mucosa of the digestive system and ultimately exacerbates 
symptoms (28). A long-term diet high in fat and cholesterol may 
impact hepatic metabolism, potentially leading to the development of 
NAFLD. This is followed by the presentation of impaired endocrine 
function, which reduces the decomposition ability of greasy food, and 
then elevated GI burden (29). The prevalence of gastritis, ulcerative 
esophagitis, duodenitis, and other GI diseases is increased in patients 
with chronic kidney failure and hyperuricemia (30). Patients with 
gastritis are also susceptible to mental disorders, which result from the 
psychological burden due to long-term treatment (31). The 
comorbidity pattern between gastritis and hypothyroidism is also 
significant in older patients because hypothyroidism may lower 
appetite and slow down GI peristalsis. In this case, gastric disorders 
such as gastritis, dyspepsia, and constipation may happen (32, 33). 

Additionally, chronic gastritis may result in a systemic low-grade 
inflammatory response, thereby increasing the risk of vascular 
endothelial damage and CVD (34). It is important to highlight the 
increased prevalence of menopausal disorders, cerebral infarction, and 
hyperuricemia in women with gastritis compared to men. During the 
menopausal stage, as the decline of ovarian function lowers estrogen 
levels, it leads to endocrine disruption and results in changes in 
hormone levels, which may affect GI tract function, thereby increasing 
the risk of gastritis (35). Hormone fluctuation affects gut microbiota 
dysbiosis in the menopausal stage, which can also affect GI functions 
(36). In addition, cerebral infarction and hyperuricemia are risks 
resulting from the long-term use of non-steroidal anti-inflammatory 
drugs (NSAIDs) and unhealthy diets.

4.4 Early detection and implications for 
disease control for gastritis comorbidity 
patterns

Most patients with chronic gastritis and its morbidity have been 
taking anti-inflammatory agents and other medications for a long 
period. Consequently, the primary objective of risk prevention 
should be protecting GI mucosa by selecting appropriate medications 
(37). It is recommended that patients should take medications with 
less irritation to GI mucosa, along with mucosal protectors and 
slow-released preparations, or take medicine after meals (38). The 
side effects of medications should be  regularly assessed. It is 
recommended that older patients should intake low-fat, 
low-cholesterol diets to promote GI function. GI symptoms such as 
dyspepsia and constipation in gastritis patients with hypothyroidism 
need to be monitored frequently to facilitate timely intervention. 

FIGURE 3

Network-based community clustering in men (A) and women (B) aged 60 to 99 years. Definitions of node, node size, and edge thickness remain 
constant, as described in Figure 2. Each cluster with a specific color refers to a disease community. Edges within the same cluster are in black. Edges 
across different clusters are in red. The color of nodes remains the same within the cluster.
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Additionally, chronic gastritis can also impose a systemic low-grade 
inflammatory response, thereby increasing the risk of CVD (34). In 
treating complications, the usage of medications with multi-target 
effects is a priority, along with appropriate adjustment of quantity, 
dosage, and frequency to reduce side effects. Furthermore, women 
with gastritis around 60 years should be  particularly concerned 
about the potential comorbidities associated with menopausal 
diseases, such as cerebral infarction and hyperuricemia. Given the 
fluctuations in hormone levels during this phase of the disease, it is 
important to monitor endocrine function frequently, as it may 
impact GI conditions (39).

4.5 A ternary comorbidity pattern of type 2 
diabetes mellitus, hypertension, and lipid 
metabolism disorders

T2DM, hypertension, and LMD were identified in the same 
community with some other chronic diseases such as hyperuricemia 
and hypothyroidism for women and sleep apnea for men, which 
indicated that these chronic diseases were closely related, and 
hypertension is prone to comorbid with metabolic syndromes (40). 
The major causes of this comorbidity pattern include insulin 
resistance, chronic inflammatory response, obesity, genetic factors, 
endothelial dysfunction, unhealthy lifestyle, and renal impairment. 
These factors interact to form a complex network of metabolic 
syndromes. The coexistence of chronic renal failure and 
hyperuricemia in this pattern may result from the fact that insulin 
resistance elevated uric acid levels (41, 42). Chronic inflammatory 
response exacerbates insulin resistance by triggering responses of 
C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and 
interleukin-6 (IL-6), resulting in T2DM and renal impairment and 
increasing uric acid levels (43, 44). Meanwhile, elevated blood 
glucose in the liver activates glycogen synthase to accumulate hepatic 
fat, leading to LMD and NAFLD (45). In women, the decreasing 
insulin sensitivity is associated with the decreased metabolic rate of 
thyroid hormones, which triggers hypothyroidism and goiter (46). 
Both T2DM and hypothyroidism increase the risk of high cholesterol 
and hypertension, which are common cardiovascular risk factors in 
people with T2DM. Sleep apnea syndrome in male patients will lead 
to frequent apneic episodes and hypoxemia, which is associated with 
hypertension by activating and raising oxidation (47). Activating the 
sympathetic nervous system may contribute to insulin resistance, 
which can increase the risk of T2DM (48).

4.6 Early detection and implications for 
disease control for comorbidity pattern of 
type 2 diabetes mellitus, hypertension, and 
lipid metabolism disorders

The prevention of this ternary comorbidity pattern should focus 
on regulating blood glucose and insulin levels by pharmacological 
approaches such as in-taking metformin and insulin sensitizers. It is 
recommended that a healthy lifestyle, including weight management, 
frequent physical activity, and low-sugar, low-fat diets, can improve 
insulin sensitivity, overall metabolic status, and lower inflammation 

makers (49, 50). Regular detections of hepatic and renal function can 
help identify early impairment in older patients with T2DM 
and hyperuricemia.

It is also essential to consider gender factors in this comorbidity 
pattern. Female patients are recommended to regularly assess thyroid 
gland function and hormone levels due to the potential interaction 
between hypothyroidism and T2DM. Male patients undergoing sleep 
apnea syndrome should specifically screen their blood pressure and 
blood glucose. Using a respiratory assistant device and modifying 
sleeping posture to improve sleep quality. Taking less fats, sugar, salts, 
and alcohol will reduce the progression of comorbidity.

4.7 Mental health management and patient 
self-management

Neurotic disorders, sleep disorders, and other psychiatric factors 
were prevalent in the comorbidity pattern discussed above. It can 
be  inferred that the long-term treatment of comorbidity in older 
adults is often accompanied by challenges on the psychological 
burden, such as anxiety and depression, which have a significant 
impact on patients’ life quality and motivation for treatment. 
Comorbidities, such as insomnia and neurotic disorders, will develop 
into a chronic inflammatory response that affects cardiovascular, 
cerebral, respiratory, and GI health. Therefore, strengthening 
emotional support for older patients with comorbidity is an 
indispensable part of their treatment. This not only helps to reshape 
their confidence but also significantly improves their cooperation and 
ensures the effectiveness of treatment plans. For patients presenting 
with severe emotional disturbances, it is recommended that close 
collaboration with psychologists be  established to implement 
psychological interventions and emotional relief strategies. 
Furthermore, self-management plays an active role in maintaining 
health conditions. Patients are encouraged to learn basic disease 
mechanisms and how to utilize medical tools to regularly monitor 
their health data, such as heart rate, blood pressure, blood glucose, 
and uric acid, to take immediate action to any potential 
health problems.

4.8 Implications and potential policy 
actions

Shanghai is a typical region in China facing comorbidity 
challenges. The network analysis is an effective approach for public 
health practitioners to quickly identify potential comorbidity patterns 
among the target population and then take action to reduce risk 
factors of disease development. This study discovered pre-existing 
comorbidity patterns and unusual ones, providing evidence to 
strengthen more effective management strategies. New-identified 
patterns may draw more attention from practitioners for the 
development of novel technology and strategies to monitor and 
prevent risk factors. Currently, China is implementing community-
based primary medical services. It offers free screening for common 
chronic diseases such as T2DM, ICH, and GI diseases. Patients with 
T2DM could have additional screenings on thyroid function, uric acid 
levels, and sleeping quality. In addition, residents are encouraged to 
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enroll in the family doctor program. Family doctors are suggested to 
provide personalized medical consultations regarding the potential 
comorbidity patterns older adults may have, helping them strengthen 
comorbidity monitoring, arrange appropriate follow-up visits, and 
maintain good mental health. These actions aim to prevent and slow 
down the development of comorbidity and reduce any further medical 
burden for both patients and the public health system.

4.9 Limitations

The dataset was derived from cross-sectional medical records, so 
it is not appropriate to conclude causality. There were no covariates, 
such as educational level, smoking, and drinking alcohol, including 
for data analysis because medical records did not contain such 
information. In addition, some diseases were initially categorized 
vigorously in ICD-10. In this case, the final subjects included in some 
disease groups might be less than or more than expected, which leads 
to bias in the analysis. Moreover, the results only represented some 
general comorbidity patterns in the region of Shanghai, which lacked 
normality across the whole target population in China. Therefore, the 
implications for disease control could only be  applied within the 
specific region.

5 Conclusion

The visualized analysis revealed that the most two prevalent 
comorbidity patterns among the study population were dominated 
by IHD and gastritis, followed by a ternary pattern of hypertension, 
T2DM, and LMD. Men are more likely to simultaneously have 
cardiovascular and sleep problems than women when they suffer 
from the top five prevalent diseases, whereas thyroid disease, chronic 
inflammatory diseases, and hyperuricemia are more commonly 
comorbid within women. By monitoring vital signs, such as heart 
rate, blood pressure, blood glucose, hepatic and renal function, and 
inflammatory markers, and their influencing factors within 
comorbidity patterns, healthcare professionals may take immediate 
actions toward the potential onset of comorbidity. Furthermore, it is 
vital to pay more attention to the mental health of patients who suffer 
from long-term chronic diseases and undergo complex treatment 
over a long period. Given the accelerating aging problem in Shanghai, 
it is insufficient to intervene after diseases occur. Early detection and 
prevention strategies are also necessary to control the onset, 
progression, and mortality rates. This study provided a general 
insight into the current comorbidity situation among older adults in 
Shanghai and suggestions on prevention strategies, which may help 
control the prevalence of chronic diseases.
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