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Background: Serum neurofilament light chain (sNfL) has demonstrate significant 
clinical value in quantifying neuronal injury. Concurrently, extensive evidence has 
linked metal exposure to neurotoxic effects. However, the potential association 
between metal exposure and circulating sNfL levels remains uninvestigated in 
population-based study.

Objective: We applied a novel unsupervised clustering method (k-medoids) 
incorporating blood metals concentrations to stratify the general U. S. population 
into different exposure profiles to investigate the association between metal 
exposure and sNfL levels.

Methods: We analyzed data from the 2013–2014 NHANES cycle, and 513 
participants were included in this study. Multivariate regression model, Bayesian 
kernel regression (BKMR) and quantile g-computation (QGC) were used to 
assess the relationship between individual and mixed metal exposure and sNfL.

Results: Multivariate regression revealed a significant positive association 
between blood cadmium concentrations and elevated sNfL levels in the overall 
population (β = 0.115, 95%CI: 0.039–0.190, p  = 0.003). Through exposure 
pattern recognition using unsupervised k-medoids clustering, participants were 
stratified into distinct exposure subgroups: a high-exposure cluster (n = 326) 
and a low-exposure (n  = 187) reference group. BKMR modeling within the 
high-exposure group identified cadmium as the dominant contributor to sNfL 
elevation, with stronger effects in male participants (β = 0.201, 95%CI: 0.087–
0.315) and individuals with BMI > 25 kg/m2 (β = 0.178, 95%CI: 0.062–0.294).

Conclusion: This study provides systematic evidence that blood cadmium 
concentration can be used as the predominant driver of early neuronal injury, as 
objectively quantified through sNfL biomarker.
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1 Introduction

Neurofilament (Nf) is a major structural protein involved in 
maintaining neuronal specificity. It comprises four subunits, 
including the neurofilament light chain (NfL) (1). When axonal 
damage or neuronal degeneration occurs, NfL is released in large 
quantities. The rupture of the axonal membrane leads to the 
release of NfL into the interstitial fluid, which eventually reaches 
the cerebrospinal fluid (CSF) and blood (2). This makes it possible 
to detect and measure NfL levels in the CSF and blood, serving as 
a biomarker for axonal damage and neuronal degeneration. NfL 
has been associated with various neurological diseases such as 
amyotrophic lateral sclerosis (3), frontotemporal dementia (4), 
and progressive supranuclear palsy (5). In multiple sclerosis, NfL 
levels have been shown to be  a crucial predictor of disease 
progression and cerebrospinal atrophy (6). Notably, serum NfL 
(sNfL) levels correlate with disease severity and progression and 
have prognostic and diagnostic value in clinical practice. For 
example, different subtypes of frontotemporal dementia are 
associated with different levels of NfL (7). In Alzheimer’s disease, 
elevated levels of sNfL often accompany network uncoupling and 
cognitive decline (8).

Despite technological advances (9, 10), escalating heavy metals 
contamination from accelerated industrialization, climate change and 
environmental pollution drive widespread daily exposure exceeding 
global safety thresholds, particularly in developing countries (11). 
Exposure to environmental toxicants, including metal pollution, has 
been shown to have detrimental effects on neurological function (12). 
Heavy metals such as cadmium, lead, manganese, copper, and mercury 
are known neurotoxicants and pose significant risks to neuronal 
function (13, 14). Animal studies have shown that subacute exposure to 
dissolved cadmium and cadmium nanoparticles can lead to apparent 
neurological impairment in rats (15). Cadmium-induced 
neurodegeneration and cognitive impairment are associated with 
oxidative stress, which reduces neuronal differentiation and axon 
genesis, resulting in nerve damage and neuronal cell death (16). 
Low-level lead poisoning has been linked to reduced subcortical brain 
structures and cognitive deficits, as evidenced by a cohort study of 9–10-
year-old participants in the United States (17). Manganese, as a transition 
metal, can participate in redox reactions, and manganese-induced 
oxidative damage has been linked to neuronal degeneration (18). Zinc 
can provide neuroprotection in spinal contusion model by modulating 
the NLRP3 inflammasome through autophagy and ubiquitination 
mechanisms (19). While existing occupational cohort studies and 
animal models have elucidated the mechanisms of single-metal toxicity, 
critical knowledge gaps persist regarding mixed-metal exposure effects 
in general population. Current research face two fundamental 
challenges: (1) The inherent complexity of environmental exposure 
matrix, where real-world populations encounter concurrent multi-metal 
exposures, but most studies have focused on isolated contaminants, 
ignoring potential synergistic or additive effects. (2) Insufficient 
investigation of potential supra-additive or synergistic neurotoxic 
interaction. To address these critical knowledge gaps, we presented an 
innovative exposure framework that synergistically integrates 
unsupervised machine learning with advanced mixture exposure 
analytics [including BKMR and (QGC), using the National Health and 
Nutrition Examination Survey (NHANES 2013–2014)] data to quantify 
the neurotoxic effects of multi-metal co-exposure on sNfL levels.

2 Methods

2.1 Study population

The National Health and Nutrition Examination Survey 
(NHANES) is a research program to assess adult’s and children’s 
health and nutritional status in the United States. We used cross-
sectional data from NHANES 2013–2014 cycles for our analysis. 
NHANES employed a complex multistage probability sampling 
strategy to select a sample of civilian, non-institutionalized 
individuals to enhance representativeness. The NCHS Research 
Ethics Review Committee carefully reviewed the NHANES 
protocol, and each participant provided written consent before 
study participation. These rigorous ethical protocols and procedures 
uphold the highest scientific standards of integrity and safeguard 
the rights and welfare of research participants. Our study 
investigated the relationship between mixed metal exposure and 
sNfL levels in a diverse and nationally representative sample of the 
U. S. population.

The data from NHANES 2013–2014 was analyzed, and the 
10,175 participants were screened. We merged the databases based 
on the unique identity of the survey subjects. After merging the 
databases, we excluded 9,662 who had missing data in drinking, 
smoking, neurofilaments light chain data and blood metal 
measurements. Finally, 513 survey subjects were included in the 
study (Figure 1).

2.2 Measurement of serum sNfL

Detection of sNfL involves using a highly sensitive immunoassay 
developed by Siemens Healthiness. This process utilizes acridine 
chemiluminescence and paramagnetic particles and runs on an 
existing high-throughput automation platform.

First, samples are incubated with antibodies labeled with AE 
and bind to the sNfL antigen. Then, paramagnetic particles coated 
with the captured antibody are added to the sample to form a 
complex that binds the antigen to the AE-labeled antibody and 
PMP. Unbound AE-labeled antibodies are then isolated and 
removed. Finally, acids and bases are added to induce 
chemiluminescence, and the luminescence is measured. This 
entire process is performed on a fully automated Attelica 
immunoassay system.

2.3 Measurement of blood metals

The blood samples were stored at −30°C until transported to the 
National Centre for Environmental Health for testing. The 
concentrations of lead (Pb), cadmium (Cd), total mercury (Hg), 
manganese (Mn), and selenium (Se) in whole blood were detected 
using inductively coupled plasma mass spectrometry. In addition, 
serum was collected and stored at −20°C for analysis of copper (Cu) 
and zinc (Zn) using inductively coupled plasma Dynamic Response 
cell mass spectrometry (ICP-DRC-MS).

Detailed data declarations for blood heavy metal testing can 
be found at: https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/PBCD_J.
htm-Analytic_Notes.
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2.4 Covariates

The 15 covariates that may be associated with sNfL and blood 
metal were chosen based on previous research (20–22), including age, 
sex, race, educational status, marital status, family income to poverty 
ratio, BMI, smoking, alcohol consumption, physical activity, urinary 
creatinine level, hypertension, depression, cardiovascular disease, and 
hyperuricemia. Smoking was defined by a self-report questionnaire 
and categorized as never smoked (Participants answering “No” to the 

question, “Smoked at least 100 cigarettes in life”), ever smoked 
(Participants answering “Yes” to the question, “Smoked at least 100 
cigarettes in life” and answering “Not at all” to the question,” Do 
you  now smoke cigarettes?”) and current smoker (Participants 
answering “Yes” to the question, “Smoked at least 100 cigarettes in life” 
and answering “Every day” to the question,” Do you  now smoke 
cigarettes?” or Participants answering “Yes” to the question, “Smoked 
at least 100 cigarettes in life” and answering “Some days” to the 
question,” Do you  now smoke cigarettes?”). Hypertension will 

FIGURE 1

T-SNE visualized k-medoids from 513 NHANES subjects based on metals in blood, with the number of clusters set from 2 to 7, respectively.
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be  defined based on participants’ self-report (answer “yes” to the 
question “ever been told I have hypertension”) or report current use 
of anti-hypertensive medication (participants answer “yes” to the 
question “taking a prescription for hypertension”). If participants 
reported drinking alcohol (participants answered “Yes” to the question 
“Have you had at least 12 drinks per year?” by responding “yes” to the 
question), then they will be defined as having consumed alcohol. The 
definition of physical activity will be based on participants’ self-reports 
(answering “yes” to the question, “Do you engage in at least 10 min of 
continuous exercise during the week, or do you  engage in any 
moderate-intensity exercise that causes slight increases in breathing 
or heart rate for at least 10 min continuously during the week?”). 
Hyperuricemia is defined as (LBXSUA ≥ 7 in males and LBXSUA ≥ 
6  in females). The definition of depression will be  based on the 
quantitative score obtained from a depression screening tool. A score 
of 10 or higher will be defined as depression or depressive tendencies. 
The definition of cardiovascular disease will be based on participants’ 
self-reports (answering “yes” to the question “Have you ever been told 
you have congestive heart failure/coronary heart disease/angina/heart 
disease/stroke?”) and will be defined as having cardiovascular disease.

2.5 Unsupervised cluster analysis process

We employ the unsupervised clustering method K-medoids to group 
the research objects (23, 24). The K-medoids algorithm differs from the 
K-means algorithm in that it uses the most central objects in the cluster, 
known as the medoids, as reference points. This algorithm shares similar 
procedural steps with K-means but serves as an enhancement and 
optimization of the K-means method. Notably, K-medoids must select 
the sample point each time it chooses the center of mass, while K-means 
can select the center of mass from points other than the sample point, 
akin to the distinction between the median and the mean. The focus of 
K-medoids lies in the selection of centroids.

The criterion function for selecting the cluster centroid is to 
minimize the sum of distances from all other points in the current 
cluster to that centroid, necessitating the traversal of all points in the 
cluster (25). The steps of the K-medoids algorithm are as follows:

(1) Arbitrarily select k points to serve as the medoids. (2) Based on the 
principle of proximity to the medoids, assign the remaining points to the 
class represented by the best current medoids. (3) Calculate the criterion 
function corresponding to each member point within each class and select 
the points with the smallest criterion function as the new medoids. (4) 
Repeat the process of steps 2–3 until the medoid points no longer change or 
the maximum number of iterations is reached.

2.6 Statistical analysis

Continuous variables were presented as mean and standard deviation 
(Mean ± SD), while categorical variables were expressed as the number 
of cases (n) and percentage (%). To ensure normal distribution, the blood 
metal levels were log-transformed. The relationship between blood 
metals and sNfL levels was analyzed using multiple linear regression. 
Each blood metal was treated as a separate predictor in the regression 
models to evaluate their relationship with sNfL levels in a representative 
US population. Two models (Model 1 and Model 2) were used to ensure 
model stability. Model 1 did not adjust for any covariates, while Model 2 
included all covariates. We  then used the unsupervised clustering 

method, k-medoids, to divide the population into subgroups based on 
the concentration of mixed metal in the samples, thereby dividing the 
high-exposure and low-exposure groups. Due to the limitations of linear 
regression methods in dealing with high-dimensional data and nonlinear 
exposure-outcome relationships, Bayesian kernel-machine regression 
(BKMR) and quantile g-computation (QG-C) methods were used to 
estimate the effects of mixed-metal exposures on sNfL levels in different 
exposure groups. The BKMR models generated posterior incorporation 
probabilities (PIPs) ranging from 0 to 1, indicating the relative 
contribution of each blood metal to sNfL levels. The QGC model uses 
quantum g-computing to estimate the weights of ψ and assess the degree 
of violation of the directional homogeneity assumption. In addition, the 
model can also be  used to assess the contributions of various 
environmental compounds (26).

This study demonstrated that the technique can reliably infer 
exposure effects across the mixture and determine the contribution of 
individual components without assuming directional homogeneity. 
All statistical analyses were performed using STATA (version 15.1) 
and R software (version 4.2.2).

3 Results

3.1 Unsupervised clustering and population 
classification

Based on the levels of multiple heavy metals in the blood, the 
K-medoids unsupervised clustering algorithm was employed to identify 
high and low exposure groups within the study population. T-SNE is a 
nonlinear dimensionality reduction technique that can embed high-
dimensional data into two or three-dimensional space and is also 
utilized as a machine learning algorithm for cluster visualization (27).

Figure 1 demonstrates the T-SNE visualization of k-medoids from 513 
NHANES subjects based on the metal content of their blood, with the 
number of clusters set from 2 to 7, respectively. And the results of T-SNE, 
which are shown in Figure 2, demonstrate that 326 subjects were classified 
into the high exposure group, while 187 subjects were classified into the low 
exposure group based on the content of heavy metals in their blood. 
Additional information on the centers of mass for the two subgroups based 
on the metal mixtures in blood or urine can be found in Table 1.

3.2 Demographic characteristics

K-medoids clustering classified participants into a high-exposure 
group (n = 326, 63.6%) and a low-exposure group (n = 187, 36.4%). 
T-SNE visualization confirmed clear separation between groups 
(Figure  2A). The high-exposure group exhibited elevated blood 
cadmium (1.63 vs. −0.25 log-transformed units) and lead (0.21 vs. 
−0.40) levels (Table 1). There were significant differences (p < 0.01) 
between the high and low exposure groups in terms of age distribution, 
race, marital status, BMI index, smoking and drinking, as well as the 
presence of cardiovascular and cerebrovascular diseases. Specifically, 
the high exposure group had a higher proportion of non-older adult 
individuals (90.5% vs. 76.5%) and non-smokers (70.6% vs. 20.9%) 
compared to the low exposure group. Table 2 presents the participants’ 
demographics and individual characteristics.

To assess participants’ exposure to blood metals, we summarized 
the distribution and frequency of detection of these metals. 
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Supplementary Table S1 presents the percent detectable, geometric 
mean, weighted mean, and percentage of detectable blood metals 
with detection levels greater than or equal to the LOD for the seven 
blood metals. At the same time, Supplementary Figure S1 shows the 
correlation heat maps of seven blood metals, indicating that the 
correlation between the most metals is not statistically significant. 
The participant screening process chart shows that we matched the 
survey subjects to the database based on their unique identifiers and 
ultimately included 513 survey subjects, which were then divided into 
a high exposure group (n = 326) and a low exposure group (n = 187) 
based on unsupervised clustering (Figure 3).

3.3 Associate between single metals and 
sNfL using multiple linear regression

In Figure  4, the multivariate regression results examining the 
associations between individual blood metals and sNfL are presented. 
In the unadjusted model, significant correlations were found between 

both blood Cd and Pb levels and sNfL. Comparing the highest tertile 
concentration to the lowest tertile, each 1 standard deviation (SD) 
increment in blood Cd was associated with a significant increase of 
0.159 pg./mL in sNfL (95% CI: 0.170–0.459, p = 0.000). Similarly, each 
1 SD increase in blood Pb was associated with a significant increase of 
0.154 pg./mL in sNfL (95% CI: 0.175–0.467, p = 0.000). After adjusting 
for all covariates, the statistical association between Pb and sNfL levels 
remained significant. The effect size per SD increase in blood Cd was 
0.115 pg./mL (95%CI: 0.083–0.387, p = 0.003) when comparing to the 
highest tertile.

3.4 The effects of different exposure 
groups using the BKMR model

In this study, the BKMR model revealed a statistically significant 
positive correlation between co-exposure to the seven blood metals 
and sNfL levels when metal exposure was set at the 50th percentile 
in the high-exposure group. However, no such correlation was 
observed in the low-exposure group (Figure  5). 
Supplementary Table S2 provides a summary of groupPIP and 
condPIP for each metal, with the second group having the highest 
groupPIP (PIP = 0.955) and blood Cd showing the most significant 
contribution (condPIP = 1.000), suggesting it may play a crucial role 
in the association with sNfL.

Univariate exposure-response functions of single metals with 
sNfL levels showed significant positive dose–response curves for 
blood Pb, blood Cd, and blood Cu when we set the exposures to the 
other metals at the median value (Figure 6).

We also explore the interaction between blood metals using the 
BKMR package, fixing them at the 50th percentile and plotting the 
bivariate exposure-response functions for each metal at the 25th, 50th, 
and 75th percentiles. Results showed that the slope of the bivariate 
reaction function for any given blood metal remains constant across 

FIGURE 2

(A) T-SNE visualized k-medoids from 513 NHANES subjects based on metals in blood, with the number of clusters set to 2 and the upper half high 
exposure and the lower part low exposure. (B) The process for determining the optimal number of clusters for k-medoids using mean contour width 
as a metric and the elbow method as a criterion is described below.

TABLE 1 The central mass of the two exposure groups after logarithmic 
transformations based on the metal mixtures in the blood.

Metals Low-exposure 
(group 1)

High-exposure 
(group 2)

Blood Pb −0.397 0.210

Blood Cd −0.253 1.631

Blood Hg −0.386 0.002

Blood Mn 2.206 2.262

Blood Se 5.262 5.293

Serum Cu 4.749 4.777

Serum Zn 4.483 4.456
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the different quantiles of other blood metals, suggesting no potential 
interaction between the various metals (Supplementary Figure S2).

The univariate effect plot in BKMR illustrates that, the exposure 
to Cd exhibits a statistically significant positive association with sNfL, 
when controlling other metal exposures at levels of 0.25, 0.5, and 0.75 
content (Supplementary Figure S3).

3.5 Subgroup stratified and interaction 
analysis

The results of multiple linear regressions in 
Supplementary Tables S3–S5 suggests that exposure to a mixture of 
metals may cause more nerve damage in male, and overweight 
groups. The stratified analysis by gender, age, and BMI based on the 
BKMR model identified significant positive trends in the male and 
overweight groups (Figure 7).

3.6 The effects of different exposure 
groups using QGC analysis

The QGC model in Figure 8A1 revealed a significant positive 
correlation between mixed metal exposure and sNfL in the high 
exposure group (p < 0.001), while no statistical significance was 
observed in the low exposure group. This results was consistent with 
those of the BKMR model. Figure 8B displays the relative weights of 
each metal in relation to sNfL. In the high-exposure group, the 
negative weights of metals Mn, Zn, and sNfL were the largest, 

TABLE 2 Demographic and individual characteristics of the study 
population.

Low 
exposure 
(N = 187)

High 
exposure 
(N = 326)

p-value

Age group [n(%)]

  20 ~ 60 years 127 (67.9%) 258 (79.1%) 0.006**

  Over 60 years 60 (32.1%) 68 (20.9%)

Sex [n(%)]

  Male 104 (55.6%) 167 (51.2%) 0.386

  Female 83 (44.4%) 159 (48.8%)

Race [n(%)]

  Mexican American 16 (8.6%) 63 (19.3%) 0.004**

  Other Hispanic 14 (7.5%) 37 (11.3%)

  Non-Hispanic White 98 (52.4%) 150 (46.0%)

  Non-Hispanic Black 38 (20.3%) 47 (14.4%)

  Other race—including 

multi-racial

21 (11.2%) 29 (8.9%)

Marital status [n(%)]

  Married/living with 

partner

97 (51.9%) 204 (62.6%) <0.001***

  Never married 35 (18.7%) 76 (23.3%)

  Widowed/divorced/

separated

55 (29.4%) 46 (14.1%)

Education level [n(%)]

  Under high school 43 (23.0%) 52 (16.0%) 0.011*

  High school or equivalent 48 (25.7%) 63 (19.3%)

  Above high school 96 (51.3%) 211 (64.7%)

Ratio of family income to poverty [n(%)]

  Poverty 53 (28.3%) 64 (19.6%) 0.031*

  Above poverty 134 (71.7%) 262 (80.4%)

Smoking [n(%)]

  Smoking 148 (79.1%) 96 (29.4%) <0.001***

  No smoking 39 (20.9%) 230 (70.6%)

Drinking [n(%)]

  Less than 12 alcoholic 

beverages/1 year

143 (76.5%) 295 (90.5%) <0.001***

  12 alcoholic 

beverages/1 year or more

44 (23.5%) 31 (9.5%)

Exercise [n(%)]

  Not exercising regularly 106 (56.7%) 151 (46.3%) 0.030*

  Exercise regularly 81 (43.3%) 175 (53.7%)

Hypertension [n(%)]

  Yes 76 (40.6%) 100 (30.7%) 0.028*

  No 111 (59.4%) 226 (69.3%)

Depression [n(%)]

  Yes 21 (11.2%) 22 (6.7%) 0.110

  No 166 (88.8%) 304 (93.3%)

(Continued)

TABLE 2 (Continued)

Low 
exposure 
(N = 187)

High 
exposure 
(N = 326)

p-value

Diabetes [n(%)]

  Healthy 165 (88.2%) 283 (86.8%) 0.742

  Diabetes 22 (11.8%) 43 (13.2%)

Cardiovascular disease [n(%)]

  Yes 27 (14.4%) 17 (5.2%) <0.001***

  No 160 (85.6%) 309 (94.8%)

Nonalcoholic fatty liver disease [n(%)]

  Yes 94 (50.3%) 196 (60.1%) 0.038*

  No 93 (49.7%) 130 (39.9%)

Hyperuricemia [n(%)]

  Yes 42 (22.5%) 67 (20.6%) 0.692

  No 145 (77.5%) 259 (79.4%)

BMI index [n(%)]

  Mean (SD) 3.30 (0.238) 3.36 (0.223) 0.003**

  Median [min, max] 3.29 [2.83, 4.14] 3.34 [2.90, 4.25]

Urine creatinine [n(%)]

  Mean (SD) 4.52 (0.763) 4.55 (0.660) 0.74

  Median [min, max] 4.60 [1.61, 6.30] 4.61 [2.40, 6.05]

*P < 0.05; **P < 0.01; ***P < 0.001. P-t, p-value for trend.
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whereas the positive weights of metals Pb and Cd, along with sNfL, 
ranked the first and second in magnitude, respectively (Figure 8B1).

4 Discussion

We discovered a significant association between mixed metal 
exposure and the levels of sNfL, a novel neurological injury marker, in 
the high-exposure group identified through unsupervised population 
stratification. This finding not only validates the effectiveness of 
unsupervised population stratification but also supports the link between 
metal exposure and the novel neurological injury marker, sNfL.

Furthermore, we found that serum sNfL levels (a marker of nerve 
damage) were significantly elevated in people with mixed exposures 
to heavy metals such as lead, cadmium, and copper, especially in men 
and in the general U. S. population with a body mass index greater 
than 25. Evidence from this study provides more valid, realistic, and 
generalizable findings on the neurological impacts of mixed metal 
exposures in the general population. Previous studies have primarily 
explored the effects of single metal exposure on neurological function 

in only a few occupation-specific populations (22). To date, no 
research has investigated the impact of mixed metal exposure on 
neurological damage in general and representative populations. 
Therefore, this study fills a gap in the existing literature.

Previous research on the mechanisms of metal exposure-induced 
nerve damage has shown that such damage is primarily through 
oxidative stress (28, 29) and neuroinflammatory pathways (30). For 
example, cadmium induces oxidative stress by altering oxidoreductase 
levels leading to increased reactive oxygen species (ROS) levels. This 
activation, in turn, stimulates the JNK and Erk1/2 pathways, resulting 
in neuronal apoptosis, particularly in PC12 and SH-SY5Y cells (31, 
32). Cadmium enters into neurons through voltage-gated calcium 
channels, leading to Syn accumulation, increasing the levels of 
pro-inflammatory cytokines (IL-6 and TNF-α), decreasing the levels 
of the anti-inflammatory cytokine IL-10, and finally leading to 
neuroinflammation. These events lead to neuronal cell damage and 
degeneration (33, 34).

The toxicity of metallic lead also arises from oxidative stress (35, 
36). High levels of lead cause the production of reactive oxygen and 
nitrogen species and deplete antioxidants (37). As lead binds 

FIGURE 3

Flowchart for the selection of eligible participants.
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directly to glutathione reductase, which contains thiol groups, 
glutathione—the primary antioxidant in the human body-is 
significantly reduced, thereby indirectly accelerating oxidative 
stress, eventually leading to neuronal damage and degeneration 
(38). Manganese acts as a transition metal in redox reactions and 
induces neuronal cell damage through nitrosylation of PINK1-S, 
inhibiting mitochondrial production by ZNF746, resulting in 
mitochondrial dysfunction (39, 40). Therefore, metals may 
contribute to neuronal damage through these pathways, leading to 
an elevation in the levels of sNfL.

Generally, individuals are often exposed to multiple metals in the 
environment rather than a single metal. We utilized BKMR and QGC 
to evaluate the impact of mixed metal exposure on sNfL levels in the 
general US population. In the BKMR, there was a significant positive 
correlation between co-exposure to the seven blood metals and sNfL 
levels in the highly exposed group, and subgroup analysis also 
revealed positive trends in males and overweight. Mixed exposures 
are a more accurate reflection of the reality of population exposure 
patterns. For instance, a cohort study of adult males in North China, 
which explored the effects of multiple heavy metal co-exposures, 

FIGURE 4

Multivariate regression results result of individual metals and sNfL. (A) Unadjusted model. (B) Adjusted for age group, sex, race, marital status, BMI index, 
smoking, drinking, exercise, education level, marital status, ratio of family income to poverty, urine creatinine, hypertension, depression, cardiovascular 
disease, and hyperuricemia. *p < 0.05; **p < 0.01; ***p < 0.001.
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revealed that exposure to a mixture of seven essential metals, 
including calcium, copper, iron, magnesium, manganese, selenium, 
and zinc, in the blood was associated with a greater risk of NAFLD 
compared to exposure to a single metal (41). Thus, our analysis of 
mixed exposure to metal–metal in high and low exposure groups, 
following grouping by unsupervised clustering, is a more realistic 
analytical approach.

Numerous studies have provided evidence that metal-induced 
damage is more pronounced in males, primarily as a result of work-
related factors. For instance, Wang et al. (42) conducted a study on 
male mice and found that exposure to cadmium impaired 
hippocampus-dependent learning and memory. Furthermore, a 
retrospective cohort study involving miners from Ontario, Canada, 
demonstrated that male miners exposed to respirable metal dust had 

FIGURE 5

The overall effect of the metal mixture in the BKMR model. (A) High exposure group as determined by k-medoids clustering. (B) Low exposure group 
as determined by k-medoids clustering.

FIGURE 6

Univariate exposure-response functions (95% CrI) for a single metal associated with sNfL levels when other blood metals were fixed to the median.
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an elevated risk of developing neurodegenerative diseases (43). 
Additionally, a study by Rundong Liu revealed that combined 
exposure to lead and a high-fat diet exacerbated cognitive decline 
through the CREB-BDNF signaling pathway in male rats (42), which 
aligns with our findings and adds weight to our conclusions.

In the subgroup of individuals with a BMI > 25, there was a 
significant positive correlation between metal exposure and sNfL 
levels. Animal experiments that exposure adult male Sprague–Dawley 
rats to high doses of Cd demonstrated substantial accumulation of the 
metal in adipose tissue (AT), particularly in subcutaneous AT 

(SUB-AT) (44), suggesting that overweight individuals may be  at 
higher risk of nerve damage caused by metal exposure. This is because 
Cd can accumulate in adipose tissue and subsequently enter the 
bloodstream, where it may produce harmful effects on the nervous 
system (45). These findings suggest that individuals with higher BMI 
may have an increased vulnerability to the neurological effects of metal 
exposure due to the accumulation of metals in adipose tissue. However, 
further research is needed to fully understand the mechanisms 
underlying this association and to determine the specific impacts of 
metal exposure on neurological health in overweight individuals.

FIGURE 7

The BKMR results for mixed metal exposure and sNfL levels in different subgroups were stratified and analyzed in the highly exposed group. (A) Sex (A1: 
Male, A2: Female); (B) age (B1: over 60 years, B2: under 60 years); (C) BMI (C1: over 25 kg/m2, C2: under 25 kg/m2).
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The QGC model also revealed a significant positive relationship 
between mixed metal exposures and sNfL levels, with zinc having the 
highest negative weight, highlighting the protective effect of elevated 
zinc levels on neurological damage (46). In contrast, cadmium and sNfL 
levels exhibited the highest positive consequences, which were consistent 
with the results of BKMR and multiple linear regression models. These 
observations demonstrate the robustness and validity of our study.

This study has several noteworthy limitations. Firstly, the cross-
sectional design inherently limits our ability to establish causal inferences 
between metal exposures and sNfL dynamics. Future research should 
employ prospective longitudinal cohorts with repeated biomonitoring to 
delineate the temporal relationships and dose–response trajectories. 
Secondly, our analysis relied on U. S. national survey data (NHANES 
2013–2014), which currently provides the only publicly available sNfL 
measurements. While we will incorporate updated data upon their release 
in future investigations, this temporal constraint limits generalizability to 
contemporary exposure patterns. Thirdly, single-timepoint blood metal 
measurements may inadequately reflect cumulative exposure burden. 
Future work should incorporate multi-matrix biomarkers (e.g., urinary 
metals, toenail biomarkers) to better characterize long-term exposure 
profiles. Fourthly, although we adjusted for major confounders, residual 
confounders from unmeasured factors (e.g., dietary zinc intake, genetic 
polymorphisms in metal transporters) remains possible. Future studies 

should incorporate comprehensive nutritional assessments and 
pharmacogenetic analyses to address these potential biases. Finally, the 
unsupervised clustering analysis relies on machine-learning algorithms, 
and the specific analysis mechanism is closely related to the distribution 
of the data, which may cause some bias, and a combination of methods is 
needed to subsequently validate the results.

These methodological and empirical breakthroughs yield two 
practical applications: (1) biomarker-driven surveillance: The 
established sNfL response thresholds (0.15–0.20 ln [pg/mL] per μg/L 
Cd increase) provide quantitative biomarkers for monitoring 
preclinical neurological damage in occupational health surveillance 
programs, and (2) precision intervention: The identified susceptibility 
factors (sex-specific metabolism and adiposity-mediated metal 
retention) enable precision prevention strategies targeting high-risk 
subgroups. Collectively, our findings bridge critical knowledge gaps 
between environmental epidemiology and clinical neurology by 
mechanistically linking metal exposure patterns to quantifiable neural 
injury biomarkers, while establishing a reproducible paradigm for 
investigating complex mixture effects in population health studies.

Building upon these findings, several critical research priorities 
emerge. First, prospective cohort studies incorporating repeated 
biomonitoring are imperative to establish temporal causality between 
metal exposure and sNfL, particularly in high-risk subgroups such as 

FIGURE 8

Analysis results of the QGC model. (A) The joint effects of mixed metal exposure on sNfL levels by QGC (A1: High exposure, A2: Low exposure); 
(B) Weight of each t metal with sNfL levels by QGC (A1: High exposure, A2: Low exposure).
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men and individuals with obesity. Furthermore, our findings in men and 
overweight populations suggest occupational exposure and adipose 
tissue-mediated metal retention mechanisms, future studies should 
explore these pathways through in  vitro models and tissue-targeted 
metabolomics. Second, integration of multi-omics approaches (e.g., 
metabolomics and epigenomics) may reveal the biological mechanistic 
pathways linking cadmium exposure to axonal damage. Third, 
expanding exposure assessment to include urine metals and specimen 
analysis will improve the accuracy of risk characterization. Finally, 
targeted interventions (e.g., zinc supplementation trials) and more 
stringent regulatory policies for industrial emissions should be prioritized 
to reduce neurotoxicity risk. Future collaboration between epidemiology, 
toxicology, and data science needs to be strengthened, which is critical 
for translating these findings into actionable public health strategies.

5 Conclusion

This study presents the first integration of population stratification 
through co-exposure modeling with advanced mixture analysis, yielding 
three critical advances in environmental health research. First, our 
innovative methodology overcomes the limitations of conventional 
single-pollutant models by capturing complex real-world exposure 
patterns, with the combined application of unsupervised clustering and 
traditional mixture analysis representing a novel methodological 
contribution to exposure science. Second, the identification of high-risk 
demographic clusters - particularly males and individuals with obesity - 
provides epidemiologically validated targets for precision public health 
interventions. Third, we  established cadmium and lead as priority 
hazardous metals for neurological damage, with mechanistic 
implications extending beyond established toxicity pathways. These 
findings enable evidence-based prioritization of regulatory monitoring 
frameworks and clinical surveillance protocols, offering a translational 
roadmap for detecting subclinical neurological effects and implementing 
primary prevention strategies in vulnerable populations. The combined 
methodological and substantive advances significantly enhance our 
capacity to address the growing global challenge of mixed 
metal exposures.
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