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Background: In China, coronary heart disease (CHD) is a significant public health

issue a�ecting the population’s health. Evidence suggests that outdoor PM2.5 is

a crucial environmental risk factor for CHD mortality. This study aims to provide

scientific evidence for the prevention and treatment of CHD by analyzing the

trend of CHD mortality attributed to outdoor PM2.5 in China from 1994 to 2019.

Methods: Data were obtained from the Global Burden of Disease Study (GBD)

2019. CHDmortality attributed to outdoor PM2.5 in China from 1994 to 2019was

extracted from the GBD Data tool. We used an age-period-cohort (APC) model

based on the intrinsic estimator (IE) algorithm to decompose the age, period, and

cohort e�ects related to CHD mortality attributed to outdoor PM2.5.

Results: From 1994 to 2019, the crude mortality rates (CMRs) and age-

standardized mortality rates (ASMRs) of CHD attributed to outdoor PM2.5

in China showed an overall upward trend. The APC model analysis showed

that the relative risk of CHD mortality attributed to outdoor PM2.5 increased

exponentially with age, reaching 89.284 (95% CI: 48.669, 163.793) in the 90–95

age group. The period e�ect increasedmonotonically, with a relative risk of 3.699

(95% CI: 3.639, 3.760) in 2019. The cohort e�ect decreased monotonically, with

the lowest relative risk of CHDmortality attributed to outdoor PM2.5 in residents

born between 1990 and 1994, at 0.135 (95% CI: 0.031, 0.588).

Conclusion: The older adult, a high-risk population, should receive more

attention. In the future, continuous e�orts should be made to strengthen

environmental air pollution control and implement targeted health interventions

to reduce the impact of outdoor PM2.5 on CHD mortality.
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1 Introduction

Coronary heart disease (CHD), also known as ischemic heart

disease, is a chronic cardiovascular disease typically caused by

atherosclerosis of the coronary arteries, which leads to narrowing

or even occlusion of coronary arteries, resulting in myocardial

ischemia, hypoxia, or necrosis (1, 2). As a typical cardiovascular

disease (CVD), CHD is a leading cause of death worldwide (3). In

2015, there were∼400 million cases of CVD worldwide, with CHD

accounting for 27% of cases (4). The American Heart Association

predicts that the number of CHD cases worldwide may double

by 2030 (5). In China, CHD is the second leading cause of death

among residents, with nearly 20% of deaths attributable to CHD

(6). According to the latest data, there are currently 11.39 million

cases of CHD in China, with hospitalization costs reaching nearly

125.6 billion yuan (7). CHD has imposed a heavy medical burden

on Chinese families and society. Nowadays, with the increasing

aging population, CHD has become one of the important public

health issues affecting residents’ health.

Many previous studies have shown that particulate matter (PM)

with an aerodynamic diameter ≤2.5µm (PM2.5) is an important

environmental risk factor for CHD incidence and mortality (8–

11). The impact of PM2.5 on cardiovascular health of residents

should not be ignored. By analyzing data on air pollution and CHD

cases in Shanghai from 2006 to 2011, Dai et al. (12) found that

for every 10 µg/m3 increase in PM2.5 concentration, the CHD

mortality rate increased by 0.68%. Liu et al. (13) analyzed the

spatial and temporal trends of the health effects of air pollution

in China from 2004 to 2012 and found that in the areas with high

concentrations of PM2.5, such as the Beijing-Tianjin-Hebei region,

the Yangtze River Delta, and the Sichuan Basin, PM2.5 exposure

levels were positively associated with CHDmortality. In addition, a

study of 272 representative cities in China also found that for every

10 µg/m3 increase in the 2-day moving average concentration of

PM2.5, the CHDmortality rate increased by 0.30% (14).

However, there are some major problems with these

epidemiologic studies, which ignore patient age, period and

cohort effects, and do not portray well the influence of age, period

and cohort effects on changes in the association between PM2.5

and CHD risk. To address these limitations, this study employs an

age-period-cohort (APC) model to decompose the age, period, and

cohort effects of CHD mortality attributed to outdoor PM2.5 from

the data. We also analyze the long-term trends of CHD mortality

attributed to outdoor PM2.5. Our findings will contribute to a

better understanding of the epidemiology of CHD and provide a

scientific basis for the effective prevention and treatment of CHD.

2 Methods

2.1 Data source

The research data was sourced from the Global Health

Data Exchange (GHDx) (15), utilizing the latest Global Burden

of Disease Study (GBD) 2019 data for analysis. The database

comprehensively assessed the incidence, mortality, and disease

burden of 369 diseases and injuries across 204 countries and

regions (16). The original data for CHD mortality in China

was primarily obtained from the Chinese Center for Disease

Control and Prevention (CDC) Cause of Death Reporting System,

Disease Surveillance Points (DSPs), andMaternal and Child Health

Surveillance Network (17). CHD was diagnosed and identified

according to the clinical criteria of the World Health Organization

and the classification criteria of the International Classification of

Diseases Version 10 (ICD-10).

Estimates of ambient particulate matter pollution exposure

came from multiple sources, including satellite observations of

aerosols in the atmosphere, ground-based measurements, chemical

transport model simulations, population estimates, and land

use data (18). In the GBD study, ambient particulate matter

pollution was defined as the population-weighted annual mean

mass concentration of outdoor PM2.5 exposure (19). GBD

2019 estimated long-term ambient particulate matter pollution

exposure by combining satellite data, chemical transport model

simulation data with land-use information, and calibrating satellite

measurements with ground-based measurements using an air

quality data integration model.

To obtain data on CHD mortality attributed to ambient

particulate matter. First, GBD 2019 used population attributable

fraction (PAF) to obtain the number of CHD deaths attributed to

ambient particulate matter. This was then converted to a mortality

rate and standardized rates were calculated based on the global

standard population. The PAF represents the theoretical minimum

risk exposure level (TMREL) for ambient particulate matter. In

GBD 2019, the TMREL for ambient particulate pollution was

located at 2.4–5.9 µg/m3 (20).

According to the relevant procedures of the GHDx database,

we extracted CHD mortality data attributed to outdoor PM2.5

in China from 1994 to 2019 (21). The indicators included crude

mortality rates (CMRs) for all age groups and 25–94 year olds

in 5-year age groups, as well as age-standardized mortality rates

(ASMRs). It should be noted that age groups below 25 and above

94 were excluded. This is because the database lacks data for

age groups below 25, and the age group above 94 belongs to the

open interval, which does not meet the basic requirements of the

APC model.

2.2 Age-period-cohort model

CHD mortality attributed to outdoor PM2.5 not only reflects

the risk of death experienced by residents in a given year but

also accumulates the health risks they have faced since birth (22).

However, conventional statistical analysis methods were ineffective

in decomposing these death risks and health risks (23). The

APC model, as a popular statistical tool, can effectively solve

this problem. We used the APC model to extract information

hidden in age-adjusted mortality rates to estimate the age, period,

and cohort effects of CHD mortality attributed to outdoor

PM2.5. This allowed us to observe the independent effects of

age, period, and birth cohort on time trends in CHD mortality

attributed to outdoor PM2.5. The age effects represent the risks

associated with residents’ physiological aging. The period effects

represent changes in society, economy, and culture that lead to

similar changes in residents’ lives during the same period. The

cohort effects represent differences in lifestyle and exposure to
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risk factors, and residents born in the same year have similar

experiences in the same year (24, 25). The general form of the APC

model is:

M = γ + δXa + ρXp + τXc + ε (1)

In the equation, M represents the CHD mortality attributed

to outdoor PM2.5, while Xa, Xp, and Xc represent age, period,

and birth cohort, respectively. δ, ρ, and τ denote the age, period,

and birth cohort effects, and γ represents the constant term. ε

represents the residual.

The traditional APC model could not avoid the problem of

collinearity, making it difficult to accurately estimate the net effects

of each age group, period, and birth cohort (26). To address this

issue, Fu and Yang proposed the Intrinsic Estimator (IE) algorithm

(27, 28). This method has the characteristics of estimability and

unbiasedness, which can make the coefficients estimated by the

APC model robust and reliable. Therefore, we introduced the IE

algorithm based on the traditional APC model. The interference of

other factors was excluded.

2.3 Statistical methods

This study employed Stata 14.0 software (StataCorp, College

Station, TX, USA) to conduct APC model analysis, estimating

coefficients for age, period, and cohort effects, with statistical

significance defined as p < 0.05. Deviance, Akaike Information

Criterion (AIC), and Bayesian Information Criterion (BIC) were

used to evaluate model fit (22). Finally, the exponential value of

the coefficient [exp (coef) = ecoef] was calculated to represent the

relative risk (RR) of mortality for a given age, period, and birth

cohort compared to the average mortality rate (18).

3 Results

3.1 The overall trend in CHD mortality
attributed to outdoor PM2.5

Figure 1 illustrates the trends in CMRs and ASMRs of CHD

attributed to outdoor PM2.5 in China from 1994 to 2019. Overall,

ASMRs were higher than CMRs during the period from 1994 to

2012, while CMRs surpassed ASMRs from 2013 to 2019. ASMRs

significantly increased from 1994 to 2014, followed by a slight

decline from 2014 to 2019. In contrast, CMRs have shown an overall

upward trend since 1994.

3.2 Age, period, and cohort variations in
CHD mortality attributed to outdoor PM2.5

Figure 2 shows the trends of age-specific CHD mortality

attributed to outdoor PM2.5 in 1994, 1999, 2004, 2009, 2014, and

2019. The CHDmortality attributed to outdoor PM2.5 exhibited an

exponential distribution with age, with a significantly higher rate

observed in the older adult population. Notably, we observed an

increasing trend in CHD mortality attributed to outdoor PM2.5

over the six periods from 1994 to 2019, with a greater increase in

mortality rate observed in the older adult population compared to

the younger population.

Figure 3 illustrates the period-based variation of age-specific

CHD mortality attributed to outdoor PM2.5 from 1994 to 2019.

Overall, CHD mortality attributed to outdoor PM2.5 increased

over time across all age groups. However, from 2014 to 2019,

a certain degree of decline was observed in all age groups

except for the 35–39 and 40–44 age groups, which showed an

upward trend. Furthermore, we observed a significant increase in

CHD mortality attributed to outdoor PM2.5 with age from 1994

to 2019.

Figure 4 shows the cohort-based variation of age-specific CHD

mortality attributed to outdoor PM2.5 from 1994 to 2019. Overall,

CHD mortality attributed to outdoor PM2.5 increased with the

birth year for all age groups, with a greater increase observed

in the older adult population. Interestingly, significant differences

in CHD mortality attributed to outdoor PM2.5 were observed

among individuals of the same age group but with different

birth years.

3.3 Analysis of APC model on CHD
mortality attributed to outdoor PM2.5

Table 1 presents the estimated coefficients, significance levels,

95% confidence intervals, standard errors, and relative risks

(RR) for age, period, and cohort effects on CHD mortality

attributed to outdoor PM2.5. Regarding age effects, the age

effect coefficient for CHD mortality attributed to outdoor PM2.5

increased continuously from −2.249 in the 25–29 age group to

2.243 in the 90–95 age group. The relative risk of death for the

90–95 age group was 89.284 times higher than that for the 25–

29 age group. As for period effects, the period effect coefficient

increased continuously from −0.785 in 1994 to 0.523 in 2019.

The relative risk of death for CHD in 2019 was 3.699 times

higher than that in 1994. Concerning cohort effects, the coefficient

showed a continuous decreasing trend, decreasing from 0.839 in

the 1900–1904 cohort to −1.161 in the 1990–1994 cohort, and the

relative risk of death also decreased to 0.135 accordingly. Based

on the cohort effect results, we found that people born earlier

had a higher mortality rate, while those born later had a lower

mortality rate.

3.4 Age e�ect and changes in the e�ect of
CHD mortality attributed to outdoor PM2.5

Figure 5 illustrates the age effect (blue line) and changes in

the effect (orange line) of CHD mortality attributed to outdoor

PM2.5 in China from 1994 to 2019. The age effect curve indicated

a gradual increase in CHD mortality attributed to outdoor PM2.5

with advancing age. The age effect changes could be divided into

three stages: (1) a rapid decline stage (25–49 years); (2) a slow

increase stage (50–84 years); and (3) a steep decline stage (85–95

years).
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FIGURE 1

Trends in crude mortality rates (CMRs) and age-standardized mortality rates (ASMRs) of CHD attributed to outdoor PM2.5 from 1994 to 2019.

FIGURE 2

Trends of age-specific CHD mortality attributed to outdoor PM2.5 in China from 1994 to 2019.

3.5 Period e�ect and changes in the e�ect
of CHD mortality attributed to outdoor
PM2.5

Figure 6 shows the period effect (blue line) and changes

in the effect (orange line) of CHD mortality attributed to

outdoor PM2.5 in China from 1994 to 2019. Consistent with

the changes in age effect, the risk of CHD mortality attributed

to outdoor PM2.5 gradually increased over the 25 years. Based

on the characteristics of the period effect, the changes in the

risk of CHD mortality attributed to outdoor PM2.5 during

this period could be divided into two stages: (1) a period of

continuous increase (1994–2004); and (2) a period of gradual

decline (2004–2019).

3.6 Cohort e�ect and changes in the e�ect
of CHD mortality attributed to outdoor
PM2.5

Figure 7 displays the estimated cohort effect (blue line) and

changes in the effect (orange line). In contrast to the changes in

age and period effect, individuals born in later cohorts had a lower

risk of CHD mortality attributed to outdoor PM2.5. Based on the
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FIGURE 3

Period-based variation of age-specific CHD mortality attributed to outdoor PM2.5 from 1994 to 2019. (A) 25–59 years; (B) 60–94 years.

FIGURE 4

Cohort-based variation of age-specific CHD mortality attributed to outdoor PM2.5 from 1994 to 2019. (C) 60–94 years; (D) 25–59 years.

characteristics of the cohort effect curve, the changes in the risk of

CHD mortality attributed to outdoor PM2.5 could be divided into

four stages: (1) gradually declining cohort segment (1900–1944);

(2) fluctuating declining cohort segment (1945–1974); (3) rapidly

increasing cohort segment (1975–1984); and (4) rapidly declining

cohort segment (1985–1994).

4 Discussion

With the rapid development of China’s economy and

society, various regions are facing severe air pollution problems.

Epidemiological investigations have shown an association between

PM2.5 and CHD mortality (29, 30). Toxicological studies suggest

that PM2.5 may cause lung inflammation, cell toxicity, and

oxidative stress, leading to an increased risk of cardiovascular

death (31–33). In this study, we analyzed the levels and trends of

CHD mortality attributed to outdoor PM2.5 in China using GBD

2019 data. By collecting over 25 years of data from 1994 to 2019,

we used the APC model to estimate the age, period, and cohort

effects of CHD mortality attributed to outdoor PM2.5. The results

of this study can reveal the etiology and natural history behind

these trend changes, help evaluate the effectiveness of public health

policies, identify high-risk groups, and provide data support for the

prevention and treatment of CHD in the future.

Our study found that CMRs and ASMRs of CHD attributed

to outdoor PM2.5 in China both showed an overall increasing

trend from 1994 to 2019. However, the ASMRs decreased slightly

after 2014. This was similar to the trend of mortality from

all causes of CHD in China analyzed by Wei et al. (34). In

addition, a similar validation was obtained in the results of
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TABLE 1 Age-period-cohort (APC) model analysis results of CHD

mortality attributed to outdoor PM2.5 in China.

Variables Coef 95% CI S.E. RR 95% CI

Age

25–29 −2.249∗∗∗ −2.991,−1.507 0.378 1.000

30–34 −1.781∗∗∗ −2.298,−1.264 0.264 1.597 1.275, 1.999

35–39 −1.406∗∗∗ −1.829,−0.984 0.216 2.322 1.688, 3.196

40–44 −1.018∗∗∗ −1.368,−0.667 0.179 3.424 2.316, 5.064

45–49 −0.794∗∗∗ −1.102,−0.486 0.157 4.285 2.776, 6.612

50–54 −0.540∗∗∗ −0.805,−0.274 0.135 5.524 3.430, 8.894

55–59 −0.276∗ −0.502,−0.050 0.115 7.190 4.292, 12.042

60–64 0.022 −0.164, 0.209 0.095 9.691 5.563, 16.881

65–69 0.329∗∗∗ 0.178, 0.480 0.077 13.165 7.291, 23.772

70–74 0.734∗∗∗ 0.616, 0.852 0.060 19.746 10.586, 36.835

75–79 1.102∗∗∗ 1.004, 1.200 0.050 28.521 14.987, 54.277

80–84 1.584∗∗∗ 1.491, 1.678 0.048 46.216 24.175, 88.353

85–89 2.050∗∗∗ 1.942, 2.158 0.055 73.585 39.044, 138.684

90–95 2.243∗∗∗ 2.108, 2.378 0.069 89.284 48.669, 163.793

Period

1994 −0.785∗∗∗ −0.904,−0.666 0.061 1.000

1999 −0.500∗∗∗ −0.582,−0.418 0.042 1.330 1.282, 1.379

2004 −0.047 −0.103, 0.008 0.028 2.091 1.962, 2.229

2009 0.291∗∗∗ 0.239, 0.342 0.026 2.933 2.741, 3.137

2014 0.519∗∗∗ 0.448, 0.591 0.036 3.685 3.515, 3.864

2019 0.523∗∗∗ 0.420, 0.625 0.052 3.699 3.639, 3.760

Cohort

1900–1904 0.839∗∗∗ 0.604, 1.073 0.120 1.000

1905–1909 0.815∗∗∗ 0.631, 1.000 0.094 0.977 0.929, 1.027

1910–1914 0.763∗∗∗ 0.613, 0.912 0.076 0.927 0.851, 1.009

1915–1919 0.710∗∗∗ 0.586, 0.833 0.063 0.879 0.787, 0.982

1920–1924 0.663∗∗∗ 0.556, 0.769 0.054 0.839 0.738, 0.953

1925–1929 0.589∗∗∗ 0.487, 0.692 0.052 0.779 0.683, 0.889

1930–1934 0.511∗∗∗ 0.390, 0.631 0.062 0.720 0.643, 0.807

1935–1939 0.417∗∗∗ 0.267, 0.567 0.076 0.656 0.603, 0.714

1940–1944 0.249∗∗ 0.063, 0.434 0.095 0.554 0.528, 0.582

1945–1949 0.126 −0.097, 0.349 0.114 0.490 0.485, 0.496

1950–1954 −0.040 −0.303, 0.223 0.134 0.415 0.404, 0.427

1955–1959 −0.204 −0.507, 0.098 0.154 0.352 0.329, 0.377

1960–1964 −0.360∗ −0.702,−0.019 0.174 0.302 0.271, 0.336

1965–1969 −0.501∗ −0.881,−0.122 0.193 0.262 0.227, 0.303

1970–1974 −0.700∗∗ −1.140,−0.260 0.224 0.215 0.175, 0.264

1975–1979 −0.808∗∗ −1.319,−0.297 0.261 0.193 0.146, 0.254

1980–1984 −0.892∗∗ −1.527,−0.256 0.324 0.177 0.119, 0.265

(Continued)

TABLE 1 (Continued)

Variables Coef 95% CI S.E. RR 95% CI

1985–1989 −1.013∗ −1.894,−0.132 0.449 0.157 0.082, 0.300

1990–1994 −1.161 −2.865, 0.543 0.869 0.135 0.031, 0.588

∗p < 0.05.
∗∗p < 0.01.
∗∗∗p < 0.001.

Coef, coefficient; S.E., standard error; RR, relative risk; CI, confidence interval; AIC, Akaike

information criterions; BIC, Bayesian information criterions.

Wang et al. (35), who analyzed the changes in mortality trends

of ischemic heart disease in China from 2010 to 2015. The

insufficient implementation of public health policies and the

limited availability of medical prevention and treatment resources

may have contributed to the increase in CHD mortality (35). In

contrast, most European countries, the United States, Canada,

Australia, and Japan have observed a significant decrease in CHD

mortality (36–38). Therefore, we can learn from the experiences

and practices of developed countries and formulate appropriate

intervention measures suitable for our own country. In addition,

a study focusing on Jiangsu Province in China found that from

1990 to 2019, the CHD mortality attributed to PM2.5 showed an

overall decrease, while the CHD mortality associated with outdoor

air exposure and indoor solid fuel use showed an increase and a

decrease, respectively (25). This result indicates regional differences

in the trend of CHD mortality changes in China, and outdoor

particulate matter should be the focus of current air pollution

control efforts.

Consistent with previous studies, age was an important risk

factor for CHD (25). This was also shown by Fu et al. (39) in

their trend analysis of ischemic heart disease mortality in China

from 2010 to 2019. Our study showed that, after controlling for

period and birth cohort effects, the risk of CHDmortality attributed

to outdoor PM2.5 gradually increased with age. Specifically, the

highest risk was observed in the 90–95 age group, which was

∼89.284 times higher than that in the 25–29 age group. Age

effects mainly reflect physiological changes due to aging and the

cumulative effects of exposure to risk factors (40). The risk of CHD

mortality attributed to outdoor PM2.5 was higher in the older adult

than in the young. On the one hand, physiological changes due

to aging led to a decline in immune function in the older adult,

making them more susceptible to the effects of outdoor PM2.5 and

increasing their risk of death (41, 42). On the other hand, compared

to the young, the older adult hadweaker health awareness and fewer

opportunities to take preventive measures (43). This resulted in the

older adult being more exposed to poor sanitary conditions, long-

term exposure to outdoor PM2.5, and accumulation of harmful

particles in the body (44, 45). In addition, CHD complications were

more common in the older adult than in the young, which could

also affect CHD mortality in the older adult (46). According to the

Seventh National Population Census of China, the proportion of

people aged 65 and above reached 13.5% in 2020 (47). China is

about to enter a deeply aging society. According to United Nations

estimates, by 2050, nearly 400 million people in China will be over

65 years old, of which about 150 million will be over 80 years old

(48). This number is surprising, and the burden of CHD mortality

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1517507
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ma et al. 10.3389/fpubh.2025.1517507

FIGURE 5

Age e�ect and changes in the e�ect of CHD mortality attributed to outdoor PM2.5 in China from 1994 to 2019.

FIGURE 6

Period e�ect and changes in the e�ect of CHD mortality attributed to outdoor PM2.5 in China from 1994 to 2019.

attributed to outdoor PM2.5 will be even more severe in the future.

Therefore, we should pay attention to the prevention and control of

CHD mortality risk in the older adult.

In terms of the period effect, the risk of CHD mortality

attributed to outdoor PM2.5 has gradually increased over the

past 25 years. Our data showed that the risk of CHD mortality

attributed to outdoor PM2.5 in 2019 was ∼3.699 times that of

1994. This result was consistent with Wang et al.’s (25) study on

the impact of ambient PM on CHD in Jiangsu Province, China.

Since the reform and opening up, China’s socio-economic growth

has been rapid, and urbanization has been gradually accelerating.

However, this has led to a deterioration in environmental quality,

with increasing atmospheric particulate matter pollution (18, 49).

This could explain the trend of increasing risk of CHD mortality

attributed to outdoor PM2.5 caused by period effects. It is worth

noting that we found a slowdown in the growth rate of CHD

mortality attributed to outdoor PM2.5 risk after 2004. The Chinese

government issued the “Emission Standards for Particulate Matter

from Power Plants” in 2003, proposed more stringent energy-

saving and emission reduction policies in 2006, and formulated
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FIGURE 7

Cohort e�ect and changes in the e�ect of CHD mortality attributed to outdoor PM2.5 in China from 1994 to 2019.

the Air Pollution Prevention and Control Action Plan and Blue

Sky Defense Campaign in 2013 and 2018, respectively (50–52).

Therefore, we could conclude that the environmental policies

implemented by China in recent years have had a certain effect.

Improving air quality could reduce the impact of outdoor PM2.5 on

CHD mortality (53). The government should take more measures

to address the problem of air pollution and protect public health.

The cohort effect reflects the adverse impact of early exposure to

certain unfavorable social-environmental factors on residents’ lives,

increasing the risk of illness or death (41). Unlike age and period

effects, the cohort effect coefficient continuously decreased from the

cohort born in 1900–1904 to the cohort born in 1990–1994. Data

indicated that the later the birth year of the population, the lower

the risk of CHD mortality attributed to outdoor PM2.5. Several

studies on CHD have also reached consistent conclusions (24, 38,

54). One possible explanation is that, firstly, China experienced a

turbulent society, frequent wars, and negative social and economic

productivity in its early stages, leading to a deterioration of living

conditions (18). The medical and health conditions in early society

were unable to guarantee the health and life of the population (55).

Secondly, compared with residents born later, those born earlier

were unable to obtain sufficient nutrition during childhood, leading

to a weakened immune system to resist diseases (56). Finally,

education level was also a critical factor. Residents born earlier

had lower education levels and weaker awareness of maintaining

health (22). Therefore, they were not aware of the occurrence of

CHD or the impact of outdoor PM2.5 on human health (57). When

improving CHD prevention and control measures, the government

is advised to consider the above factors.

There are several limitations to this study. Firstly, our

data source was from GBD 2019. Although GBD 2019 has

undergone many corrections and adjustments, including ICD

version differences and national variable mapping, as well as the

reassignment of incomplete and junk codes, it was difficult to

completely avoid bias. Secondly, GBD 2019 did not include CHD

mortality attributed to outdoor PM2.5 data in the under-25 age

group, and due to the basic requirements of the APC model, the

age group above 94 years was excluded from this study. Thirdly, our

study lacked an analysis of the risk of CHD mortality attributed to

outdoor PM2.5 between urban and rural areas. It was well known

that there were significant differences in outdoor PM2.5 exposure

levels between urban and rural areas, and the risk of CHD in the

population also varied. Of course, it was also extremely important

to clarify the risk of CHD mortality in different regions, genders,

and occupational groups. In the future, we will conduct a more in-

depth analysis of the CHDmortality attributed to outdoor PM2.5.

5 Conclusions

This study employed an APC model to evaluate the long-

term trends of CHD mortality attributed to outdoor PM2.5 in

China from 1994 to 2019. Overall, both CMRs and ASMRs of

CHD attributed to outdoor PM2.5 showed an increasing trend

from 1994 to 2019. The net effects of age, period, and birth cohort

indicated that the risk of CHD mortality attributed to outdoor

PM2.5 increased gradually with age and period, but decreased for

those born in later years. Therefore, more attention should be paid

to the older adult, who are at a higher risk, and efforts to control

environmental air pollution should be strengthened.
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