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Environmental exposure to 
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Background: Few studies have investigated the associations between 
perchlorate, nitrate, and thiocyanate (PNT) and biological aging. This study 
aimed to assess the association between PNT and biological aging among U.S. 
adults.

Methods: Utilizing multivariable linear regression and restricted cubic splines 
(RCS), we analyzed urinary PNT levels’ impact on phenotypic age and biological 
age. Subgroup and sensitivity analyses were also conducted. Weighted Quantile 
Sum (WQS) and Bayesian Kernel Machine Regression (BKMR) models examined 
PNT mixtures.

Results: 8,368 participants were analyzed. Mean phenotypic age was 
43.05 ± 0.48 years, mean biological age was 47.08 ± 0.4 years. Multivariable 
linear regression showed significant negative associations between higher PNT 
levels and phenotypic age (perchlorate β = −0.6, 95% CI: −0.93 to −0.27; nitrate 
β = −0.81, 95% CI: −1.19 to −0.42; thiocyanate β = −0.56, 95% CI: −0.77 to −0.34) 
after covariates adjusted. RCS demonstrated negative nonlinear relationships 
between PNT exposure and phenotypic age (nonlinear p values: 0.002, <0.001, 
and <0.001), with stable results in sensitivity analyses. Nitrate exposure showed 
a significant negative association with biological age (β = −0.78, 95% CI: −1.13 
to −0.44), indicating a consistent negative linear relationship observed through 
RCS and remaining stable across sensitivity analyses. WQS regression revealed a 
negative association between the mixture and phenotypic age in both positive 
and negative directions, with a significant negative association with biological 
age in the negative direction. BKMR analysis revealed a negative association 
between PNT mixtures and phenotypic age, with nitrate and thiocyanate 
identified as the primary predictors of phenotypic age. No association found 
between PNT mixture and biological age.

Conclusion: Individual or combined PNT are negatively associated with 
phenotypic age. High nitrate is associated with reduced biological age, 
showcasing consistent outcomes.
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1 Introduction

Aging is a complex pathological and physiological process driven 
by a series of intricate biological mechanisms associated with 
deteriorating physiological systems, involving multiple dimensions of 
cells, tissues, and organs, and influenced by a range of environmental, 
biopsychosocial, and demographic factors (1). Aging also leads to 
adverse health outcomes, correlated with the occurrence and 
progression of a range of chronic diseases such as cardiovascular 
diseases (CVD), cancer, osteoporosis, neurodegenerative diseases, etc., 
and conversely, these adverse health outcomes may also impact aging 
(2). Existing methods for measuring biological aging vary significantly 
in their approaches and measurement focuses due to the complexity 
of the aging process (3). Currently developed measurement methods 
reflecting biological aging include, phenotypic age (4), biological age 
(5), leukocyte telomere length (6), and metabolic age score (7), etc. 
Nowadays, population aging has become a prominent global trend. 
According to the State of World Population Report 2023 (8), the 
current population aged 60 and above comprises 12.3%, a figure 
projected to increase to 22% by 2050. Aging brings about an 
unbearable burden of chronic diseases to humanity, resulting in 
enormous social and economic costs. Abundant epidemiological 
research has shown that biological aging is significantly influenced by 
environmental factors, such as Per- and polyfluoroalkyl substances 
(PFAS) (9), urinary levels of Cd and Mo (10), 3,5,6-trichloro-2-
pyridinol (11), a mixture of benzene, toluene, ethylbenzene, and 
xylenes (12), and 2,5-Dichlorophenol (13). However, it remains 
unclear whether biological aging is influenced by perchlorates, 
nitrates, and thiocyanates (PNT). These compounds are known 
inhibitors of the sodium/iodide symporter (NIS), exerting endocrine-
disrupting effects by influencing thyroid function (14).

Perchlorate occurs naturally and can be  manufactured as 
rocket fuel (as an oxidizer) and utilized in airbags, fireworks, or 
fertilizers. Most perchlorates are soluble in water, exhibit high 
chemical stability. Individuals are primarily exposed to 
perchlorates through water and food (15). Thiocyanate, composed 
of sulfur, carbon, and nitrogen, is a group of compounds. It serves 
as a major metabolite in cigarette smoke, and is also present in 
cruciferous vegetables such as radishes, kale, and other leafy 
greens, as well as dairy products. Individuals are primarily 
exposed to thiocyanate through food and smoke (14). Nitrate 
refers to compounds derived from nitric acid. Its natural sources 
include biological nitrogen fixation and the reaction of nitric acid 
with minerals in rainwater (16). It is extensively used as an 
agricultural fertilizer, food preservative, and coloring agent (17). 
Over 80% of nitrate exposure in human comes from diet (water 
and vegetables) (17, 18). The urinary concentration is a commonly 
used indicator for assessing PNT exposure (19, 20). Currently, a 

few studies have reported potential health benefits from PNT 
exposure, including effects on blood pressure (21), obesity (22), 
renal function (23), cardiovascular disease (24), and mortality 
(25). While limited research suggests that higher perchlorate 
levels may adversely impact the serum anti-aging protein α-Klotho 
(26). Given these varying observations, further investigation into 
the relationship between PNT exposure and biological aging is 
warranted. Phenotypic age and biological age calculated from 
clinical observational data are considered relatively reliable 
predictors of biological aging outcomes. Thus, this study aims to 
explore the relationship between PNT exposure, and the selected 
biological aging using data from the National Health and 
Nutrition Examination Survey (NHANES).

2 Materials and methods

2.1 Design

The study utilized NHANES data spanning from 2005 to 2010, 
covering three consecutive survey cycles: NHANES 2005–2006, 
2007–2008, and 2009–2010. Complete data of PNT have been 
available since 2005. However, C-reactive protein (CRP), a critical 
clinical indicator used to calculate phenotypic age, underwent a 
change in testing methodology starting in the 2011–2012 cycle, 
with the introduction of high-sensitivity CRP (hs-CRP) reporting. 
To maintain data consistency, data from the 2011–2012 cycle 
onwards have not been included. NHANES, operated by the CDC, 
is a comprehensive epidemiological survey program employing a 
complex, multi-stage sampling strategy to gather representative 
data on the health and nutrition of the U.S. population. 
Participants undergo questionnaire interviews, physical 
examinations, and biospecimen collection at mobile examination 
centers. For this study, participants aged 20 and above provided 
information on demographics, socio-economic factors, dietary 
intake, chronic diseases, and PNT levels during the 2005–2010 
survey cycles. Following additional inclusion and exclusion 
criteria, 8,368 participants were included in the analysis. Further 
details are provided in Figure 1.

2.2 PNT exposure

At the Mobile Examination Center (MEC), biospecimens, 
including blood and urine samples, are collected from participants 
randomly assigned to morning, afternoon, or evening 
examinations. Fully voided urine specimens are collected from 
those aged 6 years and above using specimen cups. These 
biospecimens are processed, aliquoted, and stored at the MEC, 
refrigerated or frozen, before being transported to laboratories 
across the U.S. Ion chromatography-electrospray tandem mass 
spectrometry is utilized to measure PNT concentrations in urine, 
with urinary creatinine levels determined using automated 
colorimetric methods and Beckman Synchron AS/ASTRA 
clinical analyzers.

To ensure quality assurance, all collection materials and 
storage containers undergo preliminary screening, with three 
concentration gradient quality control materials prepared and 

Abbreviations: PNT, Perchlorate, Nitrate, and Thiocyanate; NHANES, National 

Health and Nutrition Examination Survey; BMI, Body Mass Index (weight [kg]/

height [m]2); CI, Confidence Intervals; eGFR, Estimations of Glomerular Filtration 

Rate; DM, Diabetes Mellitus; CDC, Centers for Disease Control and Prevention; 

MEC, Mobile Examination Center; LOD, Limit of Detection; PIR, Poverty-to-Income 

Ratio; CVD, Cardiovascular Disease; SE, Standard Errors; RCS, Restricted Cubic 

Spline; WQS, Weighted Quantile Sum; BKMR, Bayesian Kernel Machine Regression; 

NO, Nitric Oxide; PFAS, Per- and polyfluoroalkyl substances.
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inserted into each sample batch. Quality control samples are 
treated identically to test samples. For detailed laboratory 
information and quality control/quality assurance data, please 
refer to the NHANES website.1 Values below the limit of detection 
(LOD) are coded as the LOD value divided by the square root of 
2. Subsequently, concentrations of chemicals in urine, after 
creatinine correction, are log-transformed using the natural 
logarithm to facilitate statistical analysis.

2.3 Biological aging

Biological aging is measured using two metrics: phenotypic 
age and biological age, which utilize different biomarkers and 
calculation methods.

The calculation of biological age is based on eight biomarkers 
(Ln-CRP, serum creatinine, glycated hemoglobin, serum albumin, 
serum total cholesterol, serum urea nitrogen, serum alkaline 
phosphatase, and systolic blood pressure) as outlined by Klemera 
(5, 27). The biomarkers and samples are denoted by the values j 
and i, respectively. The slope, intercept, and root mean square 
error of the regression of biomarkers on chronological age are 
represented by k, q, and s values. The variance explained by the 
regression of biomarkers on chronological age is depicted as 2

jr . 
BA represents biological age, BAE represents estimated biological 
age, and CA represents chronological age. m represents number 
of the biomarkers, and x  represents the value of the biomarkers. 
The characteristic value charr  for a set of m various correlation 
coefficients jr  is determined as their weighted average, expressed 
by the following formula.

Klemera and Doubal Method (KDM) Biological Age formula:

1 https://www.cdc.gov/nchs/nhanes/index.htm
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Phenotypic Age was calculated using the following formula (4).
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FIGURE 1

Participants flow chart.
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(xb represents the linear combination of biomarkers from the 
fitted model).

2.4 Covariation

Our analysis encompassed a range of covariates previously 
demonstrated or assumed to be associated with PNT exposure and 
biological aging (26, 28). These covariates included age, as continuous 
variables or categorized as <40, 40–59, and ≥ 60 years; gender (female, 
male); racial/ethnicity background, reclassified as non-Hispanic black, 
non-Hispanic white, Mexican American, and others; poverty-to-
income ratio (PIR), categorized as low (<1.3), middle (1.3–3.5), and 
high (>3.5); BMI according to World Health Organization (WHO) 
classifications: normal, overweight, and obese; marital status 
(reclassified as Widowed/Divorced/Separated, Married/Living with 
partner, and never married); education level (reclassified as college or 
higher, middle school or lower, and high school); home status 
(reclassified as owned or being purchased and rented); drinks 
(categorized as nondrinkers, moderate drinkers: 1–3 drinks/day, and 
heavy drinkers: ≥4 drinks/day); smoke (current, former, never); 
physical activity level [active, inactive, moderate, others (29)], presence 
of hypertension, diabetes mellitus (DM), CVD, and cancer. 
Hypertension and DM were determined through index measurements, 
medication usage, and self-reports, while CVD and cancer were self-
reported. Additionally, we considered a healthy dietary score calculated 
using the Healthy Eating Index-2020 (HEI-2020) (30), as well as energy 
intake (kcal), derived from the mean of 2 days’ daily energy intake.

2.5 Statistical methods

Due to the complexity of NHANES sampling design, appropriate 
sample weights were used for analysis. For baseline characteristics, 
continuous variables were expressed as weighted means [standard 
errors (SE)], and categorical variables as weighted percentages (SE). 
Differences in continuous variable weighted means among female and 
male were assessed using ANOVA, while differences in categorical 
variable weighted percentages were assessed using Rao-Scott χ2 test.

Weighted linear regression analyses were conducted to examine 
the relationships between PNT exposure as continuous variables or 

categorized into quartiles and biological aging (including phenotypic 
age and biological age). Model 1 adjusted for age, sex, and race/
ethnicity. Model 2 adjusted for age, sex, ethnicity, PIR, BMI, marital 
status, home status, education, physical activity, smoke, and drinks. 
Model 3 adjusted for age, sex, ethnicity, PIR, BMI, marital status, 
home status, education, physical activity, smoke, drinks, hypertension, 
DM, CVD, cancer, energy intake (kcal), healthy dietary score, and 
NHANES cycle. Additionally, restricted cubic spline (RCS) analysis 
was conducted to explore the dose–response relationship between 
PNT exposure (as continuous variables) and biological aging after 
adjusting for all confounding variables.

Furthermore, a series of sensitivity analyses were conducted 
to examine the robustness of the results. One analysis involved 
using covariate-adjusted creatinine rather than creatinine-
corrected concentrations of analytes in statistical models. Since 
urinary creatinine correlates with some covariates such as age, sex, 
race/ethnicity, BMI, and eGFR, linear models were constructed to 
predict individual creatinine concentrations. Chemical 
concentrations were standardized by simulating the ratio of 
predicted to measured creatinine concentrations. Second, 
unweighted linear regression analyses were re-conducted to 
reassess the associations between each chemical exposure and the 
occurrence of biological aging.

In the second stage, Weighted Quantile Sum (WQS) regression 
was employed to investigate the effect of PNT mixture exposure on 
biological aging. Bootstrap method was utilized to assign individual 
weights to each pollutant, enabling the identification of the relatively 
important components within the mixture (31). The weights for each 
pollutant ranged from 0 to 1. This method not only better captures 
mixed exposures in real-life scenarios but also is more sensitive in 
identifying important predictors compared to univariate analysis. 
Specifically, in this study, the data were split into 40% training and 
60% testing random samples, with bootstrap set at 10000.

Moreover, the Bayesian Kernel Machine Regression (BKMR) 
model was fitted to visualize the relationship curves between joint 
exposure to PNT mixture and the risk of biological aging. BKMR’s 
inherent advantage lies in its ability to flexibly fit exposure-response 
relationships, including potential nonlinear and non-additive effects, 
which are commonly encountered in environmental epidemiology 
(32). We  modeled the exposure-response function with Gaussian 
distribution and ran 10,000 iterations using Markov Chain Monte 
Carlo (MCMC) algorithm. Key anions contributing most to the risk 
of biological aging were identified by calculating the conditional 
posterior inclusion probabilities (conPIPs). All statistical analyses 
were performed using R software (version 4.3.0).

3 Results

3.1 Characteristics of the study participants

Our study included 8,368 participants from NHANES 2005–
2010 cycles. Table 1 summarizes the demographic and behavioral 
information by sex. The mean age of participants was 
49.34 ± 0.42 years overall, with females at 47.94 ± 0.47 years and 
males at 46.70 ± 0.45 years (p = 0.002). The mean phenotypic age 
was 43.05 ± 0.48 years, with similar values for females and males 
(43.05 ± 0.55 versus 43.06 ± 0.52, p = 0.99). The mean biological 
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TABLE 1 Characteristics of the study participants among U.S adults (NHANES2005-2010).

Variable Total Female Male p value

Age 47.34 (0.42) 47.94 (0.47) 46.70 (0.45) <0.01

Phenotypic age 43.05 (0.48) 43.05 (0.55) 43.06 (0.52) 0.99

Biological age 47.08 (0.43) 46.83 (0.48) 47.35 (0.45) 0.15

Age groups 0.01

  <40 35.20 (0.01) 33.62 (1.03) 36.88 (1.28)

  40–59 40.24 (0.02) 40.54 (0.98) 39.92 (1.16)

  ≥60 24.56 (0.01) 25.84 (1.14) 23.20 (1.04)

Race/ethnicity 0.09

  Non-Hispanic White 73.50 (0.04) 73.22 (1.85) 73.79 (1.78)

  Non-Hispanic Black 9.85 (0.01) 10.52 (1.04) 9.14 (0.77)

  Mexican American 7.64 (0.01) 7.11 (0.84) 8.20 (0.94)

  Others 9.01 (0.01) 9.15 (0.96) 8.87 (0.96)

PIR 0.01

  Low 18.04 (0.01) 19.23 (0.94) 16.77 (1.12)

  Middle 37.05 (0.02) 37.63 (1.14) 36.44 (1.20)

  High 44.91 (0.03) 43.14 (1.65) 46.79 (1.45)

BMI <0.001

  Normal 31.24 (0.01) 36.86 (1.06) 25.26 (1.08)

  Overweight 33.51 (0.01) 27.61 (0.78) 39.78 (1.10)

  Obesity 35.25 (0.02) 35.53 (0.99) 34.96 (1.30)

Marital status <0.001

  Never married 15.17 (0.01) 14.01 (0.93) 16.41 (1.31)

  Married/Living with partner 66.58 (0.03) 62.70 (1.16) 70.70 (1.46)

  Widowed/Divorced/

Separated

18.25 (0.01) 23.29 (0.71) 12.88 (0.77)

Education 0.03

  College or more 58.33 (0.02) 59.89 (1.27) 56.67 (1.51)

  Middle school or lower 5.41 (0.00) 5.11 (0.44) 5.73 (0.50)

  High school 36.26 (0.02) 35.00 (1.23) 37.60 (1.42)

Home status 0.47

  Owned or being bought 73.80 (0.04) 74.50 (1.31) 73.07 (1.45)

  Rented 24.47 (0.01) 23.91 (1.22) 25.07 (1.35)

Smoke <0.001

  Now 21.37 (0.01) 18.96 (0.85) 23.92 (0.99)

  Former 26.02 (0.01) 21.87 (0.95) 30.44 (1.24)

  Never 52.61 (0.02) 59.17 (1.11) 45.64 (1.48)

Drinks <0.001

  Nondrinkers 29.10 (0.01) 34.34 (1.41) 23.52 (1.03)

  1–3 drinks/day 54.90 (0.03) 57.25 (1.49) 52.41 (1.14)

  ≥4 drinks/day 16.00 (0.01) 8.40 (0.50) 24.07 (1.10)

Physical activity <0.001

  Active 39.60 (0.02) 32.36 (1.13) 47.29 (1.12)

  Inactive 26.24 (0.01) 28.37 (1.26) 23.97 (0.94)

  Moderate 13.67 (0.01) 14.91 (0.80) 12.34 (0.78)

(Continued)
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age was 47.08 ± 0.4 years, with comparable values between females 
and males (46.83 ± 0.48 versus 47.35 ± 0.45, p = 0.15). Significant 
differences were found in PIR categories, BMI, marital status, 
education, smoke status, alcohol consumption (drinks), physical 
activity, energy intake, and healthy dietary score between females 
and males. Additionally, the distribution of PNT concentrations 
(creatinine-corrected) differed by sex. Females had higher 
perchlorate and nitrate concentrations compared to males 
(5.28 ± 0.14 versus 4.53 ± 0.11, p < 0.001, and 58608.83 ± 1567.37 
versus 45555.46 ± 834.71, p < 0.001, respectively). 
Supplementary Tables 1-3 summarize the demographic and 
behavioral characteristics by quartiles of PNT concentrations. 
Association coefficient matrices are presented in 
Supplementary Figure 1, showing positive associations among all 
analytes (association coefficients 0.35 and 0.39).

3.2 Associations between PNT exposures 
and phenotypic age and biological age

The findings from the analysis of the association between each 
chemical exposure and the β-value of phenotypic age and 
biological age, while adjusting for relevant covariates, are 
summarized in Table  2. For phenotypic age, across almost all 
models (model 1, model 2, and model 3), a negative association 
was observed with high PNT concentration (ln-transformed). 
Specifically, when PNT exposures were treated as continuous 
variables, phenotypic age was significantly reduced with 
increasing PNT concentration after adjusting for specified 
covariates (model 3: perchlorate β = −0.6, 95% CI: −0.93 to −0.27; 
nitrate β = −0.81, 95% CI: −1.19 to −0.42; thiocyanate β = −0.56, 
95% CI: −0.77 to −0.34). Additionally, the weighted β values with 
95% CI for phenotypic age, categorized into quartiles of PNT 
exposures and accounting for relevant covariates, are also 
presented in Table  2. Following adjustments for all selected 

covariates using multiple linear regression (model 3), participants 
in the highest quartile of perchlorate exposure exhibited a 
significant decrease compared to the lowest quartile (β = −1.08, 
95% CI: −1.48 to −0.68, P for trend <0.001). Similarly, for nitrate 
exposure (β = −1.00, 95% CI: −1.66 to −0.33, P for trend = 0.006) 
and thiocyanate (β = −1.52, 95% CI: −2.03 to −1.02, P for trend 
<0.001). Further exploration using RCS revealed a negative 
nonlinear relationship between PNT exposures and phenotypic 
age (P for non-linear = 0.002, <0.001, and < 0.001, respectively) 
as depicted in Figures 2A–C.

For biological age, when PNT exposures were treated as 
continuous variables, positive associations were found with 
perchlorate exposure and biological age (β = 0.23, 95% CI: 0.05 to 
0.40), while negative associations were observed with nitrate and 
thiocyanate exposures (β = −0.56, 95% CI: −0.76 to −0.36 and 
β = −0.16, 95% CI: −0.31 to −0.01). Upon further categorization 
of PNT exposures into quartiles, significant positive association 
was observed for the highest quartile of perchlorate exposure 
compared to the lowest quartile (β = 0.44, 95% CI: 0.20 to 0.69, P 
for trend <0.001), and a negative association for nitrate exposure 
(β = −0.78, 95% CI: −1.13 to −0.44, P for trend <0.001). No 
significant difference was found for thiocyanate quartiles in 
biological age (β = −0.40, 95% CI: −0.86 to 0.07, P for 
trend = 0.159). Figures 2D–F further illustrates the dose–response 
relationships between PNT exposures and biological age, showing 
a positive linear relationship for perchlorate (P for 
non-linear = 0.6265, Figure 2D), a negative linear relationship for 
nitrate (P for non-linear = 0.0535, Figure 2E), and a nonlinear 
relationship for thiocyanate exposures (P for non-linear = 0.0473, 
Figure 2F).

The results of stratified and interaction analyses of phenotypic 
age are presented in Supplementary Figure 2. In most sub-samples, 
higher levels of perchlorate and thiocyanate exposures 
corresponded with a decrease in phenotypic age, consistent with 
the primary results. However, differences were noted in some 

TABLE 1 (Continued)

Variable Total Female Male p value

  Others 20.50 (0.01) 24.37 (1.21) 16.39 (0.68)

CVD 8.37 (0.01) 7.67 (0.65) 9.11 (0.60) 0.07

DM 12.65 (0.01) 12.21 (0.72) 13.11 (0.83) 0.33

Hypertension 36.21 (0.02) 35.03 (1.05) 37.46 (1.14) 0.05

Cancer 9.44 (0.01) 10.26 (0.65) 8.56 (0.76) 0.07

Energy (kcal) 2051.97 (15.67) 1735.62 (12.91) 2388.19 (24.54) <0.001

Healthy Dietary Score 51.56 (0.31) 53.09 (0.40) 49.92 (0.39) <0.001

Perchlorate* 4.92 (0.10) 5.28 (0.14) 4.53 (0.11) <0.001

Nitrate* 52280.84 (973.87) 58608.83 (1567.37) 45555.46 (834.71) <0.001

Thiocyanate* 2595.44 (87.45) 2617.96 (106.56) 2571.49 (111.62) 0.72

Year 0.79

  2005–2006 34.01 (0.02) 33.88 (1.89) 34.15 (1.80)

  2007–2008 32.02 (0.02) 32.32 (1.92) 31.71 (1.75)

  2009–2010 33.96 (0.02) 33.80 (1.80) 34.14 (1.70)

Weighted Mean +/− Se and ANOVA for continuous variables. Weighted %, mean (95% CI), and Rao-Scott χ2 test for categorical variables.
*Unit: μg/g creatinine.
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subgroups; notably, higher nitrate levels showed significant 
differences between age groups (<40 years vs. 40–59 
and ≥ 60 years, P for interaction <0.001) and physical activity 
groups (P for interaction = 0.01). Similarly, increased thiocyanate 
levels showed significant differences in age groups, physical 
activity intensity groups, and smoking status groups (P for 
interaction <0.001, 0.01, and 0.02, respectively).

Supplementary Figure 3 presents the results of subgroup 
analysis for perchlorate and nitrate exposures and biological age. 
We  found significant differences in high perchlorate exposure 
across gender groups (P for interaction = 0.002), while high 
nitrate exposure showed significant differences across age, race, 

PIR, physical activity, smoke, and drinks groups (P for interaction 
<0.001, 0.02, 0.01, 0.01, 0.04, and 0.049, respectively).

3.3 Associations between co-exposure to 
PNT mixture and phenotypic age and 
biological age

After adjusting for selected confounders, WQS regression revealed 
contrasting associations between the mixture and aging markers. For 
the positive direction of the mixture, there was a negative association 
with phenotypic age (β = −0.19, 95% CI: −0.36 to −0.02, p = 0.03), 

TABLE 2 Associations between perchlorate, nitrate, and thiocyanate exposures and phenotypic age and biological age.

Phenotypic age Biological age

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Perchlorate −0.94 (−1.30, −0.59) −0.6 (−0.93, −0.27) −0.6 (−0.93, −0.27) 0.21 (0.04, 0.37) 0.25 (0.09, 0.41) 0.23 (0.05, 0.40)

Nitrate −1.37 (−1.75, −0.99) −0.64 (−0.95, 

−0.33)

−0.81 (−1.19, 

−0.42)

−0.9 (−1.10, −0.69) −0.66 (−0.85, 

−0.47)

−0.56 (−0.76, 

−0.36)

Thiocyanate 0.06 (−0.12,0.25) −0.62 (−0.85, 

−0.40)

−0.56 (−0.77, 

−0.34)

−0.26 (−0.36, −0.17) −0.17 (−0.32, 

−0.03)

−0.16 (−0.31, 

−0.01)

Quartiles of perchlorate

Q1 Ref. Ref. Ref. Ref. Ref. Ref.

Q2 −1.00 (−1.45, −0.55) −0.67 (−1.05, 

−0.29)

−0.71 (−1.13, 

−0.30)

−0.14 (−0.45,0.17) −0.05 (−0.33, 0.23) −0.06 (−0.35, 0.23)

Q3 −1.32 (−1.85, −0.80) −0.92 (−1.35, 

−0.48)

−0.83 (−1.22, 

−0.44)

0.03 (−0.27,0.33) 0.12 (−0.16, 0.39) 0.15 (−0.14, 0.44)

Q4 −1.72 (−2.24, −1.20) −1.16 (−1.57, 

−0.75)

−1.08 (−1.48, 

−0.68)

0.36 (0.10, 0.61) 0.45 (0.23, 0.68) 0.44 (0.20, 0.69)

P for trend <0.001 <0.001 <0.001 0.001 <0.001 <0.001

Quartiles of nitrate

Q1 Ref. Ref. Ref. Ref. Ref. Ref.

Q2 −1.11 (−1.63, −0.60) −1.11 (−1.57, 

−0.64)

−0.78 (−1.27, 

−0.29)

−0.66 (−0.90, −0.41) −0.54 (−0.80, 

−0.28)

−0.39 (−0.66, 

−0.12)

Q3 −1.32 (−1.86, −0.78) −1.41 (−1.96, 

−0.87)

−1.09 (−1.65, 

−0.52)

−0.94 (−1.33, −0.56) −0.7 (−1.07, −0.33) −0.55 (−0.90, 

−0.21)

Q4 −1.71 (−2.31, −1.11) −1.37 (−1.99, 

−0.75)

−1.00 (−1.66, 

−0.33)

−1.33 (−1.68, −0.98) −0.92 (−1.24, 

−0.59)

−0.78 (−1.13, 

−0.44)

P for trend <0.001 <0.001 0.006 <0.001 <0.001 <0.001

Quartiles of thiocyanate

Q1 Ref. Ref. Ref. Ref. Ref. Ref.

Q2 −1.35 (−1.83, −0.86) −1.31 (−1.80, 

−0.83)

−1.18 (−1.64, 

−0.71)

−0.34 (−0.62, −0.07) −0.29 (−0.55, 

−0.03)

−0.24 (−0.49, 0.02)

Q3 −1.58 (−2.06, −1.10) −1.71 (−2.25, 

−1.17)

−1.57 (−2.07, 

−1.07)

−0.21 (−0.50, 0.09) −0.09 (−0.43, 0.24) −0.01 (−0.30, 0.28)

Q4 −0.08 (−0.52, 0.36) −1.77 (−2.28, 

−1.27)

−1.52 (−2.03, 

−1.02)

−0.72 (−1.02, −0.43) −0.43 (−0.88, 0.03) −0.40 (−0.86, 0.07)

P for trend 0.398 <0.001 <0.001 <0.001 0.125 0.159

Model 1: adjusted for age, sex and race/ethnicity.
Model 2: adjusted for age, sex, ethnicity, PIR, BMI, marital status, home status, education, physical activity, smoke, and drinks.
Model 3: adjusted for age, sex, ethnicity, PIR, BMI, marital status, home status, education, physical activity, smoke, drinks, hypertension, DM, CVD, cancer, energy (kcal), health dietary score, 
and NHANES cycle.
Ref.: reference.
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while no significant relationship was observed with biological age 
(β = 0.01, 95% CI: −0.00 to 0.02, p = 0.11). Conversely, for the negative 
direction of the mixture, phenotypic age showed a stronger negative 
association (β = − 0.56, 95% CI: −0.78 to −0.34, p < 0.0001), as did 
biological age (β = −0.31, 95% CI: −0.42 to −0.19, p < 0.0001). The 
estimated weighted results for each chemical exposure based on WQS 
regression are shown in Figure 3.

BKMR analyses indicated a negative univariate exposure-response 
relationship between perchlorate and phenotypic age, with a 
monotonic decreasing trend. Nitrate exhibited a wavelike curve 
variation, while thiocyanate showed a U-shaped relationship 
(Figure  4A). Figure  4B displayed a positive univariate exposure-
response relationship between perchlorate and biological age, with an 
inverted U-shaped curve, whereas nitrate and thiocyanate were 

FIGURE 2

Dose–response relationship between perchlorate, nitrate, and thiocyanate, and their potential impact on phenotypic age and biological age in a 
sample of 8,368 US adults from NHANES 2005 to 2010. (A–C) Depict the associations between perchlorate, nitrate, and thiocyanate, respectively, with 
phenotypic age. (D–F) Illustrate the relationships with biological age. Red solid lines and red dotted line represent restricted cubic spline models and 
95%CI, respectively. A multivariable linear regression model is used to estimate the fully adjusted coefficient in phenotypic age and biological age and 
corresponding 95% CI. Model was adjusted by age (continuous), sex, ethnicity, PIR, BMI, marital status, home status, education, physical activity, smoke, 
drinks, hypertension, DM, CVD, cancer, energy (kcal), health dietary score, and NHANES cycle.

FIGURE 3

(A) Weighted quantile sums regression model for the associations of perchlorate, nitrate, and thiocyanate mixture with biological aging. (B) Weights 
from weighted quantile sum regression for the mixture and phenotypic age. Weights from weighted quantile sum regression for the mixture and 
biological age.
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generally negatively associated with biological age, showing a wavelike 
downward trend.

Overall effects showed the distribution of high PNT mixtures on 
phenotypic age, as depicted in Figure  4C. Specifically, when the 
concentration of the chemical mixture was set at the 55th percentile, 
compared to the 50th percentile, it may have a significant overall 
impact on phenotypic age. However, we did not find significant effects 
on biological age (Figure 4D).

As depicted in Figure 4E, when we held other chemicals at 
different percentiles (25th, 50th, and 75th percentiles), 
we observed negative associations between PNT and Phenotypic 
age, except for thiocyanate when other chemicals were fixed at the 
25th percentile. Figure  4F illustrated that when we  held other 
chemicals at different percentiles (25th, 50th, and 75th percentiles), 
perchlorate and thiocyanate were positively associated with 
biological age, while nitrate was negatively associated with 
biological age.

Figure 4G illustrated the potential interaction between perchlorate 
and nitrate for Phenotypic age. BKMR analyses also revealed that 
nitrate and thiocyanate had the highest posterior inclusion probability 
(1.00), followed by perchlorate (0.4818). However, no potential 
interaction was found for biological age (Figure 4H). Then, BKMR 
analyses indicated that PNT had the same posterior inclusion 
probability (1.00).

3.4 Sensitivity analyses

We conducted two sensitivity analyses: one involved using 
covariate-adjusted creatinine instead of creatinine-corrected 
concentrations of analytes in linear regression models 

(Supplementary Table 4), and the other re-estimated using unweighted 
linear regression models (Supplementary Table 5). Both 
Supplementary Tables 4, 5 demonstrate that the relationships between 
PNT exposures and phenotypic age are consistent with the main 
results. Similarly, the relationship between nitrate exposure and 
biological age aligns with the main results. However, in both sensitivity 
analyses, although perchlorate exposure is positively associated with 
biological age, the differences in results are no longer significant. In 
the second sensitivity analysis, we  observed a significant negative 
association between thiocyanate exposure and biological age. When 
thiocyanate was treated as a continuous variable, β = −0.29, 95% CI: 
−0.39 to −0.19, and when thiocyanate was categorized into quartiles, 
compared to the lowest quartile, the highest quartile of thiocyanate 
exposure still led to a decrease in biological age, with a β of −0.46, 95% 
CI: −0.78 to −0.14, P for trend <0.001.

4 Discussion

Based on our current knowledge, this study represents the 
inaugural investigation into the relationship between PNT exposure 
and biological aging. Our preliminary findings reveal a significant 
negative association between higher levels of individual and combined 
PNT exposure and phenotypic age, with individual PNT exposures 
showing a nonlinear relationship with phenotypic age. Nitrate and 
thiocyanate were identified as the primary drivers of the combined 
effect. Sensitivity analyses further underscored the robustness of these 
associations. However, the significant association between PNT 
exposure and biological age was noticed only with individual PNT, 
particularly nitrate, which exhibited a linear negative relationship and 
confirmed by sensitivity analyses. While WQS regression indicated a 

FIGURE 4

Associations between perchlorate, nitrate, and thiocyanate mixture and phenotypic age and biological age by Bayesian kernel machine regression 
(BKMR) for adults in NHANES 2005–2010. Univariate exposure–response functions between exposure to perchlorate, nitrate, and thiocyanate and 
phenotypic age (A) and biological age (B) calculated by the BKMR model. Joint effect of perchlorate, nitrate, and thiocyanate mixture on phenotypic 
age (C) and biological age (D) calculated by the BKMR model. Single chemical-exposure effect (95% CI) to phenotypic age (E) and biological age 
(F) when other chemicals were fixed at a specific quantile (25th, 50th, 75th). Bivariate exposure-response relationship between three anions and risk of 
phenotypic age (G) and biological age (H) (a visualization for evaluating interactions). These models were all adjusted for age (continuous), sex, 
ethnicity, PIR, BMI, marital status, home status, education, physical activity, smoke, drinks, hypertension, DM, CVD, cancer, energy (kcal), health dietary 
score, and NHANES cycle.
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significant negative association between combined PNT exposure and 
biological age, BKMR analysis suggested no such relationship.

The aging process is influenced by both genetic and epigenetic 
factors (1). Currently, 12 existing features have been identified, 
such as genomic instability, telomere attrition, epigenetic 
alterations, loss of proteostasis, disabled macroautophagy, 
deregulated nutrient-sensing, mitochondrial dysfunction, cellular 
senescence, stem cell exhaustion, altered intercellular 
communication, chronic inflammation, and dysbiosis (1). These 
characteristics provide a multifaceted understanding of biological 
aging. We can assess biological aging through various methods, 
among which phenotypic age and biological age derived from 
serum biomarkers and clinical features are widely used in clinical 
practice [(33), pp. 1999–2018; (34)]. Levine et al. (4) identified 
actual age and nine clinical blood markers using a penalized Cox 
regression model. They then constructed phenotypic age using a 
proportional hazards model based on the Gompertz distribution. 
This approach showed a high association with actual age (0.94) 
and demonstrated strong predictive power for mortality, 
age-related diseases, comorbidity, and decline in physical 
function. The clinical biomarkers utilized in this method provide 
a comprehensive consideration of clinical presentation and 
functional status. In contrast, the KDM biological age 
demonstrates superior predictive ability for lifespan (5). This is 
because the relative weights of different markers in its calculation 
are determined by predicting actual age rather than assessing the 
risk of disease or mortality. Consequently, this method potentially 
emphasizes cellular aging and metabolic health. Therefore, there 
are notable distinctions between these two approaches.

In this study, we employed two of the most widely used multiple-
pollutant models in epidemiology—WQS and BKMR—to investigate the 
health effects of multi-pollutant mixtures. Our results revealed significant 
associations between PNT (perchlorate, nitrate, and thiocyanate) and 
aging markers, underscoring the complexity of their combined effects. 
The WQS regression demonstrated contrasting effects depending on the 
exposure direction. Specifically, the positive direction of the mixture 
showed a mild negative association with phenotypic age, while no 
significant association was observed with biological age. Conversely, the 
negative direction of the mixture exhibited stronger negative associations 
with both phenotypic and biological age, suggesting that a negatively 
skewed exposure profile may exerts a more pronounced impact on aging 
markers. BKMR further emphasized the nuanced exposure-response 
relationships among individual components. Univariate analyses 
indicated a monotonic negative association between perchlorate and 
phenotypic age, while nitrate and thiocyanate displayed non-linear 
patterns, including wavelike and U-shaped trends. For biological age, 
perchlorate followed an inverted U-shaped curve, whereas nitrate and 
thiocyanate generally showed negative associations with wavelike 
patterns. These findings highlight the highly specific relationships 
between individual pollutants and aging markers, which are influenced 
by threshold effects and dose interactions. Overall effect analyses and 
interaction models reinforced the distinct roles of these chemicals. Higher 
percentile exposure to PNT mixtures may significantly impacted 
phenotypic age, while the effects on biological age were limited. This 
observation underscores the heightened sensitivity of phenotypic age as 
a biomarker of environmental exposures. Notably, thiocyanate exhibited 
distinct behavior under certain conditions, highlighting potential 
chemical-specific effects within mixture models.

Given the lack of prior consensus regarding the most 
appropriate model to evaluate multi-pollutant effects, our use of 
multiple statistical approaches helps mitigate the limitations of 
any single method and provides a more comprehensive perspective 
on the associations observed. While the underlying mechanisms 
of these mixture effects remain to be fully elucidated, findings 
from single-pollutant studies may offer partial explanations for 
the observed associations.

4.1 Nitrate and biological aging

High concentrations of nitrates have shown potential beneficial 
effects on both phenotypic and biological aging. Previous research 
highlights that nitrates positively influence various health outcomes. 
For example, Li et al. found that higher nitrate exposure is associated 
with improved kidney function (23), Xu et al. reported a negative 
association between PNT and hypertension (21), higher urinary 
nitrate levels have been associated with reduced obesity risk (22, 35), 
and elevated urinary nitrate levels are associated with a reduced 
prevalence of cardiovascular disease, congestive heart failure, and 
stroke (24). These health pathways are integral components of the 
aging process itself. Some studies have indirectly revealed the 
mechanisms of nitrate’s effects. The beneficial effects of nitrate on 
cardiovascular, renal, and metabolic function may be related to the 
nitrate-nitrite-nitric oxide (NO) pathway and the more classical 
L-arginine-NO synthase (NOS) pathway (53). NO can regulate 
vascular homeostasis, neurotransmission, and host defense (36). 
Moreover, Li and colleagues showed that treatments involving 
inorganic nitrate and nitrite mitigate renal fibrosis by targeting 
oxidative stress and lipid metabolism (37). These mechanisms, 
particularly through their influence on vascular homeostasis and 
oxidative stress—two key aspects of aging—underscore nitrate’s role 
in slowing the aging process (38, 39). Our research further shows that 
age and physical activity may modify the relationship between 
nitrates and phenotypic age. Additionally, factors such as race, 
income, physical activity, smoking, and alcohol consumption may 
influence the association with biological age. These variations could 
stem from differing physiological states and lifestyle factors, which 
may affect individuals’ sensitivity to nitrate exposure (40). Moreover, 
the source of nitrates—whether from vegetables or contaminated 
water—could result in different levels of exposure, leading to 
varying outcomes.

4.2 Thiocyanate and aging

Thiocyanate exhibits a nonlinear negative association with 
phenotypic age and serves as a primary driver of this combined 
effect. Evidence suggests that thiocyanate plays a protective role 
in the respiratory tract by exhibiting anti-inflammatory properties 
and reducing bacterial load (41). Animal and cell studies have 
demonstrated that thiocyanate can protect against harmful 
accumulations of hydrogen peroxide (H₂O₂) and hypochlorous 
acid (OCl) (42) or inhibit inflammation by reducing neutrophil 
infiltration and glutathione sulfonamide levels in cystic fibrosis, 
which is characterized by chronic infection and airway 
inflammation (43). These pathways, which influence respiratory 
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health and inflammation—such as modulating inflammation and 
reducing bacterial burden—not only contribute to maintaining 
airway function but are also integral to the aging process, as 
dysregulated inflammation and cellular damage are hallmark 
features of aging (44). In addition, high thiocyanate levels may 
also associated with improved kidney function (23), so other 
potential mechanisms influencing the aging process cannot 
be  ruled out. But notably, these studies primarily consider 
thiocyanate from dietary. Another significant source of 
thiocyanate is tobacco (45). For smokers, exposure to thiocyanate 
primarily comes from the metabolite cyanide found in cigarette 
use (46). High doses of thiocyanate can cause necrosis, and 
extremely high plasma levels are toxic (47, 48). This characteristic 
may explain why Thiocyanate exhibits a nonlinear negative 
association with phenotypic age and why smoking modifies the 
link between thiocyanate and aging. Observations also indicate 
that older adults and those engaging in moderate physical activity 
may benefit more from thiocyanate exposure, this may be due to 
changes in their metabolic and inflammatory responses. 
Age-related alterations in oxidative stress regulation (49), 
combined with immunomodulatory effects from physical activity 
(50), may modulate the effects of thiocyanate on aging.

4.3 Perchlorate and aging

Perchlorate shows a negative association with phenotypic age. 
Although a positive association is observed with biological age, the 
results are not consistent in sensitivity analyses. Limited literature 
indicates that perchlorate, as a endocrine disruptor, is associated with 
reduced serum parathyroid hormone levels (51). Reduced 
parathyroid hormone levels are independently associated with blood 
pressure and the presence of hypertension or pre-hypertension, 
suggesting that perchlorate may affect blood pressure through its 
impact on parathyroid hormone secretion, thereby indirectly 
influencing the aging process (52).

Our study has several strengths. Firstly, the analysis was 
conducted in a large, nationally representative population, and 
we constructed various statistical models, including traditional 
linear regression and RCS, as well as WQS, BKMR models, and 
various sensitivity analyses. As mentioned earlier, this is the first 
attempt to explore the relationship between PNT (individually 
and in combination) and two representative biological aging 
indicators among US adults. On the one hand, the application of 
these statistical strategies highlights the fact that people are 
frequently exposed to multiple pollutants in real life. On the 
other hand, integrating the advantages and disadvantages of 
various multi-pollutant approaches helps us better understand 
their combined effects and draw more reliable conclusions. 
However, there are still some limitations. Firstly, due to the cross-
sectional nature of this study, causality cannot be  inferred. 
Secondly, a decrease in glomerular filtration rate may reduce the 
urinary excretion of chemicals, potentially leading to reverse 
causality. Thirdly, the measurement of PNT is based on single-
spot urine samples, although they still have considerable time 
reliability, the possibility of misclassification of exposure to these 
non-persistent chemical pollutants cannot be  ruled out. 
Additionally, as NHANES employs complex sampling analysis, 

WQS and BKMR models are limited in addressing this sampling 
method, thereby restricting the scope of mixture analysis. Finally, 
due to the characteristics of the NHANES database, the 
confounding effects of some unmeasured factors were 
not considered.

5 Conclusion

In summary, our study reveals a negative association between 
PNT exposure, both individually and combined, and phenotypic age. 
The strong negative association between nitrate exposure and 
biological age is particularly notable. It’s important to note that our 
findings are based on PNT exposure levels in the general 
U.S. population, and we cannot clearly determine the sources of PNT 
exposure. This underscores the need for external validation and 
further exploration across different populations and various exposure 
sources. Furthermore, given the complexity of biological aging 
assessment and the importance of understanding aging 
comprehensively through diverse indicators and methodologies, 
there is a critical need for additional prospective cohort studies and 
carefully designed toxicological experiments to elucidate the causality 
of these relationships and uncover underlying mechanisms.
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