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Background: Aerosols can affect human health through mechanisms 
like inflammation, oxidative stress, immune dysregulation, and respiratory 
impairment. In high-pollution areas, airborne particles may promote the 
transmission of pathogens such as Mycobacterium tuberculosis. This study 
investigates the spatiotemporal distribution of tuberculosis, its association with 
air pollution, and potential sources in the geographically unique Kashgar region 
of Xinjiang, encircled by mountains and desert.

Methods: Kriging interpolation and time series observation were used to 
analyze spatiotemporal trends and identify hot and cold spots of tuberculosis 
(TB) incidence and air quality in Xinjiang from 2011 to 2023. Kruskal-Wallis and 
multiple comparisons were applied to assess regional differences. Meteorological 
clustering and trajectory analysis identified pollutant pathways and potential 
source areas, with hypotheses proposed for TB transmission routes.

Results: The interaction between tuberculosis, the geographic environment, 
and aerosols in Xinjiang reveals a consistent spatial distribution of air quality 
index (AQI) and TB incidence, with overlapping hotspots and cold spots. The 
incidence rate of tuberculosis is “n/100,000.”Southern Xinjiang, shows higher TB 
incidence (235.31 ± 92.44) and poorer air quality (AQI: 64.19 ± 11.73) compared 
to Northern Xinjiang (TB: 83.82 ± 21.43, AQI: 53.90 ± 6.48). Significant regional 
differences in TB incidence (p < 0.0001) were confirmed, with post-hoc analyses 
indicating higher TB rates and worse air quality in Southern Xinjiang. Trajectory 
and concentration-weighted trajectory (WCWT) analysis identified dust from the 
Taklimakan Desert as a major contributor to PM2.5 and PM10 pollution, with values 
exceeding 150 μg/m3 for PM2.5 and 400 μg/m3 for PM10 in key areas like Aksu and 
Kashgar. The Kunlun and Tianshan mountain ranges serve as barriers that trap 
migrating dust, while meteorological patterns indicate that dust-laden trajectories 
extend further into the mountainous areas. This phenomenon exacerbates the 
spread of tuberculosis (TB) in the high-risk regions of southern Xinjiang.

Conclusion: The study highlights a distinct interaction between TB, the 
geographic environment, and aerosols in southern Xinjiang. Poor air quality 
and elevated TB incidence overlap, particularly in Kashgar. Here, dust from the 
Taklimakan Desert, trapped by the Kunlun and Tianshan mountains, intensifies 
PM2.5 and PM10 pollution, further contributing to TB transmission in high-risk 
areas.
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Introduction

Air pollution, a major global issue, primarily affects the respiratory 
and circulatory systems of the human body (1–3). Additionally, the 
impact of air pollutants on the immune system is influenced by 
respiratory diseases. These effects can impair immune function and 
increase the risk of various diseases (4–6). Inhaled particulate matter 
(PM10 and PM2.5) contributes to inflammatory responses, oxidative 
stress, and immune dysregulation, increasing susceptibility to respiratory 
diseases like tuberculosis by inducing inflammatory gene expression 
(e.g., TNF-α, IL-1β), suppressing anti-tuberculosis immune responses, 
and altering the lung microenvironment and immune tolerance (7–13). 
In 2019, an estimated 10 million new tuberculosis cases and 1.4 million 
TB-related deaths were reported globally (14). China ranks third in the 
world in terms of tuberculosis burden, accounting for 8.4% of the global 
total (15). Therefore, the relationship between the characteristics of air 
quality pollution and tuberculosis can be  studied and analyzed by 
leveraging the advantage of a large population.

Particulate matter (PM10 and PM2.5) not only impacts the 
respiratory and circulatory systems but may also facilitate the spread 
of infectious diseases like tuberculosis (TB) through complex 
biological and chemical mechanisms (1, 3). Tuberculosis is an 
infectious disease caused by Mycobacterium tuberculosis. The factors 
contributing to active tuberculosis are highly complex, encompassing 
bacterial strains, host immunity, and various social and environmental 
influences. In heavily polluted areas, such as Xinjiang, China, 
particulate matter can carry pathogens like Mycobacterium 
tuberculosis, thereby increasing the risk of disease transmission (7). 
Xinjiang’s unique geographical features, which trap pollutants, further 
exacerbate the spread of TB in the region (14). Traditional monitoring 
methods often fail to capture the spatial distribution of pollutants, 
prompting researchers to employ advanced spatial analysis techniques 
such as Kriging interpolation and the Potential Source Contribution 
Function (PSCF) (16, 17). Kriging interpolation estimates pollutant 
concentrations at unobserved locations based on spatial 
autocorrelation, offering detailed insights into pollution distribution 
and source identification (18). PSCF integrates meteorological back-
trajectory data with pollutant concentrations to trace the origin of 
pollutants, particularly in regions with complex topography like 
Xinjiang, where long-distance pollutant transport is significant (19). 
These methods, along with Concentration Weighted Trajectory 
(CWT) analysis, assist researchers in assessing the movement and 
accumulation of pollutants, and provide critical insights for addressing 
pollution and tuberculosis transmission in vulnerable areas (20).

The Xinjiang Uygur Autonomous Region is among the most 
severely air-polluted areas in China, located in the arid 
desertification zone of Eurasia. Surrounded by high mountains, the 
region has limited access to oceanic air flow (21). The Kashgar 
region, situated in the Xinjiang Uygur Autonomous Region of 
China, provides a unique geographical setting for examining the 
relationship between air pollution and tuberculosis bacilli (22, 23). 
Figure 1 vividly illustrates our research. Surrounded by mountains 
and adjacent to the vast Taklimakan Desert, Kashgar’s unique 

topography may contribute to the regional accumulation of air 
pollutants (24–26).

The Kashgar region in Xinjiang has been recognized as a hotspot 
for respiratory diseases, including tuberculosis. Tuberculosis is an 
infectious disease caused by the bacterium Mycobacterium 
tuberculosis, which is primarily transmitted through airborne 
particles (27). There is concern that airborne particles may act as 
carriers for Mycobacterium tuberculosis, potentially amplifying the 
transmission of this disease within the population. The Kashgar area, 
characterized by high population density and relatively crowded 
living conditions, may thus be at increased risk for the spread of 
infectious diseases (24, 25). The variations in air pollution levels 
across different regions of Xinjiang, influenced by numerous factors, 
correlate with varying disease incidence rates. Single identification 
will underestimate the impact of air pollutants on diseases. Therefore, 
this study analyzed potential atmospheric pollution sources and 
carrier sources of Mycobacterium tuberculosis from the source area 
of pollutants.

Most studies have primarily focused on the isolated associations 
between air pollutant exposure and DNA methylation or cytokine 
concentrations, or have employed mediation analysis to explore the 
intermediary role of DNA methylation or cytokines in the impact of 
pollutants on tuberculosis risk (26). While systematic reviews and 
meta-analyses have evaluated the relationship between air pollutants 
and tuberculosis incidence, no studies have yet examined the 
interaction between tuberculosis, aerosols, and geographic 
environment from spatiotemporal dimensions or through long-term, 
large-scale data tracking (28). This study aims to address this gap. 
However, the complexity and diversity of environmental factors, 
combined with the high transmission risk of tuberculosis, present 
significant challenges in designing experiments to study the intricate 
interactions between air pollution and TB transmission. In response 
to these challenges, this study uses a space-oriented approach to 
explore the relationship between air pollution and TB incidence in 
Kashgar, a typical region surrounded by mountains on three sides and 
facing deserts. By simulating the transport of pollutants and analyzing 
the spatial distribution characteristics of tuberculosis incidence and 
pollutants, this study aims to elucidate the potential mechanism of air 
pollution on tuberculosis transmission. Comprehensive data collected 
over the past decade, including meteorological data, pollutant data, 
and TB incidence records in Xinjiang, especially during the high TB 
incidence season (April to June), using advanced analytical 
techniques such as Kriging interpolation, potential source 
contribution factor analysis, and concentration weight trajectory 
analysis. By studying the spatiotemporal dynamics between air 
quality, tuberculosis incidence, and the unique geographic 
environment in the Kashgar region, the potential role of geographic 
factors in pollution patterns and disease transmission dynamics is 
explored. Understanding the influence of environmental factors on 
disease epidemiology, predicting key areas that may serve as sources 
of pollution and contributors to tuberculosis transmission, and 
revealing how specific geographic regions and meteorological 
conditions influence disease spread, provide strong support for better 
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control and mitigation of tuberculosis spread and offer valuable 
insights for future spatiotemporal epidemiological studies.

Materials and methods

Disease data

The incidence of tuberculosis in various regions of Xinjiang (One 
in 100,000) is sourced from the Xinjiang Uygur Autonomous Region 
Center for Disease Control and Prevention. Rigorous auditing is 
conducted on all data reports to guarantee data integrity and 
authenticity. Due to Medical and health conditions, only the incidence 
data from 2011 to 2022 are available.

Assessment of ambient air pollutants and 
meteorological data

Daily statistical data on air pollutants from 2012 to 2023 were 
obtained from the Environmental Monitoring Station of the Xinjiang 
Environmental Protection Bureau and the Center for Disease Control 
and Prevention of the Xinjiang Uygur Autonomous Region. Some 

data were collected from 153 stations of the China National 
Environmental Monitoring Center.1 The daily monitoring data for SO2 
(μg/m3), NO2 (μg/m3), PM2.5 (μg/m3), PM10 (μg/m3), CO (μg/m3), and 
O3 (24 h average concentration (μg/m3)) were acquired based on 
historical monitoring data from air quality monitoring stations across 
various regions. The air quality index (AQI) is determined by the 
highest value of the individual air quality index (IAQI) corresponding 
to each pollutant. The classification of each pollutant is based on the 
air quality index reference guide (29).

Meteorological data

The data used in the inverse trajectory model for the second 
quarter (April to June, the peak incidence period of tuberculosis in the 
Xinjiang region) from 2015 to 2022 are derived from the Global Data 
Assimilation System (GDAS) of the National Centers for 
Environmental Prediction (NCEP). Meteorological information is 
obtained from the National Meteorological Science Data Sharing 

1 http://www.cnemc.cn/

FIGURE 1

Relationship between geographical environment, transport and distribution of pollutants (potential carriers of tuberculosis bacilli), and human health.
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Service Platform.2 These datasets were initially recorded starting from 
2015. This study aligns with the truncation year of tuberculosis 
statistics and extends until 2022.

Kriging interpolation method

The Kriging method is a scientific method based on the theory of 
variogram and structural analysis, which is used for unbiased optimal 
estimation of regionalized variables in a limited area (30). It is one of 
the important components of geostatistics and is often used in 
epidemiological studies to construct and predict disease transmission 
models. The advantage of this method is that it can take into account 
the correlation of geographical space, that is, there may be more similar 
disease transmission patterns between close locations, thus improving 
the accuracy of prediction. In our study, we  used this method to 
describe the distribution of the incidence of tuberculosis in 2011–2022 
and the distribution characteristics of the median size of AQI in 2012–
2023. Among them, the ordinary Kriging method is the most used 
interpolation method in the Kriging method, and its expression is:
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In Equation 1, Zrepresents the estimated value of the interpolation 
point, while iZ  denotes the measured value of the sample point i. The 
weight coefficient iλ  corresponds to the sample point i, and m indicates 
the number of measured sample points used in the calculation. The 
weight coefficients for Kriging interpolation are determined based on 
the semi-variance function, which is expressed as follows:
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In Equation 2, ( )N h  is the number of sampling points with 
distance h. In the application, it is necessary to select the appropriate 
semi-variance function model according to the characteristics of the 
test semi-variance. The selection of weights should ensure that the 
estimated value Z  is unbiased and the estimated variance is smaller 
than the variance generated by other linear combinations of the 
observed value. The minimum variance expression of Z  is:
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When the following formula is satisfied, the minimum variance 
of Z  can be obtained.
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2 http://data.Cma

In this Equations 3, 4, m is the number of measured sample points 
involved in the calculation, φ  is the Lagrange multiplier, ( ),i jγ µ µ  is 
the semi-variance function between the i sample point and the j  
sample point, and ( ),iγ µ µ  is the semi-variance function between the 
sample point and the trajectory point.

PSCF and CWT model

Potential Source Contribution Function (PSCF) (31) is a widely 
used method in recent years for identifying sources of high-
concentration pollutants, which helps in understanding the origins, 
transport pathways, and spatial distribution of atmospheric pollutants 
(32). In this study, this method was used to indirectly identify the 
potential source regions of particulate matter and the possible 
Mycobacterium tuberculosis it may carry. This method is based on 
HYSPLIT regional pollution source identification method. The PSCF 
at the ( ),i j  grid cell is calculated, and its expression is:
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In Equation 5, ijm  is the total number of trajectory endpoints in 
the same grid unit where the measured pollutant concentration 
exceeds the specified threshold of the pollutant, and ijn  is the total 
number of all trajectory endpoints passing through the ( ),i j  grid unit. 
Regions with high PSCF values indicate a greater contribution to 
pollutants and may represent high-risk areas for tuberculosis 
transmission (33). In Equation 6, the PSCF value is multiplied by any 
weight function ( )W ijn  to eliminate the uncertainty in the pixels with 
smaller ijn , so as to better reflect the uncertainty of the median value 
of these pixels. Based on this, a model was constructed to assign 
weight to the common spatial distribution of tuberculosis and 
particulate matter. The weight function is defined as follows:
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Weight Potential Source Contribution Function (WPSCF) is often 
used to analyze the proportion of pollution trajectories in grid cells, 
but for areas with the same WPSCF value, it is impossible to determine 
the impact of pollution on the target area accurately. The 
concentration-weighted trajectory analysis (CWT) method can break 
through the above limitations and calculate the relative contribution 
of different source areas, which can better explore the spatial and 
temporal characteristics of air pollutants (20). By assuming that the 
particles may carry Mycobacterium tuberculosis, the potential source 
area of epidemic tuberculosis is proposed. The CWT calculation is 
as follows:
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In Equation 7, ijC  is the weighted average concentration of the 
( ),i j  grid unit, i is the trajectory index, m  is the total number of 
trajectories, lC  is the pollutant concentration corresponding to the 
trajectory l  passing through the network unit ( ),i j , and ijlτ  is the time 
that the trajectory l  stays in the grid unit ( ),i j . Because the CWT 
method also has uncertainty, this paper uses the same weight factor 

ijW  as WPSCF to reduce its uncertainty, which called Weight 
concentration-weighted trajectory analysis (WCWT). The WCWT 
model was used to better understand how different meteorological 
conditions and elevation factors, as well as desert environments, affect 
the distribution of pollutants and the size of potential source areas for 
TB transmission.

Based on the hour-by-hour data of PM2.5 and PM10 from 2015 
to 2022 in different regions of Xinjiang, the potential source areas 
of aerosol transmission routes and the potential source areas of 
tuberculosis transmission were analyzed by WPSCF and WCWT 
models. The potential source contribution factor and 
concentration weight trajectory of PM2.5 and PM10 are calculated 
by multiplying the potential contribution factor and concentration 
weight trajectory by the weight factor, respectively. Based on the 
calculation results of the WPSCF model, we divided the potential 
source areas into mild (0–0.3), moderate (0.3–0.7), and severe 
(0.7–1.0) pollution source areas. Combined with the spatial 
distribution of aerosol and tuberculosis incidence, and based on 
the WCWT model, we  defined areas with particulate matter 
concentrations below 50 μg/m3 as low contribution source areas, 
50–150 μg/m3 as moderate contribution source areas, and above 
150 μg/m3 as high contribution source areas. This was done to 
explore the impact of particulate matter source areas on 
tuberculosis transmission (34).

Statistical analysis

Kriging interpolation and time series observations were used to 
analyze spatiotemporal trends and identify hot and cold spots of 
tuberculosis (TB) incidence from 2011 to 2023 and air quality in 
Xinjiang from 2010 to 2022. A predictive model for TB incidence and 
AQI was constructed using quadratic fitting, and model performance 
was evaluated using the R2 metric and p-value. The significance level 
was set at α = 0.05.

Spatial autocorrelation was analyzed for TB incidence and air 
quality in Xinjiang using Moran’s I index, where positive values near 
1 indicate clustering and negative values near −1 suggest dispersion. 
A z-score of 7.49886, greater than the critical value of 1.65, confirmed 
significant clustering. Hotspot and cold-spot areas were identified 
based on 90, 95, and 99% confidence intervals.

Local spatial autocorrelation was assessed using the Gi* statistic, 
where values near 1 indicate strong clustering and near 0 suggest no 
significant clustering. Combined analysis of Moran’s I and General G 
index pinpointed Southern Xinjiang as a hotspot for high-value 
clustering, revealing spatial heterogeneity in TB incidence and air 
quality. All analyses were performed using ArcGIS 10.8.2 software 
(ESRI Inc., United States).

To assess regional differences in TB incidence and air quality, 
non-parametric statistical tests were conducted. Specifically, the 
Kruskal-Wallis test was applied to examine the significance of 
differences between groups. Multiple comparisons were used to 

further explore and highlight significant regional disparities between 
different locations within Xinjiang.

Meteorological clustering and trajectory analysis were carried out 
to identify the pathways of pollutants and potential source areas 
contributing to air pollution in the region. Using GADS meteorological 
data and hourly PM2.5 and PM10 concentration data from 2015 to 
mid-2022, backward trajectory simulations were conducted to model 
the movement of atmospheric pollutants over a 72-h period. The 
simulations were performed at a height of 500 meters and at four daily 
intervals (00:00, 06:00, 12:00, and 18:00 UTC).

The TrajStat 1.4.9 plug-in in Meteoinfo software was used for 
clustering and analyzing air mass trajectories across different seasons. 
The air mass trajectories were categorized into five types based on 
their movement patterns. Additionally, PM2.5 and PM10 pollution 
trajectories were classified according to the secondary standard limits 
outlined in the “Ambient Air Quality Standard (GB3095-2012) (35)”, 
which sets thresholds of 75 μg/m3 for PM2.5 and 150 μg/m3 for PM10. 
The number of pollution trajectories for each pollutant was calculated 
to assess the transport pathways of these pollutants in relation to 
TB transmission.

Finally, based on the identified pollution pathways and source 
areas (WPSCF and WCWT), hypotheses were proposed regarding the 
potential transmission routes of TB, predicting the source areas and 
the contribution levels of tuberculosis in this region.

Results

Overview of the research area

Figure 2 shows the geographical, administrative, and environmental 
distribution, along with site locations in northeast and southwest 
Xinjiang. Located in northwest China, Xinjiang is highlighted by a 
purple dot marking Kashgar, the focus of our analysis. Our Kriging 
interpolation sites include meteorological observation sites (red circles) 
and tuberculosis monitoring sites (black triangles). The region is divided 
into southern, northern, and eastern Xinjiang based on local customs.

Kashgar, in southwest Xinjiang, is surrounded by the Tianshan 
Mountains, Kunlun Mountains, and Pamir Plateau, and bordered by 
the Taklimakan Desert. Xinjiang has three main desert zones: 
Taklimakan, Gurbantünggüt, and Kumtag, classified as migratory, 
semi-fixed, and fixed deserts. Migratory Deserts: The Taklimakan 
Desert, in the Tarim Basin (Southern Xinjiang), is characterized by 
shifting sand dunes and harsh, arid conditions. It extends from Hotan 
to near Aksu and Korla, with highly mobile dunes. Semi-fixed Deserts: 
The edges of the Taklimakan near Kashgar, Aksu, and Hotan have 
semi-fixed dunes with some stabilizing vegetation. Parts of the Kumtag 
Desert, extending east toward Lop Nur (Eastern Xinjiang), are also 
semi-fixed. Fixed Deserts: The Gurbantünggüt Desert, in Northern 
Xinjiang’s Junggar Basin, features stabilized sand dunes due to sparse 
vegetation. The northern Taklimakan and parts of the Kumtag Desert 
also show characteristics of fixed deserts. Overall, Xinjiang’s deserts 
vary in dune mobility, with the Taklimakan dominant in the south and 
the Gurbantünggüt more stable in the north.

The descriptive statistics for both tuberculosis incidence and air 
quality index (AQI) across four regions of Xinjiang (Eastern, 
Northern, Southern, and overall Xinjiang) are presented in Table 1. 
The incidence rate of tuberculosis is “n/100,000.”
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Time series analysis of pollutants and 
pulmonary tuberculosis

The analysis of data for the Air Quality Index (AQI) and 
pulmonary tuberculosis (TB) incidence did not reveal any significant 
correlation or regression between the two variables. Both correlation 
analysis (p > 0.05) (Supplementary Table S1) and regression analysis 
(p > 0.05) (Supplementary Table S2) indicated a weak association, 
suggesting that changes in AQI have a limited impact on TB incidence.

As shown in Figures 3, 4, both the Air Quality Index (AQI) and 
tuberculosis (TB) incidence in Xinjiang exhibited significant trends 
from 2012 to 2023. Both AQI and TB incidence declined from 2012 
to 2018, followed by an upward trend in AQI and a sharp decline in 
TB incidence after 2018, mainly due to active interventions by the 

government and health authorities. Following the TB outbreak in 
2018, disease control departments learned from the incident and 
implemented proactive measures in collaboration with the 
government and healthcare sectors. The relationship between the 
pandemic’s lockdown measures and the decline in tuberculosis cases 
lies in the strict control of movement and reduced public interaction, 
which limited the spread of infectious diseases, including TB. The 
lockdown and isolation measures likely contributed to a decrease in 
TB transmission, as they reduced the opportunities for individuals to 
be exposed to infected people, especially in crowded settings.

There were significant regional fluctuations in air quality, 
particularly in Southern Xinjiang, which saw high AQI levels in 2012, 
2015, 2018, and 2022, indicating severe air quality deterioration. TB 
incidence also showed notable regional differences, with Southern 

FIGURE 2

(A) Geographical location, (B) altitude, (C) geographical environment, and (D) regional division distribution of site locations in Xinjiang.

TABLE 1 Descriptive statistics for tuberculosis incidence and AQI.

Region TB incidence (Mean ± SD) 95% CI AQI (Mean ± SD) 95% CI

Eastern 70.02 ± 21.61 56.97–83.08 52.73 ± 6.30 48.73–56.74

Northern 83.82 ± 21.43 70.87–96.77 53.90 ± 6.48 49.78–58.02

Southern 235.31 ± 92.44 179.45–291.18 64.19 ± 11.73 56.73–71.64

Xinjiang 166.62 ± 58.04 131.54–201.69 58.27 ± 8.03 53.17–63.38
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Xinjiang experiencing a sharp increase from 250 cases per 100,000 in 
2015 to over 450 cases per 100,000  in 2018, followed by a steady 
decline, returning to lower levels by 2022. Meanwhile, Eastern and 
Northern Xinjiang consistently maintained the lowest TB incidence 
rates during the study period.

The fitted curve in the figure indicates that the AQI has shown a 
long-term upward trend, which is associated with the industrialization 
and urbanization of the region. Among the models, the predictions 
for Southern and Northern Xinjiang are relatively accurate, with R2 
values of 0.45 and 0.58, respectively. The prediction model for the 
incidence rate of tuberculosis shows even higher accuracy, 
particularly in Northern Xinjiang, where R2 reaches 0.90, followed by 
Eastern Xinjiang with an R2 of 0.81. The fitting results for all regions, 
except Eastern Xinjiang, are statistically significant (p < 0.05).

Figure 5 illustrates that from 2010 to 2022, areas with high 
incidence of pulmonary tuberculosis in Xinjiang include Kashgar, 
Hotan, Akesu, and Kezilesu (Southern Xinjiang), while Kelamayi 
(Northern Xinjiang) has a low incidence. The correlation between 
AQI distribution (2013–2023, Figure 6) and tuberculosis incidence 
is evident in Southern Xinjiang, where higher pollution aligns 
with higher tuberculosis rates. In contrast, the relationship 
between AQI and low-incidence areas, like Northern Xinjiang, is 
less clear. In 2018, the tuberculosis incidence from high to low was 
Kashgar, Hotan, Akesu, and Kezilesu, mirroring the AQI pattern. 
From 2010 to 2022, the average tuberculosis incidence in Xinjiang 
was 166.66 per 100,000 people, with Kashgar reaching 377.43. The 
top counties-Yingjisha, Zepu, and Maigaiti (Southern 
Xinjiang)-had the highest rates. Severe air pollution in Kashgar, 

FIGURE 3

Temporal trends of air quality index (2012–2023) and tuberculosis incidence rates (2010–2022) in eastern, northern, southern Xinjiang, and Xinjiang 
overall.

FIGURE 4

Temporal trends of air quality index (2012–2023) and tuberculosis incidence rates (2010–2022) in eastern, northern, southern Xinjiang, and Xinjiang 
overall.
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particularly from 2013 to 2023, correlates with the high incidence 
of tuberculosis cases. Referring to the tuberculosis trend in 
Kashgar from 2010 to 2022 (Figure  7), Tashkurgan (Southern 
Xinjiang) had the lowest prevalence, likely due to its sparse 
population in a desert area, while other parts of Kashgar remain 
highly affected.

Spatial correlation analysis of air pollution 
and incidence of pulmonary tuberculosis

Figure 8 shows the spatial distribution of pulmonary tuberculosis 
incidence in the Xinjiang Uygur Autonomous Region from 2011 to 
2022. The southern Tarim Basin, surrounded by the Tianshan 
Mountains (including Kashgar, Hotan area, Aksu, and other areas of 
southern Xinjiang), has higher incidence rates, while the northern 
Zhungeer Basin (including kelamayi, Urumqi, Changjihuizu 

Autonomous Prefecture, and other areas of northern Xinjiang) shows 
relatively lower rates. This may be related to factors such as higher 
population density, relatively limited medical resources, and 
environmental and climatic conditions in southern Xinjiang, leading 
to significant regional differences in incidence rates between southern 
and northern Xinjiang.

Due to non-normal distribution and unequal variances in 
tuberculosis incidence (Levene statistic = 3.144, p = 0.03355), a 
Kruskal-Wallis test was performed, revealing significant regional 
differences (p < 0.0001). Dunn-Sidak post-hoc comparisons showed 
significantly higher tuberculosis incidence in Southern Xinjiang 
compared to Northern Xinjiang (Table 2).

Meanwhile, Figure 9 illustrates the spatial distribution of AQI, 
which largely aligns with the spatial distribution of tuberculosis 
incidence. Southern Xinjiang, including Kashgar, Hotan area, and 
Aksu, experiences heavier pollution, while northern Xinjiang, such as 
Urumqi and Hami, sees relatively lighter pollution.

FIGURE 5

Incidence trend of pulmonary tuberculosis in Xinjiang Uygur Autonomous Region from 2010 to 2022.

FIGURE 6

Time distribution characteristics of AQI in Xinjiang Uygur Autonomous Region from 2013 to 2023.
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Notably, Urumqi, located in the central region of Xinjiang and 
surrounded by the Tianshan Mountains, shows higher tuberculosis 
incidence at specific sites according to Kriging interpolation, although 
the overall spatial analysis classifies the area as blue, indicating lower 
incidence. This contrasts with the AQI distribution, where Urumqi is 

marked red due to high pollution. This discrepancy is likely due to the 
uneven distribution of monitoring stations. Urumqi, a valley city near 
the Gurbantunggut Desert (semi-fixed), located in the northern foot 
of the middle section of the Tianshan Mountains and the southern 
margin of the Junggar Basin, is hindered by Mountain range that limit 

FIGURE 7

Trend of tuberculosis incidence in Kashgar, Xinjiang Uygur Autonomous Region, 2010–2022.

FIGURE 8

Spatial distribution characteristics of pulmonary tuberculosis incidence in Xinjiang Uygur Autonomous Region from 2011 to 2022.
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pollutant dispersion, resulting in consistently poor air quality. Despite 
its high pollution, Urumqi and Hami, unlike Kashgar and Hotan, are 
not directly impacted by desert dust. The overall pattern indicates that 
high tuberculosis incidence in southern Xinjiang, particularly in 
deeper areas of the Kunlun and Tianshan mountain regions, may 
be influenced by windblown desert particulate matter, as suggested by 
the hotspot areas in Figure 2. This supports the trend of southern 
Xinjiang being a high-risk area for tuberculosis, while northern 
Xinjiang remains relatively low-risk, as reflected in both Figures 8, 9.

This phenomenon may be  influenced by various factors. It is 
important to note that these analyses are based solely on the available 
data and represent hypothetical interpretations. The actual situation 
may be affected by multiple factors, including but not limited to local 
environmental policies, industrial development, population density, 
increased industrial activities, or insufficient public health measures. 
The Kruskal-Wallis test revealed no statistically significant differences 
in AQI across regions (χ2 = 4.722, p = 0.1933), suggesting that regional 
variations in AQI are not significant.

The Kruskal-Wallis test revealed significant differences in 
tuberculosis incidence, but AQI did not show a corresponding 
significant difference, despite following similar regional patterns. This 
may be due to the uneven distribution of monitoring stations, with more 
stations in rural and suburban areas compared to urban centers, leading 
to reduced statistical power in urban regions. Tuberculosis monitoring 
stations are concentrated in hospital districts, while AQI monitoring 
stations are mostly located in suburban areas, and the scarcity of urban 
stations may affect AQI’s statistical results. By including all available 
stations rather than random sampling, we enhanced the reliability of the 
spatial analysis. Southern Xinjiang, particularly regions like Kashgar, 
Hotan, and Aksu, showed higher tuberculosis incidence and AQI values, 
suggesting a potential correlation between air quality and health 
outcomes. These areas, surrounded by mountains and the Taklamakan 
Desert, may experience higher levels of particulate matter, contributing 
to both elevated AQI and tuberculosis rates. In contrast, Northern and 
Eastern Xinjiang exhibit better air quality and lower tuberculosis 
incidence, likely due to fewer environmental stressors such as desert 
dust. These spatial patterns are shown in Figure 10.

Cold hot spot analysis

Figures 11, 12 clearly show the differences between southern and 
northern Xinjiang through hot and cold spot analyses. The spatial 
hotspots for both AQI and tuberculosis incidence are located in 
southern Xinjiang, particularly in Kashgar, Hotan, and Aksu, which 
are surrounded by mountains on three sides and face the Tarim Basin 
and the Taklamakan Desert (migratory). The cold spots are mostly 
found in northern Xinjiang or other sparsely populated areas. Notably, 
in Figure 10, the AQI hotspots include the Urumqi area (located in the 
Tianshan mountain pass, in the central part of the Xinjiang map), 

whereas Figure 9 shows no corresponding tuberculosis hotspots in 
this region. This could be due to the significant spatial variability in 
tuberculosis distribution, where smaller Individual cases fail to 
influence the overall pattern of hot and cold spots.

Cluster analysis of aerosol transmission 
trajectory

Trajectory ① (blue line) in Figure 13 traverses from the northern 
junction of the West Tianshan Mountains to the southern junction of 
the West Kunlun Mountains, extending westward and eastward 
through Tajikistan to Kashgar. Trajectory ② (Green Line) extends 
from east to west, passing through the Aksu region, 
Bayinguolengmenggu Mongol Autonomous Prefecture, and Hotan 
area region to Kashgar in the west. Trajectory ③ (yellow line) extends 
from northwest to southeast, passing through Kyrgyzstan and the 
Kezilesukeerkezi Kyrgyz Autonomous Prefecture to Kashgar. 
Trajectory ④ (red line) extends from southwest to northeast, passing 
through Pakistan, including Islamabad, to Kashgar. Trajectory ⑤ 
(purple-red line) extends from northeast to southwest, passing 
through Kyrgyzstan and the Aksu region to Kashgar.

The Kashgar region experiences increased susceptibility to dust 
during the second quarter of each year. Trajectories originating from 
the Taklimakan Desert contribute 30.88 and 6.73% to Trajectories ② 
and ⑤, respectively, transporting a significant amount of dust aerosols 
to the Kashgar region. The proportion of PM10 pollution trajectories 
reaches 59.73 and 65.79%, with average trajectory concentrations of 
500.72 and 471.47 ug/m3, respectively, higher than those in other 
directions, indicating substantial influence of dust on PM10 pollution 
levels in the second quarter. Trajectory 4 exhibits the shortest airflow 
transmission trajectory, primarily influenced by the southern Kunlun 
Mountains, leading to limited pollutant diffusion and accumulation 
of atmospheric pollutants, with higher average concentrations of PM2.5 
and PM10. Trajectories ① (49.09%) and ③ (9.96%) cover longer 
transmission distances, originating mainly from Tajikistan and 
Pakistan, with lower pollution concentrations. Further details are 
reported in Table 3.

Notably, the main wind direction and the direction of topographic 
barriers are consistent with the previous hot and cold spot results, as 
well as the spatial correlation results. The meteorological cluster 
extending deeper into the desert has the largest proportion.

Prediction of potential source area of 
tuberculosis

The Weighted Potential Source Contribution Function (WPSCF) 
and Concentration Weighted Trajectory (WCWT) analysis provide 
insights into the influence of potential aerosol source areas on the 

TABLE 2 Dunn-Sidak multiple comparison results for tuberculosis incidence.

Group 1 Group 2 Estimate (lower bound, upper bound) p-value

Northern Southern −431.83 (−483.59, −380.07) 0

Northern Eastern 82.58 (−26.85, 192.01) 0.19973

Southern Eastern 514.41 (406.14, 622.67) 0
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Kashgar region. Figures 14, 15 present the PSCF and CWT analyses 
for PM2.5 and PM10 concentrations during the second quarter (April–
June, which coincides with the peak incidence period for tuberculosis 
in this region.) from 2015 to 2022.

For PM2.5, the predominant pollution sources are located in the 
northeast, with severe pollution clusters concentrated in Aksu, Alar, 
Korla, and Urumqi, primarily originating from the Taklimakan 
Desert. The airflow patterns disperse moderate and mild pollution 
clusters toward the southwest and west. This is critical for 
epidemiology, as aerosols, including PM2.5, can facilitate the 
suspension of pathogens such as Mycobacterium tuberculosis, allowing 
them to remain airborne longer due to their attachment to fine 
particles. The combination of dust, air pollution, and the presence of 
resistant pathogens increases the risk of tuberculosis (TB) 
transmission, especially given Kashgar’s high population density and 
crowded living conditions.

The trajectory analysis for PM2.5 shows that WCWT values 
exceed 150 μg/m3 in regions such as Aksu, Alar, and Hotan, with 
peak values reaching 300 μg/m3 in some areas. This indicates a 
significant influence of aerosols in southwestern China on the 
region’s air quality and their potential role in facilitating the 
spread of TB.

In contrast, PM10 pollution is widely dispersed but severe in 
specific areas. Notably, the southern region of Kashgar, 
particularly areas affected by the Kunlun Mountains and located 
on the leeward slope, experiences significant pollution 

accumulation due to the blockage of air masses. WCWT values for 
PM10 exceed 400 μg/m3 in the northwest Taklimakan Desert and 
reach over 250 μg/m3 in the southern region of Kashgar, where the 
Kunlun Mountains contribute to the buildup of pollution. This 
geographic and meteorological pattern correlates with the high 
incidence of tuberculosis in Kashgar, demonstrating distinct 
regional characteristics.

These findings highlight the critical interaction between air 
pollution (specifically PM2.5 and PM10), the geographic environment, 
and tuberculosis incidence in Kashgar. The unique topographic and 
environmental factors exacerbate pollution levels, particularly in 
regions adjacent to major deserts and mountainous barriers, further 
intensifying the potential for airborne transmission of 
Mycobacterium tuberculosis.

Discussion

The complex impacts of air pollution on human immunity 
involve inflammatory responses, oxidative stress modulation, and 
respiratory health (36–38). Fine particulate matter (PM10, PM2.5) has 
gained considerable attention for harboring pathogens like 
Mycobacterium tuberculosis that can facilitate their spread among 
populations (39). Studies have shown that exposure to pollutants, 
such as particulate matter (PM2.5), can alter immune system function, 
weakening the body’s defense mechanisms against tuberculosis and 

FIGURE 9

Spatial distribution characteristics of AQI in Xinjiang Uygur Autonomous Region from 2012 to 2023.
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thus increasing transmission risk (40). In arid and semi-arid regions, 
environmental factors such as low humidity, high temperatures, and 
dust storms play a significant role in tuberculosis (TB) transmission. 

Recent studies have shown that in desert climates, such as those in 
Central Asia, the dry conditions and dust storms contribute to the 
prolonged survival of Mycobacterium tuberculosis in the air, 

FIGURE 10

Boxplot comparison of tuberculosis incidence and air quality index (AQI) across Xinjiang regions. (A) Boxplot of regional tuberculosis incidence 
(B) Boxplot of tuberculosis incidence at county level (C) AQI box plot at regional level (D) AQI box plot at county level.

FIGURE 11

Cold hot spot analysis of pulmonary tuberculosis incidence in Xinjiang Uygur Autonomous Region from 2011 to 2022.
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FIGURE 12

Cold hot spot analysis of AQI in Xinjiang Uygur Autonomous Region from 2012 to 2023.

FIGURE 13

The intersection of the western part of the Tianshan mountains and the western part of the Kunlun mountains: a topographic map of the backward 
clustering trajectory in Kashgar [the second quarter (April–June) of 2015–2022].

TABLE 3 Meteorological clustering trajectories of PM2.5 and PM10 in Kashgar from April to June in 2015–2022.

Trajectories 
(%)

PM2.5 PM10

Number Mean 
(ug/m3)

Pollution 
number (%)

Mean 
pollution 
trajectory 

(ug/m3)

Number Mean 
(ug/m3)

Pollution 
number (%)

Mean 
pollution 
trajectory 

(ug/m3)

1 (49.09) 1,362 54.48 25 (18.65) 171.20 1,361 181.59 455 (33.43) 402.25

2 (30.88) 819 142.05 407 (49.69) 251.22 817 500.72 488 (59.73) 784.55

3 (9.96) 282 55.66 54 (19.15) 173.20 282 195.67 91 (32.27) 452.57

4 (3.33) 91 84.05 37 (40.66) 154.61 91 250.97 50 (54.95) 389.67

5 (6.73) 191 128.78 98 (51.31) 217.46 190 471.47 125 (65.79) 672.01

All (100) 2,745 86.88 850 (100) 214.25 2,740 300.55 1,209 (100) 587.72
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increasing the risk of airborne transmission (41). Additionally, 
research comparing desert and temperate climates suggests that areas 
with better air quality and higher humidity tend to have lower TB 
transmission rates due to reduced airborne bacterial survival (42, 43). 
Although microscopic analyses have revealed potential links between 
tuberculosis and air quality (44), current research has not fully 
addressed how particulate matter propagates or interacts with 
geographic context, demographic health effects, and transmission 
mechanisms (45, 46). This study uses an epidemiological approach 
with geographical and meteorological data to analyze dust 
transmission, but our ability to trace Mycobacterium tuberculosis 
spread is limited by the lack of strain-based evidence, making any 
claims about tuberculosis transmission speculative and requiring 
further investigation.

When examining the relationship between air pollution and 
tuberculosis, several uncertainties must be taken into account. These 
include variations in air pollution measurement methods and the 
selection of pollutants such as PM2.5, nitrogen oxides, and ozone, 
which can influence the findings (47). The socioeconomic 
characteristics of the study population, especially in low-income areas 
with high levels of air pollution and tuberculosis incidence, complicate 
the determination of whether air pollution serves as an independent 
risk factor (48, 49). Although studies control for confounders like 
smoking, nutrition, population density, and healthcare access, these 

factors may still affect results (50). Tuberculosis (TB) is a chronic 
disease with a long incubation period, making it crucial to account for 
the time lag when analyzing the relationship between air pollution and 
TB. Future research should apply models such as Distributed Lag 
Nonlinear Models (DLNM) to conduct a more detailed analysis of 
time-lagged cumulative effects in the spatial distribution of diseases, 
especially by interpreting the latency period between exposure and 
disease onset. This approach will help clarify the relationship between 
air pollution and TB and reduce potential biases arising from lag 
effects (51, 52). Geographic location and climate conditions can also 
influence how this relationship manifests across regions (53). 
Additionally, demographic factors such as age, gender and 
socioeconomic status across regions may further influence 
tuberculosis incidence (54, 55). While Xinjiang’s population structure 
has stabilized under government policies, healthcare in some regions, 
especially in southern and northern Xinjiang, remains underdeveloped 
(56). Our study relies on crude incidence rates, which may affect the 
results (57).

The Kashgar region of Xinjiang is surrounded by mountains on 
three sides (58). The southern part of the northern Tianshan 
Mountains lies horizontally, and the Pamir Plateau stands in the 
west. The southern part is the Karakoram Mountains stretching 
from east to west, and the eastern part is the vast Taklimakan Desert 
(59). The dominant wind direction is easterly wind, which causes 

FIGURE 14

PSCF and CWT analysis of PM2.5 in Kashgar region in the second quarter of 2015–2022 (April–June).

FIGURE 15

PSCF and CWT analysis of PM10 in Kashgar region in the second quarter of 2015–2022 (April–June).
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floating dust to stay in this area for a long time (60). The AQI shows 
a seasonal trend, with higher levels in the spring and winter and 
lower levels in the summer and autumn (61). In spring and summer, 
there are more blowing sand and dust storms, resulting in severe air 
pollution (62). At the same time, the incidence of tuberculosis 
exhibits two peaks throughout the year: one during the winter AQI 
peak and another during April and May, when sandstorms are most 
frequent (63). The terrain of the three mountains and two basins is 
prone to heavy pollution deposition. The southwesterly wind in the 
high altitude area prevents the diffusion of PM2.5 and PM10 to the 
southwest to a certain extent (64). It is blocked by the Tianshan 
Mountains, Kunlun Mountains and Pamirs. The spatial diffusion of 
pollutants and the potential source area are perpendicular to the 
mountains, which also verifies the deposition of particulate matter 
in Kashgar with a high incidence of tuberculosis. The strong 
correlation between pollutant distribution, tuberculosis incidence, 
and pollution source characteristics supports the impact of 
pollution on tuberculosis (65, 66). This study found significant 
differences in pulmonary tuberculosis incidence and atmospheric 
particulate matter concentration between southern and northern 
Xinjiang, providing evidence to support previous research (12). 
While the direct causal link between these pollutants and specific 
health outcomes like tuberculosis is not fully established by our 
study, it is reasonable to hypothesize that such an accumulation 
could potentially contribute to the observed health trends in the 
region (67, 68). Due to Kashgar’s unique environmental conditions, 
there is no better evidence of the impact of atmospheric particulate 
matter and dust transmission on tuberculosis incidence than in this 
area (69).

Conclusion

Spatial and temporal analysis using Kriging interpolation and 
time series observation reveals a significant overlap between high 
tuberculosis (TB) incidence areas and regions with poor air quality in 
southern Xinjiang, divided by the Tianshan Mountains. Hot and cold 
spot analysis further confirms this pattern. Specifically, the case study 
of dust transmission in Kashgar highlights the role of atmospheric 
pollutants in influencing TB incidence in this unique environment. 
Inhalation of particulate matter impairs immune function, increasing 
disease susceptibility, while providing an environment conducive to 
Mycobacterium tuberculosis proliferation. The accumulation of 
airborne pollutants is strongly linked to higher TB incidence in the 
region. Trajectory analysis and meteorological clustering reveal 
pathways and source areas for pollutants, showing that atmospheric 
particulate matter significantly contributes to the increased risk of 
dust-borne TB in Kashgar. Although this phenomenon is evident, 
direct epidemiological evidence, such as bacterial strain analysis, is 
lacking to confirm TB transmission via these particulates. The 
hypothesis that particulate matter carries Mycobacterium tuberculosis 
remains speculative but plausible given the environmental conditions. 
To reduce health risks, residents should avoid outdoor activities, 
especially strenuous exercise, during high pollution periods to limit 
exposure to harmful particles. Policymakers should focus on measures 
like sandstorm prevention, afforestation, land reclamation, and 
wetland protection to address the environmental factors worsening 
air quality.

Limitations

Our study has several limitations: (1) There is no strain-based 
epidemiological evidence or experimental proof indicating that 
these particulates carry Mycobacterium tuberculosis from polluted 
source areas to high-incidence regions. Therefore, this article 
merely describes local phenomena and presents possible 
speculations. (2) The unevenness in our data reflects the historical 
development of air quality stations in Xinjiang, with stations 
increasing over time and the earliest records from 2012. Prior to 
that, few national testing stations existed, limiting spatial analysis. 
Additionally, lag effects between TB and air quality must 
be  considered. (3) Our research focuses solely on macro-level 
statistical analysis of time and space, neglecting micro-level 
experimental and methodological research. (4) We  exclusively 
consider environmental factors such as medicine and meteorology, 
overlooking sociological factors like population dynamics and 
potential confounding variables. The incidence rate of crude 
tuberculosis is affected by many factors. (5) The annual levels of 
airborne pollutants and tuberculosis incidence are shown; however, 
there is no statistical analysis proving the quantitative impact of air 
pollution on the disease.
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