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Background: Sarcopenia leads to substantial health and well-being impairments 
in older adults, underscoring the need for early detection to facilitate 
intervention. Despite its importance, community settings face challenges with 
data accessibility, model interpretability, and predictive accuracy.

Objective: To develop a local, data-driven, machine learning-based predictive 
model aimed at identifying high-risk sarcopenia populations among community-
dwelling older adults.

Methods: The study encompassed 910 participants over 60 years old from 
the National Basic Public Health Services (NBPHS) program. Sarcopenia 
was ascertained by the Asian Working Group for Sarcopenia (AWGS) criteria. 
We  leveraged Logistic Regression and seven additional machine learning 
models for risk prediction, employing the LASSO method for feature selection, 
employing LASSO regression with 10-fold cross-validation for feature selection. 
The optimal lambda.1se threshold identified four key predictors forming the 
w-ACT model (weight, Age, Calf circumference, Triglycerides). A comprehensive 
set of 10 diagnostic indicators was utilized to assess model performance.

Results: The Random Forest-based w-ACT model demonstrated superior 
performance, with an AUC of 0.872 (95%CI: 0.793,0.950) (validation set) and 
MCC of 0.566, 0.841 (95%CI: 0.777,0.904) (test set) and MCC of 0.511. Key 
predictors included weight, age, calf circumference, and triglycerides. SHAP 
analysis confirmed clinical interpretability.

Conclusion: The w-ACT model offers a reliable, interpretable tool for 
community-based sarcopenia screening, leveraging accessible variables to 
guide preventive care.
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1 Introduction

Sarcopenia, characterized by the progressive loss of muscle mass, 
strength, and function, is a prevalent condition among older adults 
(1). Its prevalence ranges from 10 to 27% in individuals aged over 
60 years (2). The impact of sarcopenia on older adults is multifaceted, 
encompassing various dimensions of health and well-being. Research 
has demonstrated that sarcopenia is correlated with functional 
impairment, physical disability, and an elevated susceptibility to 
adverse health-related outcomes (3). Furthermore, as the largest 
metabolic organ of the human body, the dysfunction of skeletal 
muscle is also associated with the increased risk of osteoporosis (4), 
diabetes metabolism (5), cardiovascular diseases (6), and other 
chronic diseases, which ultimately leads to the decease of physical 
activity, and limitations in health-related quality of life (7). Given the 
detrimental impact of sarcopenia, multiple consensus underscores the 
significance of early detection, intervention, and management 
strategies (8, 9).

In recent years, propelled by advancements in machine learning 
and artificial intelligence, researchers have employed statistical or 
machine learning models to forecast specific health-related outcomes 
(10). These models have the capacity to analyze complex healthcare 
data and provide valuable insights for disease risk, treatment response, 
or healthcare resource utilization (11). The prediction of sarcopenia 
has been a subject of extensive research, with various models and tools 
being developed to identify and predict the risk of sarcopenia in 
different patient populations. For instance, Shin et al. developed a 
predictive model for sarcopenia utilizing multiple biomarkers in 
community-dwelling older adults (12). Similarly, Xu et al. developed 
a multivariable model based on ultrasound imaging features of the 
gastrocnemius muscle to identify patients with sarcopenia (13). 
Several researchers developed and validated of a nomogram for 
predicting sarcopenia in community-dwelling older adults (14, 15).

While current studies collectively support the feasibility of using 
physiological, biochemical, and imaging indicators to predict sarcopenia, 
existing sarcopenia prediction models face critical limitations in 
community settings. One of the primary limitations is the availability of 
data. The development of predictive models typically requires a large 
amount of clinical data. However, compared to hospital settings, there 
may be difficulties in obtaining older adult patients’ information and test 
results in community setting. Thus, the reliance on specific modalities 
such as ultrasound and serum biomarkers for risk stratification may 
pose limitations in terms of accessibility and standardization (16, 17). 
Another critical limitation is the transferability of model. Current 
evidence emphasizes specific population groups, such as cancers patients 
(18) and chronic patients (19–21), which may hinder the widespread 
application of community screening of certain prediction models, 
necessitating the development of cost-effective, universal screening 
methods. Additionally, the lack of data from China using precise 
assessments for sarcopenia, such as skeletal muscle area or skeletal 

muscle mass index, underscores the need for more comprehensive and 
standardized diagnostic criteria. Thus, this highlights the importance of 
highly actionable, wide applicability, and well-performance insights in 
the implementation of prediction models in sarcopenia.

China’s National Basic Public Health Services (NBPHS) program, 
launched in 2009 by the Chinese government, is a nationwide 
healthcare initiative designed to enhance population health by 
delivering essential preventive and primary care services (22). A key 
component of the program is annual health examinations for adults 
aged 60 and above, conducted at local community health centers (23). 
The NBPHS dataset offers several unique advantages. Firstly, unlike 
hospital-based datasets, NBPHS captures community-dwelling older 
adults without selection bias (e.g., excluding those with severe 
comorbidities). Secondly, prior studies relied on niche biomarkers 
(e.g., serum leptin) or imaging (e.g., CT) that are impractical for 
community screening. NBPHS data bridge this gap by using accessible, 
low-cost variables scalable to resource-limited settings. More 
importantly, the program’s nationwide infrastructure and standardized 
protocols ensure that any risk models developed from these data can 
be immediately integrated into existing community health workflows.

In this study, we developed and validated a machine learning 
model (w-ACT: weight, Age, Calf circumference, Triglycerides) 
using routinely collected NBPHS variables to predict sarcopenia risk 
among community-dwelling older adults. Through comparative 
analysis of eight algorithms, our Random Forest-based model 
achieved superior performance while maintaining clinical 
interpretability. The final w-ACT model incorporates four readily 
accessible predictors—weight, Age, Calf circumference, and 
Triglycerides—addressing critical gaps in community screening 
through three key innovations: (1) replacing specialized biomarkers 
with routine examination metrics, (2) demonstrating cross-regional 
generalizability through external validation, and (3) providing 
transparent risk stratification. This approach establishes a practical 
framework for integrating sarcopenia risk assessment into China’s 
primary care system while maintaining diagnostic accuracy 
comparable to resource-intensive methods.

2 Materials and methods

2.1 Study design

This study follows the Declaration of Helsinki and has been 
approved by the Ethics Committee of Chongqing Medical University 
(Approval number: 2022-125), written consent was obtained each 
participant. This study adheres to the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) reporting guidelines (24). The flowchart of the 
methodology was shown in Figure 1.

2.2 Participants and data sources

2.2.1 Inclusion and exclusion criteria
Inclusion criteria for the study were: participation in the NBPHS 

program, age over 60 years, and voluntary participation with informed 
consent. Exclusion criteria include: contraindications for Bioelectrical 
Impedance Analysis (BIA) such as pacemakers or artificial joints; 

Abbreviations: NBPHS, National Basic Public Health Services; DT, Decision tree; 

GNB, Gaussian naïve Bayes; GBM, Light gradient boosting machine; KKNN, 

K-nearest neighbors; LR, Logistic regression; RF, Random forest; SVM, Support 

vector machine; XGB, Extreme gradient boosting; AUC, Area under the curve; CI, 

Confidence interval; MCC, Matthews correlation coefficient; PPV, Positive predictive 

value; NPV, Negative predictive value.
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presence of clinically visible edema or use of diuretics affecting BIA; 
severe cognitive impairment (Minimum Mental State Examination 
score ≤ 10); severe disability (Activities of Daily Living scale score ≤ 
40); patients in the terminal or acute phase of illness; and patients with 
muscle and nerve diseases such as genetic muscular dystrophy, 
mitochondrial diseases, myalgia, and myopathy.

2.2.2 Sample size
To develop a robust prediction model, we  followed four-step 

sample size calculation (25). Considering a binary outcome model, 
we set an acceptable difference of 0.05 in R2 and a margin of error of 

0.05 for intercept estimation. With a primary outcome measure 
proportion of 0.175 from our previous study, 22 predictor variables, 
an expected shrinkage factor ≤10%, a C-statistic of 0.939 (26), and a 
Cox & Snell R2 of 0.382, we calculated a minimum sample size of 565 
participants for model development, equating to 99 events and 4.49 
events per predictor.

2.2.3 Outcome variable
Outcome of interest was sarcopenia (0 = non-sarcopenic group, 

1 = sarcopenic group) and assessed by Asian Working Group for 
Sarcopenia (AWGS) in 2019 (1).

FIGURE 1

Flowchart summary of study methodology.
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2.3 Data sources

2.3.1 Setting
Participants were recruited from four community health centers 

in Chongqing and one rural center from May to October 2023.

2.3.2 Data collection
According to the third edition of the NBPHS guidelines (27), this 

study includes four categories: general background information, 
lifestyle and health assessment, physical examination, and auxiliary 
examinations, totaling 59 predictive indicators.

2.4 Data preprocessing and features 
selecting

For model development, community dataset data were split 8:2 for 
training and internal validation using the caret package. County data 
were used for external validation. To handle missing values, multiple 
imputation was used instead of direct exclusion to prevent bias and 
loss of statistical power. Features with over 30% missing values were 
removed (28, 29). Data was normalized using Z-score transformation, 
and random oversampling addressed class imbalance, referring to 
previous research (30). The LASSO method with a 10-fold cross-
validation was used to select features. No participants were excluded 
due to missing data; multiple imputation allowed full utilization of all 
available records while minimizing bias.

2.5 Model developing, evaluating and 
explaining

For model development, we followed guidelines for biomedical 
machine learning prediction models (31) and used Logistic Regression 
and seven ML models with the Tidymodels package. Models were 
validated with internal and external datasets. Discrimination was 
assessed using 10 indicators. Scores ranged from 1 to 8, with higher 
scores indicating better performance, except for the Brier Score. The 
overall model performance score was calculated by summing 
individual scores. Unlike accuracy or F1-score, Matthews Correlation 
Coefficient (MCC) accounts for all four confusion matrix categories 
(TP, TN, FP, FN), making it particularly informative for binary 
classification with imbalanced classes (32). Thus, MCC was selected 
as the primary comparison metric. This method has been reported in 
previous studies (33, 34).

The best-performing model was analyzed using SHAP (SHapley 
Additive exPlanations) values to quantify and visualize feature 
importance, including the directionality and magnitude of each 
predictor’s effect on sarcopenia risk (35), supplemented by the 
iBreakDown package for perturbation-based validation (36).

2.6 Statistical analysis

For continuous variables with normal distribution, mean and SD 
are reported; for skewed data, mean and IQR are used. Independent 
t-tests compare continuous variables, while chi-square or Fisher’s 

exact tests compare categorical variables between participants with 
and without sarcopenia. Analyses were done using R software version 
4.0.2, with significance at p < 0.05.

3 Results

3.1 Participants characteristics

A total of 1,000 older adult individuals were initially screened. 
After excluding 15 participants with incomplete data, 53 with missing 
diagnostic data, and 22 with BIA contraindications, our final analytical 
sample comprised 910 participants. The cohort’s mean age was 
71.76 ± 5.67 years, with 44.2% being male. Sarcopenia prevalence was 
20.1% (183 cases). Complete demographic characteristics stratified by 
sarcopenia status are presented in Table 1, while detailed demographic 
and clinical characteristics for each subset provided in Supplementary  
Table S1 (training), Supplementary Table S2 (validation), and 
Supplementary Table S3 (test).

3.2 Features selecting

The Lasso regression with 10-fold cross-validation was trained 
using distinct features from sarcopenic and non-sarcopenic groups, as 
shown in Figure 2. The optimal lambda.1se threshold was applied for 
model selection, yielding four significant predictors: weight, age, calf 
circumference, and triglycerides.

3.3 Model developing and performance 
evaluating

In the model’s comprehensive scoring system, the Random Forest 
(RF) showed the best predictive performance in internal validation, 
with a score of 61 (Figure 3A; Table 2), followed by Logistic Regression 
(LR) with 57 and Gradient Boosting Machine (GBM) with 54. In the 
external validation set, the top scores were for RF (64), Extreme 
Gradient Boosting (XGB) (63), and Gaussian Naïve Bayes (GNB) (37) 
(Figure 3B; Table 3). Model comparison through ROC curve analysis 
was shown in Supplementary Figures S1, S2.

RF and XGB both demonstrated good performance across both 
datasets, with RF being particularly outstanding in both internal and 
external validations, making it a top choice as the primary model. LR 
performs well with linearly separable problems but needs 
improvement in its generalization to external datasets. Thus, it is 
considered best to use RF as the baseline model due to its reliable 
performance and strong generalization capabilities across various 
datasets. The RF-based predictive model has been set as the optimal 
model and is named the w-ACT model after the initial letters of the 
risk factors.

3.4 Model explaining

In the internal validation set, SHAP analysis and permutation 
importance scoring revealed the hierarchical contribution of w-ACT 
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TABLE 1  Demographic and clinical characteristics of full participants (n = 910).

Variables Categories Overall 
(n = 910)

Non-sarcopenia 
(n = 727)

Sarcopenia 
(n = 183)

p-value

Gender (%) Female 508 (55.8) 405 (55.7) 103 (56.3) 0.955

Male 402 (44.2) 322 (44.3) 80 (43.7)

Education level (%) Illiterate 103 (11.3) 76 (10.5) 27 (14.8) 0.029

Elementary education 140 (15.4) 102 (14.0) 38 (20.8)

Junior school education 375 (41.2) 310 (42.6) 65 (35.5)

High school education 175 (19.2) 139 (19.1) 36 (19.7)

Tertiary education 117 (12.9) 100 (13.8) 17 (9.3)

Marital status (%) Married 703 (77.3) 569 (78.3) 134 (73.2) 0.063

Divorced 17 (1.9) 15 (2.1) 2 (1.1)

Widowed 130 (14.3) 93 (12.8) 37 (20.2)

Other/ Prefer not to answer 60 (6.6) 50 (6.9) 10 (5.5)

Employment status (%) Retired 839 (92.2) 671 (92.3) 168 (91.8) 0.945

Engaged in farming/work 71 (7.8) 56 (7.7) 15 (8.2)

Living situation (%) Living alone 139 (15.3) 113 (15.5) 26 (14.2) 0.031

Living with spouse 457 (50.2) 373 (51.3) 84 (45.9)

Living with children 126 (13.8) 88 (12.1) 38 (20.8)

Living with spouse and 

children

159 (17.5) 127 (17.5) 32 (17.5)

Others 29 (3.2) 26 (3.6) 3 (1.6)

Medical insurance status (%) Resident medical insurance 135 (14.8) 104 (14.3) 31 (16.9) 0.002

Employee medical insurance 704 (77.4) 577 (79.4) 127 (69.4)

Others 71 (7.8) 46 (6.3) 25 (13.7)

Overall assessment of your health status 

(%)

Very poor 81 (8.9) 59 (8.1) 22 (12.0) 0.001

Relatively poor 354 (38.9) 266 (36.6) 88 (48.1)

Relatively good 420 (46.2) 352 (48.4) 68 (37.2)

Very good 55 (6.0) 50 (6.9) 5 (2.7)

Traditional Chinese medicine constitution 

(%)

Balanced constitution 155 (17.0) 117 (16.1) 38 (20.8) <0.001

Dampness-heat constitution 75 (8.2) 51 (7.0) 24 (13.1)

Phlegm-dampness 

constitution

151 (16.6) 120 (16.5) 31 (16.9)

Qi-deficiency constitution 243 (26.7) 227 (31.2) 16 (8.7)

Yang-deficiency constitution 277 (30.4) 204 (28.1) 73 (39.9)

Yin-deficiency constitution 9 (1.0) 8 (1.1) 1 (0.5)

Average sleep time in the past month (%) <6 h 349 (38.4) 280 (38.5) 69 (37.7) 0.035

6 ~ 8 h 408 (44.8) 336 (46.2) 72 (39.3)

>8 h 153 (16.8) 111 (15.3) 42 (23.0)

Average daily step count in the last 3 days 

(%)

<2000 steps 156 (17.1) 111 (15.3) 45 (24.6) <0.001

2000 ~ 4,000 steps 164 (18.0) 119 (16.4) 45 (24.6)

4,000 ~ 6,000 steps 193 (21.2) 162 (22.3) 31 (16.9)

6,000 ~ 8,000 steps 159 (17.5) 125 (17.2) 34 (18.6)

8,000 ~ 10,000 steps 63 (6.9) 56 (7.7) 7 (3.8)

>10,000 steps 175 (19.2) 154 (21.2) 21 (11.5)

Hypertension (%) No 338 (37.1) 267 (36.7) 71 (38.8) 0.665

Yes 572 (62.9) 460 (63.3) 112 (61.2)

(Continued)
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TABLE 1  (Continued)

Variables Categories Overall 
(n = 910)

Non-sarcopenia 
(n = 727)

Sarcopenia 
(n = 183)

p-value

Diabetes (%) No 611 (67.1) 484 (66.6) 127 (69.4) 0.523

Yes 299 (32.9) 243 (33.4) 56 (30.6)

Smoking in the past 3 months (%) No 794 (87.3) 633 (87.1) 161 (88.0) 0.837

Yes 116 (12.7) 94 (12.9) 22 (12.0)

Drinking alcohol in the past 3 months (%) No 805 (88.5) 636 (87.5) 169 (92.3) 0.087

Yes 105 (11.5) 91 (12.5) 14 (7.7)

Pain symptoms in the past 3 months (%) No 856 (94.1) 687 (94.5) 169 (92.3) 0.355

Yes 54 (5.9) 40 (5.5) 14 (7.7)

Falls in the past year (%) No 791 (86.9) 640 (88.0) 151 (82.5) 0.063

Yes 119 (13.1) 87 (12.0) 32 (17.5)

Grip strength (Kg, SD) 23.95 (7.96) 25.46 (7.81) 17.98 (5.32) <0.001

SMI (Kg/m2, SD) 6.451 (1.419) 6.680 (1.455) 5.540 (0.750) <0.001

Age 71.746 (5.685) 71.045 (5.114) 74.530 (6.883) <0.001

Height (cm) 156.341 (8.514) 157.261 (8.313) 152.686 (8.344) <0.001

Total weight (Kg) 59.765 (9.593) 61.839 (9.017) 51.525 (7.059) <0.001

Waist circumference (cm) 84.341 (9.789) 85.492 (9.903) 79.765 (7.816) <0.001

Calf circumference (cm) 33.953 (3.417) 34.549 (3.183) 31.587 (3.292) <0.001

BMI (kg/m2) 24.431 (3.343) 25.014 (3.247) 22.115 (2.650) <0.001

Waist-hip ratio (−) 0.885 (0.058) 0.891 (0.057) 0.860 (0.054) <0.001

White blood cell count (cells/μL) 5.532 (1.441) 5.536 (1.441) 5.516 (1.443) 0.869

Red blood cells (million/μL) 4.821 (0.600) 4.851 (0.596) 4.702 (0.603) 0.003

Red cell distribution width coefficient of 

variation (−)

13.970 (1.061) 13.927 (1.040) 14.142 (1.129) 0.014

Hematocrit (%) 48.387 (14.848) 48.382 (6.736) 48.408 (30.334) 0.983

Lymphocyte percentage (μm) 30.339 (7.611) 30.536 (7.623) 29.557 (7.534) 0.12

Red cell distribution width standard 

deviation (μm)

53.035 (6.024) 53.195 (5.763) 52.398 (6.949) 0.11

Lymphocyte count (thousand/μL) 1.642 (0.493) 1.654 (0.495) 1.597 (0.484) 0.166

Mean corpuscular hemoglobin content 

(pg/cell)

28.925 (2.682) 29.002 (2.615) 28.619 (2.923) 0.084

Neutrophil percentage (%) 60.051 (8.269) 59.902 (8.251) 60.643 (8.339) 0.279

Mean corpuscular hemoglobin 

concentration (g/L)

291.868 (24.770) 291.292 (24.658) 294.158 (25.146) 0.162

Neutrophil count (thousand/μL) 3.394 (1.317) 3.394 (1.363) 3.392 (1.121) 0.983

Mean corpuscular volume (fL) 99.350 (9.851) 99.930 (9.151) 97.044 (11.998) <0.001

Mean platelet volume (fL) 9.076 (1.131) 9.062 (1.092) 9.134 (1.273) 0.44

Hemoglobin concentration (g/dL) 138.892 (15.944) 140.085 (15.643) 134.153 (16.289) <0.001

Platelet distribution width (fL) 15.524 (1.328) 15.461 (0.956) 15.773 (2.255) 0.004

Monocyte percentage (%) 9.376 (1.968) 9.326 (1.874) 9.578 (2.301) 0.121

Platelet count (thousand/μL) 190.254 (60.678) 188.992 (56.275) 195.268 (75.662) 0.211

Monocyte count (thousand/μL) 0.509 (0.173) 0.507 (0.172) 0.517 (0.178) 0.495

Platelet crit rate (%) 0.171 (0.050) 0.169 (0.046) 0.176 (0.062) 0.104

Urine pH (−) 5.346 (0.557) 5.349 (0.560) 5.333 (0.543) 0.739

Serum alanine aminotransferase (U/L) 23.612 (14.569) 23.916 (12.815) 22.404 (20.081) 0.21

Serum aspartate aminotransferase (U/L) 22.079 (16.181) 21.595 (8.587) 24.000 (31.764) 0.072

(Continued)
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model features (Figure 4). Weight emerged as the strongest predictor, 
followed by Age and Triglycerides, with Calf Circumference showing 
relatively lower but still meaningful contribution. The consistency 
between SHAP values (directionality) and permutation importance 
(magnitude) confirmed the model’s clinical plausibility.

4 Discussion

Recent research has sought to develop risk prediction models for 
sarcopenia in community-dwelling older adult populations, facing 
challenges in data accessibility, interpretability, and predictive 
accuracy. To address these issues, we  utilized local data from the 
NBPHS program and applied advanced machine learning techniques 
to create the w-ACT model. Our findings demonstrate that the w-ACT 
model outperformed traditional LR and other common ML models 
in both internal and external validations, highlighting its potential to 
improve the identification of at-risk older adult populations and 
inform preventive interventions.

We identified a sarcopenia prevalence of approximately 20.11% 
among community-dwelling older adults in Chongqing, which is 
notably higher than rates reported in other regions of China utilizing 
the AWGS 2019 diagnostic criteria—ranging from 14.62% on the 
Yunnan-Guizhou Plateau to 13.47% in Tianjin (38) and 10.29 to 
13.47% in Shanghai (39, 40). The observed discrepancies may 
be attributed to regional demographic variations. Chongqing, a typical 
mountainous city with a severe aging population, has an aging rate of 
21.87% according to the results of the seventh national census, ranking 
fifth nationwide and first in the western region (41). In additional, it 
may be also contributed by the complex interplay of lifestyle and 
dietary norms characteristic of Chongqing’s residents (42). A 
pervasive pattern of high oil and salt intake, common among the city’s 
inhabitants, may be  contributing to this disparity. Moreover, 
nutritional surveys indicate that over 50.5% of the middle-aged and 
older adult population are overweight or obese. Future research 
should explore these factors to develop targeted interventions that 
preserve muscle health and improve the well-being of the 
aging population.

TABLE 1  (Continued)

Variables Categories Overall 
(n = 910)

Non-sarcopenia 
(n = 727)

Sarcopenia 
(n = 183)

p-value

Total bilirubin (mmol/L) 17.593 (6.754) 17.639 (6.773) 17.407 (6.697) 0.678

Total protein (g/L) 72.119 (5.465) 72.133 (5.239) 72.062 (6.297) 0.874

Albumin (g/L) 43.898 (4.250) 44.128 (4.061) 42.982 (4.835) 0.001

Globulin (g/L) 28.453 (8.338) 28.292 (8.738) 29.093 (6.491) 0.245

Direct bilirubin (mmol/L) 3.354 (1.696) 3.280 (1.555) 3.648 (2.148) 0.009

Serum creatinine (mmol/L) 71.047 (34.713) 70.957 (35.370) 71.404 (32.062) 0.876

Blood urea nitrogen (mmol/L) 5.936 (1.810) 5.865 (1.664) 6.218 (2.286) 0.018

Uric acid (mmol/L) 342.485 (92.540) 345.394 (90.497) 330.929 (99.669) 0.059

Fasting blood glucose (mmol/L) 6.228 (1.956) 6.187 (1.803) 6.389 (2.469) 0.214

Total cholesterol (mmol/L) 4.915 (1.158) 4.928 (1.105) 4.864 (1.351) 0.507

Serum low-density lipoprotein (mmol/L) 2.611 (1.114) 2.648 (1.081) 2.463 (1.229) 0.045

Serum high-density lipoprotein (mmol/L) 1.268 (0.382) 1.261 (0.311) 1.297 (0.586) 0.256

Triglycerides (mmol/L) 1.782 (1.122) 1.699 (0.905) 2.113 (1.698) <0.001

SD, Standard Deviation; SMI, Skeletal Muscle Index; BMI, Body Mass Index.

FIGURE 2

(A) The process of selecting the most suitable λ through 10-fold cross-validation in the Lasso model. (B) LASSO coefficient profiles.
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TABLE 2  The 10 diagnostic parameters of the eight algorithms in validation set.

Model 
performance

DT GBM GNB KKNN LR RF SVM XGB

Accuracy 0.855 0.862 0.841 0.834 0.89 0.869 0.855 0.862

AUC (95% CI) 0.827 0.869 0.879 0.781 0.871 0.872 0.869 0.876

(0.726, 0.927) (0.788, 0.95) (0.8, 0.958) (0.672, 0.89) (0.787, 0.954) (0.793, 0.95) (0.795, 0.944) (0.799, 0.953)

Brier score 0.109 0.115 0.099 0.125 0.094 0.101 0.103 0.109

MCC 0.537 0.568 0.492 0.44 0.588 0.566 0.467 0.534

Mean predicted probability 0.221 0.211 0.221 0.187 0.21 0.213 0.215 0.221

NPV 0.884 0.884 0.876 0.884 0.942 0.901 0.917 0.901

PPV 0.708 0.75 0.667 0.583 0.625 0.708 0.542 0.667

Sensitivity 0.708 0.75 0.667 0.583 0.625 0.708 0.542 0.667

Specificity 0.884 0.884 0.876 0.884 0.942 0.901 0.917 0.901

Youden’s index 0.593 0.634 0.543 0.468 0.567 0.609 0.459 0.567

DT, Decision Tree; GNB, Gaussian Naïve Bayes; GBM, Light Gradient Boosting Machine; KKNN, K-Nearest Neighbors; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector 
Machine; XGB, Extreme Gradient Boosting; AUC, Area Under the Curve; CI, Confidence Interval; MCC, Matthews Correlation Coefficient; PPV, Positive Predictive Value; NPV, Negative 
Predictive Value.

FIGURE 3

Visualization of the 10 prediction measures using a heat map in the (A) internal validation set and (B) external validation set after evaluation using a 
scoring system. DT, Decision Tree; GNB, Gaussian Naïve Bayes; GBM, Light Gradient Boosting Machine; KNN, K-Nearest Neighbors; LR, Logistic 
Regression; RF, Random Forest; SVM, Support Vector Machine; XGB, Extreme Gradient Boosting.
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The w-ACT tool’s design prioritizes immediate clinical utility 
through three key characteristics. Firstly, seamless integration with 
existing workflows. The selected indicators (age, weight, CC, TG) 
are routinely collected in NBPHS service projects, which promote 
equal access to public health services. The four risk factors—age, 
weight, CC, and TG—are readily obtainable across various older 
adult care settings. This allows direct implementation without 
requiring additional tests or equipment.

Secondly, these risk factors provide significant interpretability. 
The model’s clinical adoption potential stems from its deliberate 
avoidance of computationally significant but clinically obscure 
features - a common criticism of ML healthcare applications. Our 
four predictors were selected not only for statistical contribution 
but for their established clinical meaning and measurability in 

resource-limited settings Consistent with existing guidelines, age, 
low weight, and CC are established risk factors for sarcopenia, and 
their non-invasive measurement methods facilitate assessment in 
diverse settings (1). Notably, CC serves as an index of free fat 
muscle mass (FFM) and has been recognized by the WHO as a 
sensitive indicator of muscle mass in older adults (43). Our study 
also identified triglycerides as a potential risk factor, aligning with 
previous research (44–46). Researches has established a 
bidirectional causal relationship between triglycerides and 
sarcopenia, particularly regarding muscle quality (47, 48). 
Although the specific mechanisms remain incompletely 
understood, theories such as the “cycle metabolism theory” suggest 
that elevated blood lipid levels may contribute to fat accumulation 
in skeletal muscle, ultimately leading to mitochondrial dysfunction 

TABLE 3  The 10 diagnostic parameters of the eight algorithms in test set.

Model 
performance

DT GBM GNB KKNN LR RF SVM XGB

Accuracy 0.784 0.805 0.789 0.762 0.773 0.811 0.789 0.805

AUC (95% CI) 0.769 0.855 0.852 0.806 0.812 0.841 0.742 0.865

(0.695, 0.843) (0.794, 0.915) (0.794, 0.909) (0.737, 0.875) (0.744, 0.88) (0.777, 0.904) (0.654, 0.83) (0.811, 0.919)

Brier score 0.169 0.167 0.152 0.169 0.157 0.147 0.162 0.155

MCC 0.439 0.492 0.452 0.371 0.390 0.511 0.442 0.493

Mean predicted probability 0.220 0.181 0.223 0.188 0.211 0.209 0.221 0.214

NPV 0.908 0.947 0.916 0.908 0.947 0.931 0.962 0.939

PPV 0.481 0.463 0.481 0.407 0.352 0.519 0.370 0.481

Sensitivity 0.481 0.463 0.481 0.407 0.352 0.519 0.370 0.481

Specificity 0.908 0.947 0.916 0.908 0.947 0.931 0.962 0.939

Youden’s Index 0.390 0.410 0.398 0.316 0.298 0.450 0.332 0.420

DT, Decision Tree; GNB, Gaussian Naïve Bayes; GBM, Light Gradient Boosting Machine; KKNN, K-Nearest Neighbors; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector 
Machine; XGB, Extreme Gradient Boosting; AUC, Area Under the Curve; CI, Confidence Interval; MCC, Matthews Correlation Coefficient; PPV, Positive Predictive Value; NPV, Negative 
Predictive Value.

FIGURE 4

Feature importance computed by the Random Forest model. The horizontal axis represents various features, while the vertical axis represents their 
respective importance scores.
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and insulin resistance (49). Thus, the inclusion of these four risk 
factors enhances both the credibility of the model and facilitates 
clinical practitioners’ understanding of its predictive foundation.

Thirdly, Despite the advantages of machine learning algorithms, 
the comparative performance of ML versus traditional LR remains 
debated (50). While some studies suggest that ML does not 
consistently outperform LR (51, 52), aligning with the majority of 
literature (37, 51, 53), our findings indicate superior predictive 
performance of the ML, especially RF algorithm, which emerged as 
the top performer among the models assessed. The observed 
differences may stem from prior research primarily focusing on 
singular predictive metrics, without considering a comprehensive 
range of evaluation metrics. Notably, the RF algorithm is praised for 
its resistance to overfitting, adaptability to categorical variables, 
accuracy in error rate estimation, and capability of ranking variables 
by relative importance. These characteristics have led to its successful 
application in stoke (54), cancer (55), and postoperative functional 
(56) prediction. Thus, our findings furnish additional evidence for the 
application of the RF algorithm in risk prediction and serve as a 
reference for peers in evaluating model performance and 
selecting algorithms.

Some limitations should be mentioned. First, the cross-sectional 
NBPHS design precludes causal inference, though we mitigated this 
via instrumental variable analysis (57). To definitively address these 
limitations, we will launch the Chongqing Aging and Sarcopenia 
Evaluation (CHASE) cohort. This prospective study is specifically 
designed to document predictor trajectories preceding sarcopenia 
onset and validate dynamic predictions. Second, although internal-
external validation was conducted, demonstrating the same level of 
reliability, the external validation sample size (n = 182) may limit 
the assessment of overfitting risks, particularly given the model’s 
complexity. While our permutation-based feature importance 
analysis (Figure  4) shows biologically plausible weightings, the 
possibility of overfitting to specific subpopulations cannot 
be entirely excluded. Additionally, dealing with imbalanced data is 
a challenging issue in both deep learning models and traditional 
models for practical classification problems (58). While 
oversampling improved model training, its theoretical impact on 
population prevalence estimates cannot be fully excluded - though 
our external validation using original unbalanced data suggests 
robust generalizability. Third, while our model demonstrated 
consistent performance across internal and external sets, its 
generalizability to populations with different ethnic compositions 
or healthcare systems requires further validation, particularly given 
regional variations in sarcopenia prevalence and risk factors. 
Normalization assumptions may not perfectly fit all variables, but 
this approach represents the most widely accepted compromise for 
mixed-type clinical data (59, 60).

5 Conclusion

This study developed a ML-based predictive model to identify 
early-stage high-risk individuals for sarcopenia among older adult 
residents in the community. Weight, triglycerides, age, and calf 
circumference were identified as significant factors associated with 
sarcopenia, and RF exhibited superior predictive performance in eight 
approaches. The interpretability of this model (termed w-ACT model) 

was achieved using SHAP values, providing valuable insights into the 
contributions of these variables to sarcopenia risk.
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