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Background: Sarcopenia (SP), is recognized as a complication of cardiovascular 
disease (CVD), but few relevant diagnostic models have been developed. This 
study aims to establish an interpretable diagnostic model for the occurrence of 
SP in older adult CVD patients living in Chinese community-dwelling (CD).

Methods: We randomly selected participants with CVD recruited from CHARLS 
from 2011 to 2015 and divided them into a training set and a test set. In the 
training set, we processed and screened the predictor variables and addressed 
the data imbalance by the synthetic minority oversampling technique (SMOTE). 
Subsequently, we built four machine learning (ML) models to predict SP. After 
100 iterations, we  selected the best performing model for risk stratification 
by comparing model discrimination and calibration. Then, we  analyzed the 
relationship between ML risk and SP using scatterplots and logistic regression 
(LR). Finally, the Shapley’s Additive Explanatory Plot (SHAP) illustrates how each 
feature level affects the predicted probability of SP.

Results: We ultimately included 1,088 CD older adults, 18.61% of whom 
reported SP. The optimal model, XGBoost, was selected for prediction and risk 
stratification. After both univariate (odds ratio [OR]: 12.45, p = 4.74 × 10−10) and 
multivariate analyses (OR: 6.98, p = 3.96 × 10−10), participants with higher ML 
scores had a higher risk of SP. In sex-specific subanalyses, BMI, height, age, DBP, 
HDL, etc. were all significant predictors.

Conclusion: This study develops a novel clinically-integrated tool that can 
be used to easily predict SP in the older adults population with CVD, providing a 
basis for the development of personalized therapeutic measures.
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1 Introduction

Cardiovascular disease (CVD) is a group of diseases involving the 
heart and peripheral vasculature, which is characterized by the 
interplay of atherosclerosis and myocardial ischemia leading to 
impaired cardiac function. Statistically, it accounts for 31% of deaths 
in the global population (1) and up to 40% in China, making it the 
leading cause of death (2). Previous studies have shown that CVD is 
associated with irreversible damage and decreased function of 
multiple organs such as the liver (3) and lungs (4), usually affecting 
the body’s metabolic, detoxification, and neurological functions. 
Recent studies have found that chronic inflammatory states and 
reduced exercise tolerance are associated with CVD; and that the 
accelerated muscle loss resulting from both is a precursor to the 
development of sarcopenia (SP), which has become a recognized 
complication of CVD (5, 6).

Irving Rosenberg first defined SP as muscle atrophy in the older 
adults (7), and the Asian sarcopenia working group expanded it to 
include age-related loss of skeletal muscle mass, plus low muscle 
strength, and/or low physical performance (8). In general, a decrease 
in skeletal muscle mass usually begins to appear after the age of 40, 
and the incidence of SP is about 1–33% among people over 50 years 
old. Among subjects aged 60–70, 5–13% are affected by it, while 
among older adults aged 80 and above, this proportion can even reach 
as high as 50%. Studies have shown that SP is widely recognized as a 
risk factor for CVD and that the overall prevalence of SP in patients 
with high blood pressure (HBP) and coronary heart disease (CHD) is 
quite high (9). A systematic evaluation and meta-analysis reported 
that the prevalence of stroke-related SP was 42% (95% CI 33–52%) 
and that the prevalence of SP was even higher in the early post-stroke 
period (10). Research has shown that various characteristics of CVD 
(such as neuroendocrine disorders, endothelial dysfunction, etc.) 
affect the balance between protein synthesis and degradation in 
skeletal muscle, leading to SP (11). These risks can exacerbate the 
occurrence of related adverse outcomes such as falls, cachexia, and 
even death in SP patients, and vice versa (12). Therefore, we urgently 
need to determine methods for early screening of SP in patients 
with CVD.

Currently, SP diagnosis requires measurement of bone mass. Still, 
there are some methodological limitations, such as bioimpedance 
analysis (BIA) which is limited to specific groups of people, and X-ray 
computed tomography (CT) which exposes the body to radiation and 
is expensive (13, 14). Currently, there is a paucity of review literature 
that systematically summarizes and analyzes studies on SP prediction 
using machine learning (ML) techniques (15). It is worth noting that 
now with the rapid development of AI-assisted diagnostic 
technologies, relevant predictive models for this disease have been 
developed and have high accuracy and sensitivity (13, 16–18). For 
example, one study used clinical and laboratory metrics data from the 
West China Health and Aging Trends (WCHAT) study to predict SP 
using Support Vector Machine (SVM), Random Forest (RF), Extreme 
Gradient Boosting (XGBoost), and Wide and Deep (W&D) models, 
and showed that the W&D model had the highest area under the 
receiver operating curve (AUC) and accuracy (13). Another study 
using the National Health and Nutrition Examination Survey 
(NHANES) database in type 2 diabetes developed a novel and 
practical column chart based on three independent factors: gender, 
height, and waist circumference, which may be useful to clinicians in 

predicting the risk of pre-sarcopenia in young people with diabetes 
mellitus (16). Nevertheless, there is a lack of research on ML’s 
diagnostic prediction of SP in CVD patients. In addition, although 
ML has performed well in previous studies, there is limited evidence 
of its application in Asian populations and interpretable risk 
prediction models to assist in disease diagnosis. Logistic regression 
(LR), random forest (RF) (19), support vector machine (SVM) (20), 
and XGBoost (21) were selected for this study in view of their excellent 
performance in dealing with high-dimensional and complex data; RF 
effectively reduces the risk of overfitting, SVM can find the optimal 
classification hyperplane in high-dimensional space, and XGBoost, 
with its powerful learning ability and fast training speed, has shown 
excellent performance in many medical prediction research, and 
XGBoost has shown excellent performance in many medical 
prediction studies with its strong learning ability and fast 
training speed.

In order to address the above limitations, this study develops a 
diagnostic model for SP in Chinese older adults with the help of an 
ML approach combined with SHAP in a CVD population. The 
objectives were to (1) screen the main influencing factors affecting the 
occurrence of SP in the older adults to provide a basis for early 
intervention; (2) build a highly interpretable SP diagnostic model to 
provide a non-invasive, economical, and harmless alternative imaging 
method for early detection of these patients.

2 Methods

2.1 Study population

The China Health and Retirement Longitudinal Study (CHARLS), 
a nationwide longitudinal survey of people >45 years old and their 
spouses in China, recruited 17,708 participants from June 2011 to 
March 2012, with multiple follow-ups after that (22). The database 
used face-to-face computer-assisted personal interviews (CAPI) to 
examine nearly 10,000 households in 150 counties and 450 villages 
across 28 provinces in China over an average of 2–3 years, providing 
information on relevant social, economic, and health status of 
community residents (22). Ethical approval for all the CHARLS waves 
was granted from the Institutional Review Board at Peking University. 
The IRB approval number for the main household survey, including 
anthropometrics, was IRB00001052-11,015; the IRB approval number 
for biomarker collection, was IRB00001052-11,014.

Blood tests and physical measurements were performed in the 
2011 and 2015 waves, respectively (not available in 2018), so we used 
the 2011 and 2015 waves to develop a diagnostic model for 
SP. We  excluded participants diagnosed with SP at baseline and 
included participants aged ≥60 years with a history of CVD 
(n = 1,080) who had blood tests and other health-related data available 
at baseline (Figure 1).

2.2 Ascertainment of outcomes

The diagnostic criteria for SP we defined regarding the latest 
edition of the Asian Working Group on Muscle Attenuation 
Syndrome 2019 (AWGS2019) (8), which included three components: 
low muscle mass (<5.61 kg/m2 for females and <7.35 kg/m2 for 

https://doi.org/10.3389/fpubh.2025.1527304
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2025.1527304

Frontiers in Public Health 03 frontiersin.org

males), muscle strength (<28.0 kg for males and <18.0 kg for 
females), or low physical performance (gait speed<1 m/s, chair stand 
test≥12 s) (23, 24).

First, muscle mass was assessed by appendicular skeletal muscle 
mass (ASM) and height. The equation model of ASM, which was 
validated on Chinese residents, was in strong agreement with DXA 
(25, 26):

= × + ×
× ×

ASM 0.193 body weight 0.107 height
–4.157 sex –0.037 age–2.631

Height, weight, and age are given in centimeters, kilograms, 
and years, respectively. For sex, value 1 represents males and value 
2 represents females. Subsequently, we determined the threshold 
value for low muscle mass based on the lowest 20% of sex for 
height-adjusted muscle mass (ASM/height2) in the study 
population (26, 27). Xu Wen et  al. applied multiple linear 
regression to develop a height-weight model using DXA-measured 
ASM as the dependent variable and anthropometric variables as 
independent variables. The developed regression model was then 
cross-validated using data from the CV group. The adjusted R2 of 
the equation model was 0.90 and the estimated standard error was 
1.63 kg.

Additionally, participants’ muscle strength in their dominant and 
non-dominant hands was assessed by a Yuejian TM WL-1000 
dynamometer (22).

Finally, regarding physical performance, we chose to assess gait 
speed and chair stand tests. To measure gait speed, participants were 
asked to walk a 2.5-meter route twice at normal speed and take the 
average. To measure the chair stand test, participants were asked to 
stand five times in a row from a 47 cm high chair, keeping their arms 
crossed in front of their chest, and the time taken (in seconds) 
was recorded.

2.3 Ascertainment of CVD

This study focused on a population of people with CVD and 
HBP. In previous definitions (28, 29), CVD was identified by assessing 
two questions, “Have you ever been told by your doctor that you have 
had a heart attack, angina, CHD, heart failure, or other heart 
problem?” or “Have you ever been told by a doctor that you have had 
a stroke?” Study participants also answered the question about HBP, 
“Have you ever been told by a doctor that you have HBP?”

2.4 Feature selection and data 
preprocessing

To efficiently and comprehensively extract relevant features, 
we performed feature selection in three categories, including socio-
demographic information, physical、exercise, nutritional factors, and 
clinical factors. Details of the candidate variables measured at baseline 
for all participants are shown in Supplementary Table 1. The selection 
of each feature was based on the following factors: (1) the feature had 
a missingness rate of less than 30% [populated with multiple 
imputation (30)], We use the mice package in R studio for multiple 
imputation, where each regression model can be expressed using the 
following equation:

 
β β β ∈= + + + +missing 0 1 1 p pY X X

where missingY  missing denotes the missing value of the target 
variable, +1, pX X  denotes the other predictor variables, β β β+0 1, , p 
are the regression coefficients and ò  is the error term. During 
interpolation, the regression model needs to be appropriately chosen to 
match the nature of the data (e.g., linear or logistic regression). The error 
term ò  is usually assumed to be  normally distributed, allowing the 
interpolation process to reflect the uncertainty in the predictions. 
Compared to other interpolation methods, it has the following significant 
advantages: consideration of uncertainty, efficient use of information, 
applicability to a wide range of analysis methods, and reduction of bias.

(1) The feature was associated with SP or a potential causative 
factor that turned out to be significant after analyses using logistic 
regression (LR), and (2) features with low variance and strong 
correlation (correlation coefficient>0.90) have been remove. The 
absence of significant linear relationships for the variables was checked 
using the findLinearCombos function from the Matrix package.

Since different features may have different ranges of values and 
some ML algorithms are sensitive to the scale of the features, 
we standardized or normalized the continuous variables and One-Hot 
the categorical variables.

2.5 Derivation and evaluation of prediction 
models

We predict whether SP occurs or not in four ML models, namely, 
LR, support vector machine (SVM), random forest (RF), and extreme 
gradient boosting (XGBoost), which is a scalable tree boosting system 
that has a wide range of application scenarios in ML. Its loss function 
does a second-order Taylor expansion of the error part; and also adds 

FIGURE 1

The flowchart for data processing and statistical analysis using the 
CHARLS in the present work.
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a regularization part and parallel selection of each weak classifier, 
which prevents model overfitting and improves model generalization 
(31). We randomly divided 1,080 participants into a training set and 
a test set in a 7:3 ratio. Preprocessing, parameter tuning, and model 
training were performed on the training set. Considering the 
imbalance between positive and negative classes, we  chose the 
synthetic minority oversampling technique (SMOTE) (32) for class 
balancing treatment. The new data are generated by calculating the 
distance between samples, finding the nearest neighbor samples of a 
certain minority class of samples, and then by linear interpolation. The 
specific process is as follows:

Step 1, select a minority class sample: randomly select a sample ix  
from the minority class sample set.

Step 2, find the nearest neighbor samples: among the minority 
class samples, find the k nearest neighbor samples of ix  by Euclidean 
distance, and the value of k is set to 5 in this study.

Step 3, randomly select a neighbor sample: from these k nearest 
neighbor samples, randomly select a sample nnx .

Step 4, generate a new sample: randomly interpolate between ix  
and nnx  to generate a new sample according to the following equation. 
Where λ is a random number between 0 and 1.

 ( )λ= + × −new i nn ix x x x

Step 5, Repeat the above process: repeat steps 1–4, and in our study 
we set the ratio of the number of diseased to non-diseased samples to 1:1.

After that, this study used a grid search method with a five-fold 
CV to optimize the hyperparameter combinations, and the specific 
tuning parameters are detailed in Supplementary Table 2. Finally, 
we chose the area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, specificity, and F1 scores to assess the 

model’s discrimination and the Brier scores to assess the model’s 
calibration. To ensure the robustness of the results and to limit 
overfitting, we set up 100 different random seeds to repeat the above 
process and calculate the average performance of these 100 repetitions 
(33) (Figure 2). In this paper, the TRIPOD process is strictly followed 
to construct the prediction model (34).

2.6 Model interpretation and feature 
importance

The “black box” problem is considered to be one of the main 
obstacles to the further development of ML, and we need to increase 
the interpretability of the results by visualizing the model results both 
globally and locally. SHapley additive exPlanations (SHAP) (35) assign 
the contribution of the feature values to the different features. SHAP 
generates graphical and quantitative interpretations to help interpret 
the model and make more accurate clinical decisions. Its performance 
has been validated in previous studies (36). The calculation of SHAP 
value is based on evaluating all possible combinations of features with 
the following mathematical formula:

 { }

( ) { }( ) ( )( )φ
⊆

− −
= ∪ −∑

| |! | | | | 1 !
| |!i

S N i

S N S
v S i v S

N

φi  is the SHAP value of the features, S is the subset of features 
(excluding features i); N  is the total set of features; ( )v S  is the model 
output of the feature set S, and { }( )∪v S i  is the model output after 
feature set S plus feature i.

FIGURE 2

Flow chart of model derivation and test.
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Afterward, we calculated the importance of the variables in the 
optimal model to identify the main predictors of the occurrence of SP 
in the older adults population with CVD.

2.7 Statistical analysis

First, to better understand the data distribution and 
characteristics, continuous data are presented as means (standard 
deviations) and were tested using independent samples t-tests or 
Mann–Whitney U-tests. Categorical variables were presented as 
frequencies (percentages) and tested using chi-square tests. The 
highest Youden’s index was used to define the optimal threshold and 
to differentiate between low-risk and high-risk participants. 
Scatterplots were then drawn to describe the high and low ML risk 
distribution. Finally, the relationship between ML risk and 4-year 
SP was assessed using univariate and multivariate LR (controlling 
for the top  5 significant predictors). Statistical significance was 
based on a two-tailed p value≤0.05.

All analyses and calculations were performed using R version 4.2.1 
(caret, XGBoost, kernlab, randomForest, DMwR, and shapviz packages).

3 Results

3.1 Patient characteristics of the internal 
training and testing sets

The baseline characteristics of all participants in this study are 
shown in Supplementary Table  3. The baseline characteristics of 
participants after feature screening are shown in Table 1. The data 
were divided into a training set (70%) and a test set (30%). The 
prevalence of SP in the older adults population with CVD was 18.61% 
of the total number of subjects, 18.63% in the training set (141 
subjects), and 18.58% in the validation set (60 subjects). The 
differences between the training and test sets were not statistically 
significant on the remaining variables such as gender, any weekly 
contact with children, taking any medications for HBP, CESD scale, 
visual or hearing problem, complication, BUN, glucose, age, average 

TABLE 1 Training and testing set demographics.

Characteristics Level Participants, No. (%) p value

Total (N = 1,080) Train (N = 757) Test (N = 323)

Sarcopenia (%)

No 879 (81.39) 616 (81.37) 263 (81.42)

0.089Yes 201 (18.61) 141 (18.63) 60 (18.58)

Gender (%)

Male 513 (47.50) 346 (45.71) 167 (51.70)

0.082Female 567 (52.50) 411 (54.29) 156 (48.30)

Any weekly contact with children (%)

No 93 (8.61) 63 (8.32) 30 (9.29)

0.690Yes 987 (91.39) 694 (91.68) 293 (90.71)

Takes any medications for HBP (%)

No 407 (37.69) 295 (38.97) 112 (34.67)

0.206Yes 673 (62.31) 462 (61.03) 211 (65.33)

CESD scale (%)

No 630 (58.33) 442 (58.39) 188 (58.20)

0.873Yes 450 (41.67) 315 (41.61) 135 (41.80)

Visual or hearing problem (%)

No 867 (80.28) 603 (79.66) 264 (81.73)

0.483Yes 213 (19.72) 154 (20.34) 59 (18.27)

Complication (%)

No 708 (65.56) 510 (67.37) 198 (61.30)

0.064Yes 372 (34.44) 247 (32.63) 125 (38.70)

BUN (mg/dL) (Mean ± SD) 16.29 (4.42) 16.27 (4.50) 16.32 (4.23) 0.878

HDL (mg/dL) (Mean ± SD) 47.57 (14.03) 48.53 (14.24) 45.32 (13.25) 0.001

Glucose (mg/dL) (Mean ± SD) 117.07 (40.51) 116.47 (39.94) 118.49 (41.86) 0.453

UA (mg/dL) (Mean ± SD) 4.71 (1.28) 4.65 (1.24) 4.86 (1.37) 0.018

Age (y) (Mean ± SD) 66.32 (5.23) 66.26 (5.12) 66.46 (5.47) 0.567

Nst (h, Mean ± SD) 6.19 (1.93) 6.20 (1.95) 6.18 (1.90) 0.848

DBP (mmHg) (Mean ± SD) 78.28 (11.72) 78.37 (11.59) 78.05 (12.06) 0.682

Height (m) (Mean ± SD) 1.57 (0.10) 1.57 (0.08) 1.57 (0.12) 0.555

BMI (kg/m2) (Mean ± SD) 26.67 (21.55) 25.82 (4.23) 28.68 (38.85) 0.046

Waist (cm) (Mean ± SD) 91.33 (11.46) 91.45 (11.17) 91.05 (12.13) 0.600

CESD, Center for Epidemiologic Studies Depression Scale; BUN, blood Urea Nitrogen; DBP, diastolic blood pressure; BMI, body mass index; Nst, average hours for one night sleeping time 
during the past month; UA, uric acid.
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hours for one night sleeping time during the past month, DBP, height 
and waist, except for significant differences on HDL (48.53 vs. 45.32, 
p = 0.001) and uric acid (UA) (4.65 vs. 4.86, p = 0.018).

3.2 ML to predict outcomes

Table 2 shows the prediction performance of the four ML models 
in the test set. Overall, the new ML models all performed better than 
the traditional LR model. More specifically, comparing the AUC first, 
it can be seen from Supplementary Figure S1 that the RF has the 
highest AUC (all the following values are averages: 0.8769, 95% CI: 
0.8367 ~ 0.9171) and the lowest LR (AUC = 0.8459, 95% CI: 
0.7922 ~ 0.8996). Next, SVM has the highest precision (0.9681, 95% 
CI: 0.9429 ~ 0.9932) and specificity (0.9000, 95% CI: 0.8241 ~ 0.9759). 
However, taken together, the XGBoost had the highest accuracy 
(0.8050, 95%CI: 0.7575 ~ 0.8467), F1 score (0.8706, 95% CI: 0.8408, 
0.9004), sensitivity (0.8061, 95% CI: 0.7583 ~ 0.8539) and Brier score 
(0.1950, 95% CI: 0.1486 ~ 0.2414) performed best. In addition, its 
AUC (0.8670, 95% CI: 0.8184 ~ 0.9156) is second only to the RF 
(Table 2). Therefore, XGBoost was selected for further prediction in 
this study.

3.3 Categorization of prediction score and 
risk stratification

We categorized patients into high-risk and low-risk groups after 
establishing the XGBoost in the test set using the maximum Youden’s 
index as the optimal threshold (0.457, sensitivity = 0.8500, 
specificity = 0.7985) (Figure 3a). The results of the risk probability 
scatterplot determined by the optimal model showed a clear 
aggregation of SP in the older adults population with CVD, further 
demonstrating the accuracy of the model in stratifying high-risk and 
low-risk (Figure 3b).

3.4 Logistic regression analysis

After categorizing participants into low-risk and high-risk based 
on thresholds in a one-way LR analysis, high ML risk was significantly 
associated with SP diagnosis (unadjusted odds ratio [OR]: 12.45; 
95%CI: 1.87 ~ 23.02; p = 4.74 × 10−10). After controlling for the five 

most important predictors (BMI, height, age, waist, and DBP), the 
correlation remained (adjusted OR: 6.98; 95%CI: 1.33 ~ 12.63; 
p = 3.96 × 10−10). The results of the multivariate LR analysis are shown 
in Figure 4.

3.5 Visualization of feature importance and 
interpretation of personalized predictions

SHAP can globally interpret and visualize the contribution of each 
feature in the XGBoost model to the prediction. In each feature 
importance row, all patient attributions to the results are represented 
by dots of different colors, with purple dots representing a negative 
correlation between the feature and the result, and yellow dots 
representing a positive correlation (Figure 5a). Figure 5b shows the 
importance of all screened variables using the optimal model. X and 
y-axis represent a unified index that responds to the influence of a 
certain feature in the model and variable importance, respectively. 
Age, UA, glucose, HDL, CESD scale, BUN, complication, taking any 
medications for HBP, and visual or hearing problems are positively 
correlated with SP. In contrast, BMI, height, waist, DBP, average hours 
for one night sleeping time during the past month, gender, and any 
weekly contact with children were negatively associated with SP 
(Figure 5a). We also provide an example to illustrate the function of 
SHAP in locally explaining individual features (Figure 6). Although 
the specific contribution of each individual may differ, the overall 
trend remains consistent with what we perceive.

3.6 Gender-based analysis

In the sex-specific subanalysis, we compared the top 10 predictors, 
average hours for one night sleeping time during the past month and 
HDL, as significant predictors only in males; they were not among the 
top 10 predictors in females. Similarly, some factors, such as CESD 
score and complication, were significant predictors in females only; in 
males, they were not among the top 10 predictors (Figures 7a,b).

The results of the risk probability scatterplot stratified according 
to different genders also showed an aggregation of SP in the older 
adults population with CVD, suggesting that the accuracy of the 
XGBoost for high-risk and low-risk stratification of different gender 
groups is also high (Figures 7c,d).

TABLE 2 Scores of each model on the test set.

Indicators LR RF SVM XGBoost

AUC 0.8459 (0.7922 ~ 0.8996) 0.8760 (0.8367 ~ 0.9171) 0.8645 (0.8204 ~ 0.9086) 0.8670 (0.8184 ~ 0.9156)

Accuracy 0.7709 (0.7211 ~ 0.8156) 0.8019 (0.7541 ~ 0.8439) 0.7307 (0.6787 ~ 0.7783) 0.8050 (0.7575 ~ 0.8467)

Precision 0.9565 (0.9287 ~ 0.9843) 0.9462 (0.9165 ~ 0.9758) 0.9681 (0.9429 ~ 0.9932) 0.9464 (0.9169 ~ 0.9759)

F1 score 0.8426 (0.8096 ~ 0.8755) 0.8683 (0.8382 ~ 0.8984) 0.8071 (0.7707 ~ 0.8435) 0.8706 (0.8408 ~ 0.9004)

Sensitivity 0.7529 (0.7007 ~ 0.8050) 0.8023 (0.7541 ~ 0.8504) 0.6920 (0.6362 ~ 0.7478) 0.8061 (0.7583 ~ 0.8539)

Specificity 0.8500 (0.7596 ~ 0.9404) 0.8000 (0.6988 ~ 0.9012) 0.9000 (0.8241 ~ 0.9759) 0.8000 (0.6988 ~ 0.9012)

Brier score 0.2291 (0.1826 ~ 0.2755) 0.1981 (0.1578 ~ 0.2383) 0.2693 (0.2136 ~ 0.3250) 0.1950 (0.1486 ~ 0.2414)

LR, logistic regression; RF, random forest; SVM, Support Vector Machine. Bolded representations perform better in the 4 models.
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4 Discussion

4.1 Summary and comparison with existing 
studies

The occurrence of SP in the real world is still not properly and 
fully recognized clinically, especially in patients with CVD. Our 
literature review shows that the number of SP patients in CVD is 
higher than that in diabetes and respiratory diseases (6). In addition, 
early stroke is particularly likely to be  associated with SP (10), 
suggesting that early diagnosis and intervention are of great 
importance in the prevention and treatment of SP in the older adults 
population with CVD.

In the current study, we developed an interpretable diagnostic 
prediction model for SP in the older adults population with CVD 
based on factors such as clinical assessment and socio-demographic 
information, which may be useful for clinicians to predict the risk of 
SP in CVD patients. Afterward, performance comparisons were made 
in terms of both calibration and discrimination of the models, and 
XGBoost had the best overall performance among the four ML 
models. The ML risk score generated from this model also indicates 
high accuracy. In addition, SHAP was used to interpret the features in 
the model both holistically and locally.

Firstly, regarding the clinical aspects, our study found that lower 
BMI was a relevant factor for the diagnosis of SP in the older adults 
population with CVD. Previous studies have shown that lower weight 

older adults are more likely to have a negative impact on nutritional 
status due to insufficient protein intake, whereas those with a higher 
BMI consume sufficient protein which may be protective against SP 
(37). Also, lower heights also have a higher risk of CVD (38) and the 
perspective that greater height loss is more likely to be diagnosed with 
SP has been observed in previous cohort studies (39), which is 
consistent with our findings. Interestingly, waist is also a correlate of SP 
because high levels of sex hormones stored within waist fat positively 
affect skeletal muscle (40), which is consistent with our findings.

The absence of adequate blood supply during diastole due to low 
DBP may affect the nutritional status of the muscle the lower the DBP 
the more likely it is to develop into SP (41). A meta-analysis (42) 
mentioned a significant correlation between HBP and SP in older 
adults, which is similar to the results of our study, which defined 
taking HBP-related medications as HBP. Our results also showed a 
significant association between depressive symptoms (43), visual or 
hearing impairment (44), and having other comorbidities (renal 
disease, dyslipidemia, diabetes mellitus, and cancer) (45–48) were 
predictors of SP, which is a recognized finding in previous studies.

Regarding blood tests, we found that BUN associated with kidney 
function and glucose associated with diabetes may increase the risk of 
developing SP. Although the current study has not confirmed that BUN 
and glucose are associated with skeletal muscle, it is hypothesized that 
they may further increase the prevalence of SP by affecting renal function 
and the development of diabetes. Miao Lu et al. (49) demonstrated that 
UA is a potential risk factor for SP in patients with heart failure with 
preserved ejection fraction (HFpEF), which is consistent with our 
findings. Meng Wang et al. (50) noted that for every 1-unit increase in 
HDL levels, there was a 42% increase in the odds of developing SP, and 
HDL also showed a positive correlation with SP in the current study.

Regarding socio-demographic information, in addition to gender 
and age mentioned in previous studies (16, 51), we found that any weekly 
contact with children in person/phone/emails may be a protective factor. 
Living alone and social isolation were identified as risk factors for SP by 
Jiaqing Yang (52). In the Chinese CD, many older adults live alone, and 
they alleviate their loneliness by talking to their children on the phone, 
which helps to reduce their risk of SP. After that, regarding 
physical、exercise, and nutritional aspects, the shorter the average hours 
for one night sleeping time during the past, the more likely it is to develop 

FIGURE 3

Categorization threshold of prediction score (a) and prediction distributions in participants with SP (b).

FIGURE 4

Multivariable logistic regression for SP prediction.

https://doi.org/10.3389/fpubh.2025.1527304
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2025.1527304

Frontiers in Public Health 08 frontiersin.org

SP. Ronaldo D. Piovezan (53) pointed out that with age, the decrease in 
sleep duration and quality favors protein hydrolysis and increases the risk 
of insulin resistance, which in turn reduces muscle fibers and strength.

The model constructed in this study brings new ideas for 
personalized treatment of older adults CVD patients. Through accurate 
risk stratification, appropriate treatment plans can be  formulated 
according to the different levels of low, medium and high, from low-risk 
life interventions to high-risk intensive treatment, so as to improve the 
accuracy of treatment and the efficiency of resource utilization.

4.2 Strengths and limitations

Compared with previous studies (54), our work has several 
advantages. First, considering the possibility of increased sampling 
error in small, unrepresentative samples, this study used a large Asian-
based cohort to increase the accuracy and breadth of the results. 
Second, the ML model combined with SHAP to analyze the 
importance and direction of action of each variable in the model helps 
to identify factors with high impact and improve clinical outcomes 
through early intervention.

Our study also has limitations. First, in terms of model selection, 
we did not select deep learning models. In the future, we will try to 
build deep learning models to predict SP and combine a wider range 
of data and information for different levels of research. After that, our 

study lacked external validation from an independent cohort, which 
may affect the superiority and generalization ability of the model. 
Finally, in terms of feature selection, we extracted some structured 
self-reported data and lacked imaging and genetic data. The absence 
of imaging data, which can visualize muscle morphology and 
structure (55), and genetic data, which can reflect an individual’s 
genetic susceptibility (56), may prevent the model from 
comprehensively capturing the factors affecting the development of 
SP, thus affecting the accuracy of the prediction. Future studies may 
consider collecting related data to further improve the 
prediction model.

5 Conclusion

In an older adult CVD population in a Chinese CD, this study 
demonstrated the feasibility of using advanced ML methods and 
easily accessible features for effective prediction of SP risk. The 
ML-based SP risk prediction model can help physicians identify 
high-risk older adults CVD patients at an early stage, and 
combined with SHAP values can guide personalized treatment. At 
the policy level, this model can be  used for mass screening to 
improve the efficiency of resource allocation, and can also promote 
relevant policies to facilitate the integration of the technology into 
the clinic.

FIGURE 5

(a) Importance of all screened variables according to the mean (|SHAp value|), (b) the importance of all screened variables using the optimal model.

FIGURE 6

Interpretation of single sample model predictions.
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Glossary

CVD - Cardiovascular disease

SP - Sarcopenia

HBP - High blood pressure

CHD - Coronary heart disease

BIA - Bioimpedance analysis

CT - Computed tomography

ML - Machine learning

CHARLS - China Health and Retirement Longitudinal Study

CAPI - Computer-assisted personal interviews

ASM - Appendicular skeletal muscle mass

LR - Logistic regression

SVM - Support vector machine

RF - Random forest

XGBoost - Extreme gradient boosting

SMOTE - Synthetic minority oversampling technique

AUC - Area under the receiver operating characteristic curve

SHAP - SHapley additive exPlanations

CESD - Center for Epidemiologic Studies Depression Scale

BUN - Blood Urea Nitrogen

DBP - Diastolic blood pressure

BMI - Body mass index

UA - Uric acid

https://doi.org/10.3389/fpubh.2025.1527304
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Sarcopenia prediction model based on machine learning and SHAP values for community-based older adults with cardiovascular disease in China
	1 Introduction
	2 Methods
	2.1 Study population
	2.2 Ascertainment of outcomes
	2.3 Ascertainment of CVD
	2.4 Feature selection and data preprocessing
	2.5 Derivation and evaluation of prediction models
	2.6 Model interpretation and feature importance
	2.7 Statistical analysis

	3 Results
	3.1 Patient characteristics of the internal training and testing sets
	3.2 ML to predict outcomes
	3.3 Categorization of prediction score and risk stratification
	3.4 Logistic regression analysis
	3.5 Visualization of feature importance and interpretation of personalized predictions
	3.6 Gender-based analysis

	4 Discussion
	4.1 Summary and comparison with existing studies
	4.2 Strengths and limitations

	5 Conclusion

	References

