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Introduction: Infancy and early childhood are the key stage for the rapid

development of brain structure and function, and brain development at this

stage has a profound impact on the future intelligence, behavior and health of

individuals. A growing body of research suggests that maternal inflammation,

as a potential environmental factor, may a�ect brain development in infants

and young children through a variety of mechanisms. Therefore, it is of

great significance to evaluate the risk of maternal inflammation to early

brain development in infants and young children based on multi-source data

modeling to understand the mechanism of early development and prevent brain

development disorders.

Methods and analysis: Between December 2021 and May 2024, 360 pairs

of pregnant women and their o�spring were recruited into the Xiamen

Children’s Brain Development Cohort. Pregnant women’s exposure during

pregnancy was collected through standardized and structured questionnaires

and medical records. All children were followed up to 3 years of age.

We administered questionnaires, behavioral assessments, and performed

neuroimaging. Environmental exposures during infancy and early childhood

were collected. Children’s cognitive, emotional, and linguistic development was

evaluated, and blood samples were obtained for whole-exome sequencing and

exposure-related biomarker analysis.

Conclusion: In this study, we used deep learning artificial intelligence

to construct an early risk assessment model for infant brain development

based on the developmental trajectory and developmental results of early

brain structure, function, and connections under the complex interaction of

“gene-image-environment-behavior”multi-factors, which can improve the early

identification and precise intervention of problems in this period, and improve

infants cognitive learning and work performance in childhood, adolescence and

even adulthood.
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Introduction

Brain development is currently the most concerned—about

frontier field of brain and cognitive science in the world.

Brain development during the fetal period is very sensitive to

environmental influences. Transcriptional programs in the fetal

brain regulate complex developmental processes that ultimately

shape the functional structure of the adult brain. Thus, alterations

in the intrauterine environment can have far-reaching and

long-lasting effects on neurodevelopment (1, 2). Epidemiological

data suggest that severe maternal infection during pregnancy

is associated with an increased risk of neurodevelopmental and

neuropsychiatric disorders, including schizophrenia, bipolar

disorder, attention deficit hyperactivity disorder (ADHD),

developmental delay, cognitive dysfunction, anxiety/depression,

and autism spectrum disorder (ASD), among others (3, 4). In

addition, infants experience dramatic changes in brain structure,

function, and connections from birth. Synapses are produced in

large numbers on the microstructure, and pruning and apoptosis

related to the environment and experiences are produced (5); At the

macroscopic level, the appearance of magnetic resonance is greatly

changed due to the rapid development of axonal myelination.

The cortex is significantly thickened, dilated, and folded, and the

functional integration is significantly enhanced (6). Long-term

follow-up studies have revealed that the cognitive levels reached

in infancy and early childhood continue to affect many aspects of

physical andmental health, wealth, and longevity in the middle and

late adulthood (7). However, currently, our understanding of the

mechanisms of these complex brain development processes and the

deleterious effects of maternal inflammation on brain development

in infants and young children is still limited. Although the micro

research carried out in the field of basic neuroscience has reached

preliminary conclusions, in order to evaluate the risk factors of

brain development and predict the outcome of brain development,

it is still necessary to study the brain mechanism of development,

especially the map of brain dynamic development, at the macro

level. Magnetic Resonance Imaging (MRI), characterized by its

non-ionizing radiation and excellent spatial resolution for cerebral

tissue, enables the acquisition of multi-parametric information.

Furthermore, advanced sequences facilitate functional and

biochemical metabolic analyses, thereby providing objective

biomarkers for evaluating neonatal brain development and

diagnosing cerebral injuries (8). Electroencephalogram (EEG),

especially the event-related potential (ERP) technique, can be used

to non-invasively explore the cognitive processes of infant speech

recognition, language comprehension, phonological awareness,

recognition memory, and facial emotion recognition (9, 10).

Researchers can, through experimental paradigms specifically

designed for different age groups, explore ERP components,

characteristics, origins, and influencing factors of language and

social-emotional development in infants and toddlers aged 0–3

years (11). These imaging techniques, combined with brain image

modeling, can reveal the mysteries of early brain development

and the impact of maternal inflammation. Due to the limitations

of technology and research objects, it is very difficult to study

infant brain development. Under the promotion of the Human

Connectome Project (HCP) in the United States, the leading Infant

Connectome Project (BCP) has been successfully carried out (12),

which has led to a boom in research on infant brain development.

Since the 13th Five-Year Plan, China has been taking brain science

as a national strategy. Artificial intelligence has been regarded

as “a strategic technology to lead this round of scientific and

technological revolution and industrial transformation”.

Deep learning technology has made a very important

breakthrough in the field of artificial intelligence in the past

decade. The availability of big data, the enhancement of computer

computing power, and the innovation of deep network training

algorithms have greatly promoted the great progress of deep

learning technology in many fields, including computer vision,

natural language processing, speech recognition, medical image

analysis, and disease diagnosis (13–15). In clinical studies, a

large amount of multimodal neurobiological information such as

neuroimaging, electrophysiological and behavioral data is usually

collected from patients, which provide important data support for

the early risk assessment of brain development and the prediction

of brain development trajectory and results. Deep learning provides

effective technical support for mining and understanding the

differences and mechanisms of brain development. It is of

great scientific significance and application value to analyze,

based on deep learning technology, multimodal neurobiological

data, develop an accurate and efficient early risk assessment

model for brain development, and explore neural biomarkers

related to brain development. At present, deep learning networks

that are widely used in brain development research mainly

include deep belief networks (DBN), convolutional autoencoders

(CAE), convolutional neural networks (CNN), graph convolutional

networks (GCN), and recurrent neural networks (RNN) (16, 17).

Therefore, this study will establish a 0–3-year-old infants’

brain development assessment cohort, collect multimodal

neurobiological data, including multi-source data of imaging,

EEG, behavior, genes, and environment, and use deep learning

artificial intelligence methods to construct an early risk assessment

model for infant brain development under maternal inflammation,

and carry out individualized comprehensive assessment and

prediction of brain intelligence. The aim is to accurately identify

and distinguish brain development disorders in infants and young

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1530285
https://www.clinicaltrials.gov
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Huang et al. 10.3389/fpubh.2025.1530285

children, and to discover the neural mechanism in the brain

network based on the proposed interpretable artificial intelligence

method, to propose a newmethod for the clinical assisted diagnosis

and assisted rehabilitation of brain development.

Objectives

1. Establish a brain development assessment cohort for infants and

young children aged 0–3 years, and collect multimodal data of

“gene-image-environment-behavior” through high consistency,

high success rate, high follow-up rate and high quality.

2. Use MRI and EEG and image recognition technology to depict

the early development trajectory of brain structure, function and

connection of these high-level functions.

3. Integrate multi-source data: use deep learning artificial

intelligencemethods to construct an early risk assessmentmodel

for infant brain development under maternal inflammation,

and conduct individualized comprehensive assessment and

prediction of brain intelligence.

4. Integrate whole-exome sequencing and whole-genome

sequencing results to identify genes that play a key role in

children’s early life development. Also, identify how these genes

interact with maternal inflammation to affect children’s brain

structure and function development.

Methods and analysis

Research subject

The study subjects were infants and children aged 0–3

years and their mothers, and the Xiamen Children’s Brain

Development Cohort recruited the study subjects from the society

(kindergartens, elementary schools, and other institutions) and

the neonatal department of Xiamen Children’s Hospital. Based

on the information of the mothers’ pregnancy—related medical

history, infants whose mothers had high inflammatory indices

during pregnancy (e.g., CRP, interleukin−1β, interleukin−6,

interleukin−10, and macrophage inflammatory factor−1β), or

had chorioamnionitis, pathologic abnormalities of the placenta,

preterm premature rupture of the membranes, or had combined

gestational hypertension and diabetes mellitus with maternal

inflammatory diseases were included in the observation group.

Infants without maternal inflammation were the control group.

Characteristics of our included subjects included:(1) age 0–

3 years;(2) gestational age 37–42 weeks;(3) birth weight >2.5 kg;

and(4) no significant birth complications. Characteristics of

excluded subjects included:(1) history of resuscitation from

asphyxia at birth;(2) congenital structural anomalies;(3) presence

of inborn inherited metabolic disorders such as phenylketonuria,

galactosemia, and congenital hypothyroidism;(4) presence of a

major medical condition affecting growth, or development; and(5)

contraindications to magnetic resonance imaging (MRI).

Sample size
The formula for calculating the sample size is based on the

comparison of the average values of the two independent samples:

N =
2(Zα + Zβ )

2
σ 2

d2

Where σ is the estimated standard deviation, d represents the

difference between the two sample means, and Zα and Zβ are

the quantiles of the standard normal distribution corresponding

to α and β , respectively. A previous Greek study using the

McCarthy Scales for Children’s Abilities to measure children’s brain

development found that the difference between the memory scores

of children born to mothers with a hyperinflammatory state during

pregnancy and those born to normal mothers was −4.4 (−8.3,

−0.5) (18). Substituting σ = 0.05 and β = 0.2 gives N = 1603,

based on a 1:1 calculation of mothers in the inflammatory group vs.

the normal group, a total of 2N = 3206 pregnant women needed to

be included in the entire study.

Hospital clinicians and nurses explained the objectives of the

study, the process, the potential benefits of participation, and the

confidentiality of the study to all families eligible for inclusion.

All investigators entering the cohort signed an informed consent

form. The Xiamen Child Brain Development Cohort provided each

mother and child pair with a unique family ID for further follow-

up. Participants could withdraw from the cohort at any time. The

study was approved by the Clinical Ethics Committee of Xiamen

Children’s Hospital and the participating hospitals.

Follow-up plan
Utilizing an aggregation cross design, referencing the

grouping methodology of the Baby Connectome Project (BCP) by

UNC/UMN in the USA (12), participants were categorized into

9 sub-cohorts based on the age at initial enrollment, each having

varying sampling density and age spans (Table 1). Each of the first

three sub-cohorts enrolled 536 participants, while sub-cohorts 4–9

each enrolled 268 participants, totaling 3,216 participants. Each

participant was followed up 3–4 times, yielding data from 11,256

participant—visits. Moreover, the follow-up intervals for sub-

cohorts 1–3 and 4–9 were 3 and 6 months, respectively, ensuring

sufficient sampling density during the first year, which is critical

for rapid development in language and socio-emotional skills.

Oversampling was strategically implemented during milestones of

language and socio-emotional development and periods prone to

scan failures (before the age of 3). Considering the low cooperation

levels of infants and potential dropouts, 3,847 participants were

recruited to ensure the acquisition of high-quality data from 3,216

subjects (Figure 1).

The study protocol encompasses questionnaires, behavioral

assessments, and brain structure and function examinations from

the perinatal period of children through the age of 3 years,

complemented by whole-exome sequencing. Basic information

about the pregnant women and their partners was retrospectively

collected at the time of enrollment.

The items and contents of the data collected at the time of

entry and at different follow-up age points are detailed in Table 2

(Detailed descriptions of the scales and tasks used during the
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TABLE 1 Cohort design and follow-up time planning schedule.

Aggregated cross design

Cohort number Number Follow-up Note

First Second Third Fourth

1 536 0 3 6 9 High-density sampling: once every 3 months

2 536 1 4 7 10

3 536 2 5 8 11

4 268 10 16 22 Medium-density sampling: every 6 months

5 268 6 12 18

6 268 9 15 21

7 268 12 18 24

8 268 15 21 27

9 268 24 30 36

Total 3,216 Number of Participant—visits: 11,256

Target number 3,847 Considering the failure rate of magnetic resonance imaging and the dropout rate of the cohort, the effective enrollment

was guaranteed to be >11,256 cases

FIGURE 1

Aggregated cohort follow-up time planning schedule.

follow-up visits can be found in the Supplementary material). The

study collects brain images, EEG data, data about the environment,

and data about the genes of infants and young children, and

evaluate cognitive development, emotional development, and

language development of infants and young children.

Brain imaging data
At each follow-up visit, the data of the brain magnetic

resonance examination in the non-sedated state of the subjects

were collected, including skull structure MRI (sMRI), resting-state

fMRI, dMRI sequence and multi-parametric MRI (MTP) scans for
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TABLE 2 Timeline for follow-up programs by age group.

Test content Tool name Age group (month)

Perinatal
period

0–1 2–6 7–12 13–18 19–24 25–36

Brain structure and function

Brain MRI /
√ √ √ √ √ √

Electrophysiological monitoring of brain waves

EEG /
√ √ √ √ √ √

Behavioral assessments

Developmental level Griffiths Development Scales-Chinese

Edition (GDSC) (19)

√ √ √ √ √

Intelligence Wechsler Intelligence Scale for

Children—Fourth Edition (WPPSI-IV)

(20)

√

Maternal and Parenting Issues—Parental Questionnaire

Basic Information Background questionnaire
√ √ √ √ √ √ √

Family parenting

environment

Index of Child Care Environment

(ICCE) (21)

√ √ √

Parenting Stress Parenting Stress Index-Short Form

(PSI-SF) (22)

√ √ √ √ √ √

Childbirth experience Postpartum Experiences Questionnaire

within 3 months (PPQ) (23)

√ √

Work-family conflict Work-Family Conflict Scale (24)
√ √ √ √ √ √

Pregnancy-Life events Pregnancy Life Events Questionnaire

(PLQ) (25)

√

Pregnancy stress Pregnancy Stress Scale (PPS) (26)
√

Depression Self-Rating Depression Scale (SDS) (27)
√ √ √ √ √ √

Anxiety State-Trait Anxiety Inventory for Young

Adults (STAI-Y) (28)

√ √ √ √ √ √

Sleep quality Pittsburgh Sleep Quality Index (PSQI)

(29)

√

Postpartum depression Edinburgh Postnatal Depression Scale

(EPDS) (30)

√ √ √

Breastfeeding Self-Efficacy Breastfeeding Self-Efficacy Scale-Short

Form (BSES-SF) (31)

√ √

Mother-infant bonding Maternal-Infant Bonding Scale (MIBS)

(32)

√

Mother-infant attachment Maternal Postnatal Attachment Scale

(MPAS) (33)

√ √ √

Parenting style Parenting Styles and Dimensions

Questionnaire (PSDQ) (34)

√

Family functioning Family Assessment Device (FAD) (35)
√

Collaborative parenting Co-Parenting Questionnaire (36)
√

Children Issues—Parental Questionnaire

Baby sleep Brief Infant Sleep Questionnaire (BISQ)

(37)

√ √ √ √ √ √

Childlike temperament Chinese Toddler Temperament Scale

(CTTS) (38)

√ √ √

Social emotions Ages & Stages Questionnaires:

Social-Emotional, 2nd Edition

(ASQ:SE-2) (39)

√ √ √ √ √ √

(Continued)
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TABLE 2 (Continued)

Test content Tool name Age group (month)

Perinatal
period

0–1 2–6 7–12 13–18 19–24 25–36

Language development Putonghua Communicative

Development Inventory-Words and

Gestures“ (PCDI: Words and Gestures)

(40)

√ √

Chinese Communicative Development

Inventories: Words and Sentences”

(CCDI: Words and Sentences) (41)

√ √

Behavioral assessment Child Behavior Checklist (CBCL) (42)
√ √ √

Autism spectrum disorder

screening

Modified Checklist for Autism in

Toddlers, Revised with Follow-up(The

M-CHAT-R/F) (43)

√ √ √

Use of electronic devices Seven-in-Seven Screen Exposure

Questionnaire (44)

√ √

Behavioral experiments

Psychological theory Theory of Mind (ToM) (45)
√

Executive

function/self-control

Head Toes Knees Shoulders (HTKS) (46)
√

Emotion-related

self-regulation, etc

Emotional Stroop Task (47)
√

Behavioral observations

Negative emotion

regulation, social emotion

Still Face Experiment (48)
√ √

Language expresses social

emotions

Mother–Infant Interaction (49)
√ √ √

Executive control Strange Situation Test (50)
√

Executive control Frustration Tolerance Task (51)+ Delay

of Gratification Task (52)

√

Blood

Genetic and exposome /
√

a total of 40min. All MRI data were acquired on a 3T scanner (uMR

890, United Imaging) with a 64-channel head coil. The scanning

protocol was as follows: Structural MRI: High-resolution T1w/T2w

images (0.8mm isotropic) using AI-assisted compressed sensing

(ACS) (53), achieving 37.8% time reduction compared to BCP

protocols (5). Resting-state fMRI: Single-shot EPI (TR = 800ms,

1.8mm isotropic) with multiband factor = 8 and field-map-based

distortion correction. Diffusion MRI: 72 directions with 3 shells (b

= 500/1,000/3,000) and dual phase-encoding, utilizing incremental

acquisition for sampling uniformity (54). Multi-parametric MRI

(MTP): Gradient-echo sequences generating PDw/T1w/T2w

images and quantitative maps (PD/T1/T2/QSM) through dual-

TR/dual-flip-angle design. Automated slice positioning (Easy

Scan) was used to standardize scan planning. For sleeping subjects,

supplemental scans (fMRI with reversed phase-encoding; dMRI

at b = 1,500/2,000/2,500) were added to mitigate geometric

distortions. The detailed MRI acquisition protocol is summarized

in Table 3.

EEG examination
EEG data were collected at each follow-up visit. EEG recordings

are conducted using a 32-channel actiCAP active electrode system

(Brain Products GmbH) with GreenTek GT5 conductive gel,

positioned according to the standardized 10-10 international

system (56). Signals are amplified via a BP actiCHamp Plus

amplifier and monitored in real-time using BrainVision Recorder

software. Electrode impedances are maintained below 5 kΩ

throughout sessions via automated DRT quality control software

(MATLAB R2018a runtime environment). All infants (0–3 years)

are tested in naturally alert states, verified through continuous

behavioral observation. One operator manages device calibration

and event marking, while a second observer documents infant

behaviors (e.g., head movements, vocalizations) .

The EEG Experimental Tasks Include:

(1) Resting State (Resting): The test involves the acquisition of a

5-min resting state.
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TABLE 3 The parameter list of the multi-MRI protocol (12, 54, 55).

Sequence Matrix FoV
(mm)

Resolution
(mm)

TE
(msec)

TR
(msec)

Slices/
orientation

Time
(min:sec)

Acceleration
strategy

Localizer 115× 144 300× 300 2.6× 2.08× 4 1 2.7 1/Sag 00:10 -

T1-weighted 320× 300 256× 240 0.8× 0.8× 0.8 2.9 7.4 208/Sag 03:44 ACS,×3.3

T2-weighted 320× 300 256× 256 0.8× 0.8× 0.8 452 3,000 208/Sag 04:09 ACS,×3.8

Field Map 116× 116 209× 209 1.8× 1.8× 1.8 2.46 501.2 72/Axial 00:58 -

BOLD Rest Ref PA 116× 116 209× 209 1.8× 1.8× 1.8 35 800 72/Axial 00:25 Multi-band= 1

BOLD Rest PA 116× 116 209× 209 1.8× 1.8× 1.8 35 800 72/Axial 06:25 Multi-band= 8

DWI b0 AP 140× 140 210× 210 1.5× 1.5× 1.5 77.5 3,000 92/Axial 00:40 Multi-band= 4

DWI PA,

b= 500, 1,000, 3,000

140× 140 210× 210 1.5×1.5×1.5 77.5 3,014 92/Axial 04:29 Multi-band=
4, 3 shells, 72

directions

AP,

b= 1,500, 2,000, 2,500

140× 140 210× 210 1.5×1.5×1.5 77.5 3,014 92/Axial 04:29

MTP 192× 192 230× 190 0.8× 0.8× 1.6 20.76 36.8 70/Axial 7:10 ACS,×4

Contingent on the baby continuing to sleep

BOLD Rest Ref AP 116× 116 209× 209 1.8× 1.8× 1.8 35 800 72/Axial 00:25 Multi-band= 1

BOLD Rest AP 116× 116 209× 209 1.8× 1.8× 1.8 35 800 72/Axial 06:25 Multi-band= 8

DWI PA,

b= 500, 1,000, 3,000

140× 140 210× 210 1.5× 1.5× 1.5 77.5 3,014 92/Axial 04:29 Multi-band=
4, 3 shells, 72

directions

AP,

b= 1,500, 2,000, 2,500

140× 140 210× 210 1.5× 1.5× 1.5 77.5 3,014 92/Axial 04:29

FIGURE 2

Technology roadmap for the full research program.
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(2) Three Language Tasks: (1) Infant Speech Perception

Ability (FFR/Oddball): The test involves presenting two

types of auditory stimuli in a pseudo-random manner. (2)

Infant Vocabulary Semantic Development in Social Scenarios

(SceneWord): The test involves observing infants’ responses

to auditory stimuli after they view pictures with situational

and environmental information. (3) Development of Infant

Syntactic Ability (Syntax): The test content is the continuous

input of auditory stimuli in a regular pattern.

(3) Two Emotion Tasks: (1) Emotion Classification (Face

Emotion): The test involves rapidly presenting images or

stimuli representing different emotions. (2) Empathy with

Natural Stimuli (Empathy): The test requires the infants to

watch a silent animated cartoon.

To ensure that sufficient data can be collected for this task

modality, the research team has decided to adopt a rotation

method based on the age of the participants and the categories

of the multimodal tasks. The rotation requirement is that in each

experiment, 2 tasks are selected from the language tasks, 1 task is

selected from the emotion tasks, and the resting state task, which

is mandatory, is added. In total, there are 4 tasks. The estimated

duration of the tasks is∼30–40 min.

Behavioral assessment
(1) Griffiths Development Scales—Chinese Edition (GDSC)

(57): Griffith assessment was performed during the follow-

up of preterm infants after discharge. Griffiths scale is a

standardized assessment scale for children aged 0–8 years

whose mother tongue is Chinese and which has Chinese

norms. The scale is divided into two parts: 0–2 years old and

0–8 years old, the 0–2 years old part is composed of 5 domains:

“A Movement”, “B Individual-Society”, “C Language”, “D

Hand-eye Coordination” and “E Performance”, and the 0–

8 years old part adds “F Practical Reasoning Domain” on

this basis. When the developmental quotient DQ < 70, it

indicates developmental delay; when DQ ≥85, it indicates

normal development.

(2) Wechsler assessment: this study uses the WPPSI—IV (58) to

assess the child’s intelligence level. Five scores are calculated

from the questionnaire, namely the Verbal Comprehension

Index (VCI), Visual Spatial Index (VSI), Working Memory

Index (WMI), Fluid Reasoning Index (FRI), and Processing

Speed Index (PSI). Then, the scores of different ability areas

will be summarized based on the questionnaire data to

obtain the Full Scale IQ (FSIQ) score, which comprehensively

reflects the overall intellectual level of children. Different

intellectual level intervals are divided according to

the FSIQ.

Parent-questionnaire
An electronic questionnaire was designed on the WeChat

public account platform. After parents follow and register,

the system will push the parent questionnaire of the

corresponding age group for parents to fill in. The electronic

questionnaires were divided into two main categories:

maternal and parenting issues, and children’s issues, as detailed

in Table 2.

(1) The Maternal and Parenting Issues Questionnaire

primarily investigates the family parenting environment

, maternal parenting stress, pregnancy and postpartum

events, postpartum emotional state of mother and work-

family relationships. It further explores the impact of these

environmental factors on children’s brain development.

Among them, the Family Parenting Environment Survey uses

the Index of Child Care Environment (ICCE) (21): the scale has

a total of 13 questions and includes family interaction, external

contact, avoiding scolding and social support. The total score of

the scale ranges from 0 to 13 points, and the higher the score,

the better the child’s nurturing environment. According to the

distribution of population scores, the ICCE total score was divided

into four groups: the worst family environment group (≤10 score),

the lower-middle group (11 score), the upper middle group (12

score), and the best group (13 score).

(2) The Children’s Related Issues Questionnaire mainly

investigates the sleep of infants, childlike temperament, social

emotions, language development, behavioral assessment,

autism spectrum disorder screening and use of electronic

devices. Among them, (1) the Ages and Stages Questionnaires-

Social-Emotional (the 2nd edition) (39), focuses on the

emotional development and mental health of infants and

young children. There are two types of screening results

for ASQ—SE: below the boundary value and equal to or

higher than the boundary value. The latter indicates that

the child’s development is in line with his or her monthly

development level. (2) Language development: a. Infant and

child communication development questionnaire: vocabulary

and gesture short form. This scale was jointly revised by the

University of Michigan, the National University of Cork,

Ireland, and Peking University in 2008. The vocabulary scale

of the scale has a total of 219 items, which contains most of the

vocabulary used by normal Chinese children, such as: person,

food, animal, drink, body, parts, as well as verbs, adverbs,

quantifiers, and tenses. The “Vocabulary and Gesture Short

Table” examines the items that children “don’t understand”,

“understand”, and “can speak”. “don’t understand” gets 0

points, and “understand” and “can speak” get 1 point each. b.

The Children’s Communication Development Questionnaire:

Vocabulary and Sentence Short Tables. It examines items

of whether children “can’t speak” or “can speak” and “can

speak” items, “Can’t speak” gets 0 points, “Can speak”

gets 1 point.

3) The M-CHAT-R/F (43) (Modified Checklist for Autism in

Toddlers, Revised with Follow-up) is a screening tool used to

assess the risk of autism spectrum disorder in toddlers aged

16 −30 months. The screening process consists of two steps:

the first step is an initial questionnaire, and the second step

is a follow-up interview. The questionnaire is completed by
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the child’s parents or main caregivers based on the child’s

actual behavior.

Behavioral experiments
(1) Psychology Theory Task (45) (36months of age and above)—

tests the child’s psychotheoretical ability.

(2) Head, Foot, Knee, and Shoulder (HTKS) Task

(46) (25-month-old and older)—tests the child’s

executive function/self-control.

(3) Emotional Stroop Task (47) (25-month-old and older)—tests

children’s ability to self-regulate emotionally.

Behavioral observations
(1) Still Face (48) (3–12 months old)—This task is used to

test the negative emotion regulation and social emotion of

infants. It consists of three stages: face-to-face interaction,

still-face episode, and reunion. Measuring infants’ ability

to achieve interactions by regulating emotional expression

reflects infants’ early goal—oriented social competence.

(2) Mother–Infant Interaction (49) (6–18 months of age)—

This task tests for verbal expression and social emotion. This

semi-structured observation records 10min of mother–child

interaction. During the observation, parents are encouraged

to interact with their children in a normal way. This

observational experiment can reflect a number of indicators,

such as maternal sensitivity, infant social referencing, dyadic

contingent responses, etc.

(3) Strange Situational Test (50) (21–27 months old)—

Inhibition/Control Ability: Three strangers interacted with

children in the presence and absence of their mothers,

respectively, to assess the infant’s attachment security.

(4) Frustration Tolerance & Delayed Gratification Task (51)

(30–42 months old)—To test inhibition/control ability: The

first paradigm was adapted from the classic marshmallow

experiment, using snacks and crayons to observe children’s

self-control. The second paradigm presents the child with a

situation in which the goal is blocked. In these tests, toddlers’

patience time, coping strategies, and parental responses will be

classified and coded.

Genetic and exposome testing
At the time of enrollment, 2ml of blood from each parent and

child were drawn once, whole exome sequencing and exposome

were performed, and multivariate statistical methods were used to

analyze genes and biomarkers related to brain, early language and

emotional development. In addition, through the deep sequencing

of the whole genome, a variety of genetic analysis methods,

including candidate-gene analysis, whole-gene analysis, and multi-

gene risk combination analysis methods, will be used to explore the

molecular mechanisms of brain structure, function, connections,

and the developmental trajectory of language and emotion, and

elucidate the precise mechanism of gene expression during human

brain development.

Outcomes

Primary outcome
Cohort and data goals

This study will create a 0–3-year-old infant brain development

assessment cohort. This study aims to gather comprehensive “gene

– environment - image - behavior” multimodal data, with a focus

on high-quality collection. The data will be used to establish a solid

foundation for research on infants brain development, and the data

integrity rate is expected to be at least 90% across all data categories.

Brain development mapping

Using advanced magnetic resonance imaging (MRI) and

electroencephalogram (EEG) technologies, we will precisely map

the early brain development of infants and determine the

developmental patterns of infant brain functions. This includes

determining, through technologies such as image recognition, the

brain development curves of infants with age, as well as the normal

volume ranges of different brain regions at each age group. It also

involves recording the growth patterns of brain structures such

as the hippocampus and prefrontal cortex, and the development

of neural connections. By analyzing the data, we will map the

brain development trajectories of Chinese children and identify the

critical periods of brain development.

Risk model construction

Using deep-learning-based artificial intelligence technology, we

will develop an early risk assessment model for the impact of

maternal inflammation on infant brain development. This model

will be able to integrate data on maternal inflammation during

pregnancy to predict the brain development of children with high

precision and further identify potential risks in infant intelligence,

motor skills, emotions, and cognition. Through rigorous training

and validation, our goal is to ensure that the area under the curve

(AUC) of themodel’s recognition ability for relevant developmental

disorders reaches 0.8 or above.

Gene-environment interaction

Integrate the results of whole-exome sequencing to identify

genes crucial for early-life brain development. Through in-depth

genetic and statistical analyses, this study will explore how these

genes interact with maternal inflammation and environmental

exposure during early life. This study anticipates uncovering at least

10 genes that show significant interaction effects and elucidating the

underlying molecular mechanisms.

Secondary outcome
In the secondary results of this study, we will mainly conduct

an in-depth exploration of the impact of environmental factors

on children’s brain development from two aspects, namely the

maternal environmental exposure during pregnancy and the family

environment and parenting patterns after birth.

Research plan on the impact of maternal adverse factor

exposure during pregnancy on infant early

brain development

Focusing on maternal exposure to inflammation during

pregnancy, this plan aims to analyze its mechanism of action
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on infant early brain development. On the one hand, we will

study the correlation between the changes in inflammatory

indicators during pregnancy and infant brain development. By

comparing the brain imaging and electrophysiological data of

children under different inflammatory levels, as well as the

development of children’s intelligence, cognitive ability, motor

ability and other abilities, we will explore the potential impact of

maternal inflammation during pregnancy on the development of

brain structure and function. On the other hand, regarding other

adverse conditions during pregnancy, such as chorioamnionitis,

placental pathological abnormalities, gestational diabetes mellitus,

gestational hypertension and other pregnancy-related diseases, as

well as adverse environmental exposure during pregnancy, we

will analyze their impacts on the structure and function of infant

brains, and the potential links between such impacts and the future

development of infants in terms of intelligence, cognition, emotion,

and motor skills.

Research plan on the impact of family environment and

parenting patterns after birth on infant brain development

This study will conduct research on the family environment

and parenting patterns after birth, and analyze their impacts

on the structure and function of infant brains. With the help

of professional assessment scales, this study will explore the

relationship between family parenting patterns and infant brain

development, paying particular attention to the promoting or

inhibiting effects on intellectual development and the underlying

pathways. At the same time, this study will examine the impact

of the family environment on infant emotional regulation ability,

as well as the differences in infant cognitive development under

different parenting styles, and further explore the potential

neural mechanisms through which these factors affect infant

brain functions.

Data analysis
Cohort and data objectives

Conduct an integrity assessment of the “gene-environment-

electroencephalogram (EEG)—imaging-behavior” multimodal

data for the included cohort of infants and toddlers aged 0–3

years. Calculate the integrity of core data such as questionnaire

data, gene data, and children’s behavior data, with an integrity

rate of at least 90%. For data with high noise levels such as brain

magnetic resonance imaging (MRI) and EEG, the integrity rate

should be ≥85%, and the overall integrated integrity should be

≥80%. Examine the reasons for missing data. For completely

random missing data of different types, use methods such as

multiple imputation, k-nearest neighbors (KNN) imputation, the

Generative Adversarial Imputation Network (GAIN) algorithm,

and expert judgment filling to supplement the data. Filter gene

data through the Genome Analysis Toolkit (GATK), annotate

it with ANNOVAR, and screen high-quality loci through the

Hardy-Weinberg Equilibrium (HWE) test. Remove outliers

from environmental data regarding inflammatory indicators

during pregnancy, pregnancy complications, and family parenting

scales. Process MRI structural images using Free Surfer/FSL and

functional magnetic resonance imaging (fMRI) using Statistical

Parametric Mapping (SPM) for imaging data. Preprocess EEG

data using EEGLAB. Transform behavior data into Z-scores.

Present demographic characteristics through descriptive statistics.

Use the chi-square test/analysis of variance to compare baseline

differences among subgroups such as gender and gestational age

to ensure the balance of the cohort and lay the foundation for

subsequent analyses.

Mapping of brain development atlas

Based on the preprocessed MRI and EEG data, we use

FreeSurfer to quantify the volumes of brain regions such as the

hippocampus and prefrontal cortex, and calculate the normal range

of brain region volumes related to age. Calculate and plot the

curves of the volumes of specific brain regions of children by

gender through non-linear functions as they change with age, and

identify the critical windows of development for specific brain

regions in infants. Extract time-frequency features such as α/β

wave power from EEG data, construct a functional connectivity

matrix, and analyze the development pattern of the resting-state

EEG network through graph theory analysis and independent

component analysis. Use canonical correlation analysis to explore

the coordinated development relationship between the volume of

MRI brain regions and the functional connectivity of EEG. At

the same time, conduct piecewise regression on longitudinal data,

detect themutation points of the brain development rate, and verify

its correlation with the development scores in terms of intelligence,

cognition, and behavior, so as to comprehensively depict the

dynamic development trajectory of brain structure and function.

Construction of infant brain development models

Integrate the volumes of MRI brain regions, time-frequency

features of EEG, inflammatory indicators during pregnancy,

and questionnaire scores of children in different ability areas.

Reduce the dimensionality through principal component analysis

to generate multimodal feature vectors and input them into

a Transformer to construct a deep learning model. Train the

model using cross-validation and prevent overfitting through the

Dropout method and the AdamW optimizer. Take the AUC

as the core index, and simultaneously calculate the sensitivity,

specificity, accuracy, and other indicators of the model. Verify the

generalization ability of the model using an international public

database, and locate the key predictive factors through the SHapley

Additive exPlanations (SHAP) values and the Local Interpretable

Model-agnostic Explanations (LIME) algorithm. Combine the

anatomical localization of brain regions to explain the risk

prediction mechanism of how inflammation during pregnancy

affects brain development, and ensure the clinical application value

of the model.

Gene-environment interaction

In the data analysis of gene–environment interactions, this

study will be base on whole exome sequencing data. First,

variant detection and quality control will be performed using

the Genome Analysis Toolkit (GATK). ANNOVAR will be

utilized for functional annotation of the variants, and high-quality

loci will be screened through the Hardy-Weinberg Equilibrium

(HWE) test. We will focus on the variants of candidate genes

related to brain development and loss-of-function mutations.

Subsequently, the Sequence Kernel Association Test with Optimal

weighting (SKAT-O) will be employed to analyze the association

between gene sets and brain development phenotypes. Meanwhile,
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a generalized linear model will be constructed, incorporating

pregnancy inflammation indicators (such as CRP and IL-6 levels),

environmental exposure variables, and their interaction terms with

gene variants to test the gene–environment interaction effects.

By referring to the literature in fields such as neural synapse

development and inflammatory signaling pathways, genes with

significant effects in the interaction will be screened out. For the

screened genes, methods such as metabolomics and proteomics

will be further used to verify their regulatory mechanisms in

brain development, analyze the impact of genes on the early-

life brain structure and function of infants, and ultimately

reveal the molecular pathways through which the interaction

of genes, pregnancy inflammation, and environmental exposure

affects early brain development. It is expected to identify at least

10 key genes with significant effects and clarify their potential

biological mechanisms.

The impact of family environment and parenting patterns

on brain development

Regarding the secondary research results, we will conduct

a comprehensive analysis from two aspects: the exposure of

adverse factors in mothers during pregnancy and the family

environment and parenting patterns after birth. For maternal

exposure to adverse factors during pregnancy, on the one hand,

regarding the correlation between inflammatory indicators and

brain development, we will conduct correlation analysis between

brain indicators such as MRI-derived brain volume, cortical

thickness, and EEG power spectral density, and the levels of

inflammatory cytokines such as C-reactive protein (CRP) and

Interleukin-6 (IL-6). Group children according to the inflammatory

levels and compare their brain imaging, electrophysiological data,

and scores of relevant abilities of children. On the other hand,

for other adverse conditions during pregnancy, conduct regression

analysis to explore the potential links with the future development

of children. In the analysis of family factors after birth, first

conduct correlation and regression analysis between the scores

of the quantified family parenting scale and brain indicators

such as MRI-derived brain volume, cortical thickness, and EEG

power spectral density. At the same time, explore the pathways

through which parenting patterns affect children’s intellectual

development through mediation analysis. In addition, associate

family environment variables with children’s emotional regulation

indicators, and compare the differences in children’s cognitive

development under different parenting styles.

Preliminary results

Between December 2021 and May 2024, 360 pairs of pregnant

women and their offspring were recruited into the Xiamen

Childhood Brain Development Cohort, which investigated basic

family information through a baseline questionnaire, children’s

births through medical information, and MRI scans of children’s

brains who entered the cohort. Of the 360 children enrolled in the

study (Table 4) , 203 (56.39%) were males, the mean gestational

week of the mother’s pregnancy was 35.67 weeks, the mean age of

the children at MRI was 3.28 weeks, and there were a total of 163

(45.3%) children born at term and 156 (43.3%) children born by

normal delivery.

TABLE 4 Baseline characteristics and risk factors of research subjects.

Variable Sum
mean
(sd)

Male
mean
(sd)

Female
mean
(sd)

p

People (%) 360 203 (56.39) 157 (43.61)

Gestational age

(week)

35.67 (3.88) 35.85 (4.03) 35.45 (3.68) 0.332

Age at scanning

(week)

3.28 (3.30) 3.25 (3.49) 3.31 (3.05) 0.849

Full-term infant (%) 163 (45.3) 102 (50.2) 61 (38.9) 0.041

Birth weight (g) 2.49 (0.87) 2.58 (0.87) 2.37 (0.85) 0.024

Vaginal delivery (%) 156 (43.3) 97 (47.8) 59 (37.6) 0.067

Parity (%) 0.141

0 55 (15.3) 30 (14.8) 25 (15.9)

1 163 (45.3) 84 (41.4) 79 (50.3)

≥2 142 (39.4) 89 (43.8) 53 (33.8)

Chorioamnionitis

(%)

7 ( 1.9) 4 ( 2.0) 3 ( 1.9) 1.000

Gestational

hypertension (%)

40 (11.1) 18 ( 8.9) 22 (14.0) 0.170

Gestational diabetes

(%)

76 (21.1) 38 (18.7) 38 (24.2) 0.257

Pathological

placental

abnormalities (%)

7 ( 1.9) 2 ( 1.0) 5 ( 3.2) 0.265

Premature rupture

of membranes (%)

47 (13.1) 25 (12.3) 22 (14.0) 0.752

Eclampsia (%) 27 ( 7.5) 13 ( 6.4) 14 ( 8.9) 0.486

Sexually

transmitted diseases

(%)

28 ( 7.8) 15 ( 7.4) 13 ( 8.3) 0.909

Antibiotic

treatment (%)

68 (18.9) 34 (16.7) 34 (21.7) 0.297

Maternal

inflammatory (%)

187 (51.9) 94 (46.3) 93 (59.2) 0.020

Discussion

The aim of this study is to establish a cohort for evaluating

the brain development of infants aged 0-3 years (Figure 2). It

involves collecting MRI, EEG, and other data in the early life

of infants. Through image segmentation, feature extraction, and

functional connectivity analysis techniques, it aims to depict the

early development trajectories of brain structure, function, and

infant brain development. Meanwhile, environmental risk factors

in the early life of infants that affect brain development will be

identified. Results from whole-exome sequencing will be integrated

to analyze which genes play a crucial role in the early brain

development of children. In addition, analyses will be conducted

to explore how genes interact with environmental risk factors and

influence the structural and functional development of infants’

brains. Deep-learning algorithms will be employed to develop an

early-risk assessment model for infant brain development, enabling
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individualized comprehensive assessments and predictions of

brain intelligence.

Construction of high-precision brain
function map

This study will construct a map of brain function and structure

from birth to early childhood and capture the dynamic changes

in brain structure and function through multimodal neuroimaging

techniques, including MRI and EEG. MRI will be particularly

useful for visualizing structural changes, while EEG will provide

insights into functional connectivity and electrical activity. Time

series analysis methods will be applied, processing sequential

imaging data collected from birth to early childhood to reveal key

time nodes and developmental pathways in brain development.

We will develop and optimize image processing algorithms,

specifically for the particularity and complexity of infant brain

imaging data, to ensure the accuracy and effectiveness of

data analysis.

A comprehensive analysis of the interaction
between genes and the environment

In addition, the aim of this study is to analyze in depth

the association between maternal inflammation and the risk of

early brain development in infants and the role of genetic factors

in this association, as well as to explore the risk factors for

child neurodevelopment. The study will utilize whole exome

sequencing technologies combined with detailed data on children’s

exposures (including maternal inflammation during pregnancy,

nutrition, home environment, social interactions, exposome data,

etc.) to analyze the interaction between genetic and environmental

factors through statistical modeling. In the process, genetic

information and environmental data will be integrated and

analyzed, and the impact of environmental factors will be assessed

to provide a comprehensive understanding of how environmental

exposures during pregnancy and genetic information influence

early childhood neurodevelopment.

Early risk assessment and prediction model
development

This part of the study aims to develop a comprehensive

predictive model for early brain developmental disorders, based

on multi-source data from neuroimaging, genetics, environmental

exposures, etc. Machine learning and artificial intelligence

technologies (such as deep learning, support vector machines, etc.)

are applied to analyze this data and build predictive models for

early risk assessment (Figure 3). Finally, based on these models, an

easy-to-use personalized risk assessment tool will be developed to

FIGURE 3

Deep learning model for early risk assessment of infant brain development.
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provide clinicians and researchers with precise early intervention

and diagnostic support.

Strength

(1) High-standard medical services and resources: As an

affiliated hospital of Fudan University and a national children’s

regional medical center, Xiamen Children’s Hospital has advanced

medical facilities and standardized medical procedures, which

ensure the quality and consistency of the medical data collected.

In such an environment, the reliability and accuracy of the results

are greatly guaranteed. (2) High compliance with follow-up: A

team of professional doctors and nurses is responsible for follow-

up, which can significantly improve participant compliance. This

professional follow-up not only reduces missing data, but also

improves the quality and accuracy of data collection. (3) Scientific

instrumentation ensures data quality: Critical medical data, such as

MRI scans and exome sequencing, are done in a tightly controlled

hospital laboratory environment, which avoids the recall bias that

comes with questionnaires. (4) Continuous and comprehensive

data collection: This cohort is designed at Xiamen Children’s

Hospital, which can systematically collect children’s comprehensive

medical data for a long time, including physical examination,

treatment records and follow-up information. This mode of data

collection provides a solid foundation for research. (5) Lack of

selection bias: Due to the specificity of the child population, there

is no specific disease in the cohort population, so data collection is

not affected by the selection bias that is common in adult cohorts.

Weakness

(1) Limited extrapolation of the population: Due to the

ethnic distribution of the Xiamen population, the main enrolled

population consists of Han children, and the results may not be

representative of ethnic minorities. This may limit the applicability

of the findings to a wider population. (2) Participant loss: A

common problem in cohort studies is participant loss over time,

and this study cannot avoid loss to follow-up due to moving out.
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