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Background: Juvenile idiopathic arthritis (JIA) is a prevalent chronic

rheumatological condition in children, with reported prevalence ranging

from 12. 8 to 45 per 100,000 and incidence rates from 7.8 to 8.3 per 100,000

person-years. The diagnosis of JIA can be challenging due to its symptoms,

such as joint pain and swelling, which can be similar to other conditions (e.g.,

joint pain can be associated with growth in children and adolescents).

Methods: The National Survey of Children’s Health (NSCH) database

(2016–2021) of the United States was used in the current study. The NSCH

database is funded by the Health Resources and Services Administration and

Child Health Bureau and surveyed in all 50 states plus the District of Columbia.

A total of 223,195 children aged 0 to 17 were analyzed in this study. A

least absolute shrinkage and selection operator (LASSO) logistic regression and

stepwise logistic regression were used to select the predictors, which were used

to create the nomograms to predict JIA.

Results: A total of 555 (248.7 per 100,000) JIA cases were reported in the NSCH.

In the LASSO model, the receiver operating characteristic curve demonstrated

excellent discrimination, with an area under the curve (AUC) of 0.9002 in the

training set and 0.8639 in the validation set. Of the 16 variables selected by LASSO,

13 overlapped with those from the stepwise model. The regression achieved an

AUC of 0.9130 in the training set and 0.8798 in the validation set. Sensitivity,

specificity, and accuracy were 79.1%, 90.2%, and 90.2% in the training set, and

69.0%, 90.9%, and 90.8% in the validation set.

Discussion: Using two well-validated predictor models, we developed

nomograms for the early prediction of JIA in children based on the NSCH

database. The tools are also available for parents and health professionals to

utilize these nomograms. Our easy-to-use nomograms are not intended to
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replace the standard diagnosticmethods. Still, they are designed to assist parents,

clinicians, and researchers in better-estimating children’s potential risk of JIA.

We advise individuals utilizing our nomogram model to be mindful of potential

pre-existing selection biases that may a�ect referrals and diagnoses.

KEYWORDS

juvenile idiopathic arthritis, pediatric arthritis, pediatric joint inflammation, chronic

rheumatology, LASSO, machine learning, nomogram, NSCH

1 Introduction

Juvenile idiopathic arthritis (JIA) is a prevalent chronic

rheumatological condition in children (1–3), with reported

prevalence ranging from 12.8 to 45 per 100,000 and incidence

rates from 7.8 to 8.3 per 100,000 person-years (4–9). This disease

can significantly impact the quality of life, physical function, and

psychological wellbeing of children and their families (10). The

financial cost of JIA can be high. A systematic review observed that

annual costs for JIA can vary significantly, ranging from $310 up to

$44,832 per patient. This variation is largely influenced by several

factors, including the country where treatment is administered, the

level of disease activity, the specific subtype of JIA, and whether

biological therapies are utilized (10).

JIA is a general term for unexplained idiopathic inflammatory
arthritis affecting children younger than 16 years of age and
lasting 6 weeks or longer (3). It is categorized into seven subtypes:

oligoarticular JIA, seropositive polyarticular JIA, seronegative

polyarticular JIA, systemic-onset JIA, enthesitis-related arthritis,

juvenile psoriatic arthritis, and undifferentiated JIA (11). The cause

of JIA is unknown and highly unpredictable (12) but it is considered

a combination of genetic and environmental factors (1, 13). For
example, smoking during pregnancy is an environmental risk factor

for JIA, while breastfeeding and having siblings may reduce the risk
(14). The distribution of JIA based on onset age is bimodal, with

peaks at< 4 years, as stated, and a second peak in early adolescence

(15, 16). Some forms of JIA are more common in girls than in

boys (16–18). It can also lead to severe complications such as

growth problems, muscle weakness and loss, and eye inflammation

(16, 19–22).

The diagnosis of JIA can be challenging due to its symptoms,

such as joint pain, swelling, stiffness, and damage (16), which can be

similar to those of other conditions, including infections, injuries,

or other forms of arthritis (23, 24). To diagnose JIA, medical

professionals must rule out the conditions of joint symptoms above

based on clinical evaluation, medical history, and a musculoskeletal

examination (3, 25, 26). Moreover, the symptoms and clinical

features can vary significantly from child to child, making it

necessary to consider various differential diagnoses carefully.

Currently, no single doctor or specific test, such as a blood test

or imaging study, is available to diagnose JIA (3, 25, 27). This

disease can be a chronic condition that evolves. Children with

JIA may have intermittent or unrecognized symptoms, leading to

delayed diagnosis (28). A study found that 42% of the patients

had more than 3 months (29) of delay from symptom onset to

physician diagnosis. Diagnosing JIA often requires the expertise of

a pediatric rheumatologist (25). Not all healthcare providers have

the necessary experience or training to make a JIA diagnosis, which

can lead to delays in receiving appropriate care (30).

Early detection and treatment of JIA offer several significant

benefits for children who are affected (31). It allows for the

timely initiation of appropriate therapy, which helps to control

the disease better, reduce inflammation, and minimize damage

to the joints. Early detection and treatment can also significantly

improve a child’s overall quality of life (22, 26, 31). Children can

continue to engage in school, sports, and social activities with less

disruption due to their condition (32). In addition, JIA can lead

to joint damage over time if left untreated. Early intervention can

help preserve joint function and mobility, preventing long-term

disability and deformities (22, 24, 26).

This study aims to develop a nomogram to assist in predicting

the likelihood of JIA diagnoses in children, i.e., to predict which

children go on to develop JIA from an earlier time point. A

nomogram is a visual statistical instrument for physicians to

estimate the individual probability of disease development or death

(33). Although other assessments are all methods that assist in

correctly diagnosing JIA, the nomogram will contribute to the

pre-screening process for further confirmation that additional

evaluation is required. The following research questions guided the

current study:

(1) Which demographic and clinical factors predict the diagnosis

of JIA?

(2) Are the identified nomograms valid in estimating the

individualized probability of JIA in a given child?

2 Materials and methods

2.1 Source of data

The National Survey of Children’s Health (NSCH) data (2016–

2021) was used in the current study. The NSCH database is

funded by the United States (U.S.) Health Resources and Services

Administration and Child Health Bureau to collect physical and

mental health, access to quality health care, and the child’s family,

neighborhood, school, and social context information (9, 34, 35)

of children ages 0 to 17 surveyed across all 50U.S. states plus

the District of Columbia, a federal district that is not part of

any state but is included as a separate population source. The

number of children surveyed in each state/district is shown

in Supplementary Table 1. The NSCH, conducted by the U.S.

Census Bureau on behalf of the Health Resources and Services

Administration’s Maternal and Child Health Bureau, was carried

out both online and by mail if there were one or more children
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ages 0 to 17 living in the household. Instructions for accessing

the online survey were sent to randomly selected households

from across the U.S. Following two reminder letters and postcard

notifications encouraging online participation, households that still

hadn’t accessed the survey were provided with a paper screening

questionnaire (36). Additional information about the sampling

and administration process, survey methodology, nonresponse bias

analysis, and other pertinent information can be found on the

survey’s website at https://www.childhealthdata.org/learn-about-

the-nsch/NSCH.

2.2 Study population

The 2016 NSCH was conducted from June 2016 through

February 2017 (139,923 households screened; 67,047 were eligible;

50,212 child-level topical interviews were completed nationally);

the 2017 NSCH was conducted between August 2017 and February

2018 (59,135 households screened; 29,343 were eligible; 21,599

child-level topical interviews were completed nationally); the 2018

NSCH was conducted between June 2018 and January 2019

(176,052 households screened; 38,140 were eligible; 30,530 child-

level topical interviews were completed nationally); the 2019 NSCH

was conducted between June 2019 and January 2020 (180,000

households screened; 35,760 were eligible; 29,433 child-level topical

interviews were completed nationally); the 2020 NSCH was

conducted between June 2020 and January 2021 (93,840 households

screened; 51,107 were eligible; 42,777 child-level topical interviews

were completed nationally); and the 2021 NSCH was conducted

between July 2021 and January 2022 (106,000 households screened;

62,010 were eligible; 50,892 child-level topical interviews were

completed nationally). The response rates were between 86% and

92% (36). Since 2016, NSCH data can be combined to increase

the analytic sample size and can investigate the time-series trend

with multiple years of non-overlapping sampling data (37). The

NSCH compared response rates across various demographic and

socioeconomic subgroups to highlight disparities. The analysis

examined the effectiveness of weighting adjustments to reduce

nonresponse bias. The weighting process for interviewed children

started with a base weight for each sampled household, followed

by a nonresponse adjustment for the screener. Eligible children

were then adjusted using a Child-Level Screener Factor and a

within-household subsampling factor. A nonresponse adjustment

for topical issues was applied, followed by a ranking adjustment

to demographic controls and trimming of extreme weights if

necessary. Although findings indicated some differences between

respondents and nonrespondents, the weighting adjustments were

generally effective in minimizing the nonresponse bias and

enhancing the survey’s representativeness (34, 38–40). Additional

information about the sampling and administration process, survey

methodology, nonresponse bias analysis, and other pertinent

information can be found on the survey’s website (34). The

NSCH is a public database that does not contain any personal

identifiers. With the approval of the Institutional Review Board

(IRB) from the primary author’s university (University of Illinois at

Springfield IRB approval number 25-006), we conducted a pseudo-

longitudinal (repeated cross-sectional) study (41–43) in accordance

with the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guidelines to ensuremethodological rigor

and transparency in reporting. Children who did not provide the

information on JIA-related questions during the surveys and had

missing values in the dataset (n = 2,248) were excluded from

the study analysis. The definition of JIA will be presented in the

Section 2.3.

2.3 Outcome

Throughout the six waves of the survey, parents were asked

the same following questions: “Has a doctor or other health care

provider ever told you that this child has arthritis?” (Yes vs. No) and

“Does this child currently have arthritis?” (Does not currently have

the condition vs. Current condition) If parents responded “Yes” to

the first question and “current condition” to the second question, a

child was defined as having JIA. Others were defined as non-JIA.

2.4 Predictors

A total of 22 potential predictors from the NSCH database

at the time of survey included in the model selection were the

child’s age, sex, race/ethnicity, maternal age at delivery, premature

birth, whether low birth weight, months of breastfeeding, age/sex-

standardized body mass index (BMI), having a genetic or inherited

condition identified through a blood test, tobacco use in household,

allergy to food, drug, or insect, asthma, Type 1 Diabetes, heart

condition, depression, anxiety, household’s ability to afford the food

you need during the past 12 months, frequency of physical activity,

chronic physical pain (including headaches or other back or body

pain in the past 12 months), difficulty with eating or swallowing in

the past 12 months, adequacy of current insurance coverage, and

child with a personal doctor or nurse.

2.5 Statistical analysis

Between-group comparisons were conducted using a t-test

for continuous variables and a Mann-Whitney U test when

the normality assumption was unmet. For categorical variables,

differences were estimated using the Chi-square test or Fisher’s

Exact test.

2.5.1 Predictor variable selection
We used a least absolute shrinkage and selection operator

(LASSO) logistic regression and a stepwise logistic regression to

select the predictors for JIA. In terms of statistical regressions,

both linear and logistic regression aim to estimate the relationship

between predictor variables and an outcome variable by fitting a

model that best explains the observed data. Traditional regression

methods find coefficient values that maximize the likelihood of

the data under the assumed model. However, when there are

numerous predictors or when some variables are highly correlated,

researchers encounter overfitting and poor generalization issues.

LASSO regression harnesses regularization to address these issues

by penalizing model complexity. Instead of merely maximizing
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likelihood as in ordinary regression, LASSO method optimizes a

penalized likelihood function that includes an extra constraint on

the coefficients’ size. Specifically, it maximizes the usual likelihood

function while summing an L1 penalty to it in the form of

λ
∑p

j=1

∣

∣βj

∣

∣, where λ is a regulating/tuning parameter. The effect

of this penalty not only shrinks the coefficients toward zero but

also, importantly, forces some of them to be exactly zero, i.e., this

enables LASSO regression to prevent overfitting issues and perform

the variable selection. The λ controls the balance between model

complexity and predictive accuracy; when λ is small (close to zero),

the penalty is minimal, making LASSO behave similarly to ordinary

regression; when λ increases, more coefficients shrink toward zero,

simplifying the model by reducing the number of predictors. This

trade-off is especially useful in cases with many variables but

limited observations, highlighting LASSO’s ability to select the

most relevant variables while estimating their effects (44). Variable

selection in LASSO regression refers to automatically selecting

only the predictors that are significant and excluding irrelevant

predictors from themodel. Thismethod identifies the optimal value

for the regularization parameter λ. We used the glmnet package in

R to select variables based on a k-fold cross-validation approach,

which divides the dataset into k subsets, or “folds.” Each fold then
serves as a validation set, while the remaining k-1 folds form the
training set. This process is repeated k times, ensuring that each fold

is used for validation exactly once. During each iteration, the model

is trained on the training set with a specific λ value and evaluated
on the validation set. This evaluation typically focuses on metrics

such as classification accuracy, mean squared error of prediction, or
deviance. Because we used LASSO logistic regression, the deviance

metrics were evaluated. By averaging these performance metrics
across all k folds, an estimate of the model’s effectiveness was

obtained for that specific λ. This procedure is repeated across
a range of λ values, generating a performance profile for each.
By comparing these profiles, determine the λ that minimizes the

average validation error, signifying the optimal balance between

model fit and complexity (44). Although using the maximum λ

value, one standard error, improves model parsimony and lowers

the risk of overfitting (45), using the minimum λ value balances

model complexity and prediction accuracy (46–49). As a result, we

selected the optimal minimum λ value through cross-validation.

To cross-validate the LASSO logistic models, the data was split

randomly into the training (70%) and validation (30%) sets using

the SAS SURVEYSELECT procedure.

The stepwise logistic regression was used as the second method

to identify significant predictors of JIA with the SAS LOGISTIC

procedure, which, by default, starts with an empty model with no

predictors. At each step, predictors are either added or removed

based on statistical criteria (bidirectional selection with a significant

entry level of 0.15 and an exit level of 0.15, i.e., a variable has to

be significant at the 0.15 level before it can be entered into the

model, and a variable in the model has to be significant at the

0.15 level for it to remain in the model) to find the model that

minimizes the Akaike Information Criterion (50). These statistical

criteria are commonly used in stepwise selection methods to allow

potentially important variables to enter the model while controlling

for overfitting (51, 52). We chose 0.15 other than the conventional

0.05 to reduce the risk of prematurely excluding variables that may

have meaningful contributions when considered in combination

with others.

After the variable selections, we used those variables selected by

LASSO and stepwise logistic regressions to create two nomograms

for predicting the occurrence of JIA, utilizing the R rms

package. Additionally, we applied these selected variables in the

multivariable logistic regressions to estimate the odds ratios (OR)

along with the 95% confidence intervals (CI) for JIA.

2.5.2 Model performance
The prediction model selected from the training set was

applied to the validation set to validate and evaluate the prediction

efficacy. The receiver operating characteristic (ROC) curve and

the area under the curve (AUC) were estimated to verify the

discrimination performance in the training and validation sets.

To ensure model stability and calibration, we performed 1000

bootstrap resamples. In each resample, LASSO was used to select

a subset of predictors while shrinking others to zero. The final

set of variables included those consistently selected across a high

proportion of bootstrap samples, with their coefficients averaged

from nonzero estimates. Calibration plots were created using the

R rms package, incorporating bootstrapped estimates to evaluate

the agreement between predicted and observed probabilities.

The Decision Curve Analysis (DCA) was used to estimate the

clinical effectiveness of the model for JIA patients by the R

rmda package with 1,000 bootstrapping re-samples. DCA can

be used to estimate the net benefits of a model based on the

difference between the number of true-positive and false-positive

results to assess the clinical usefulness of the identified models.

It evaluates whether a particular model or test is beneficial for

making clinical decisions by considering the balance between the

benefits and harms of using it. If the DCA curve is consistently

above the horizontal reference line (test none), the model is

beneficial for making clinical decisions across a range of probability

thresholds. If the DCA curve is consistently above the reference

line (test all), it suggests that the test adds value and avoids

unnecessary interventions.

2.5.3 Missing values
For variables (e.g., age, race, family economic status, or health

conditions) with missing values, we performed listwise deletions

in the R package, meaning the entire observation was removed

from the analysis. In SAS, the LOGISTIC procedure automatically

excluded observations with missing values from the analyses.

All analyses were performed in SAS package version 9.4 (SAS

Institute Inc., NC) and R package version 4.2.2.

3 Results

A total of 223,195 children were included in the analysis. This

included 555 (248.7 per 100,000) JIA cases. The mean age was

9.14 (standard deviation [SD] = 5.26), which was slightly lower

than those children who did not provide the information on JIA

diagnosis with a mean age of 10.00 (SD = 5.14). The detailed

comparison is shown in Supplementary Table 2. Of the 223,195

children, 51.8%were boys, 68.3% wereWhite, followed by Hispanic

12.4% and Black 6.3%; of the 2248 children with missing JIA values,
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TABLE 1 Demographic and clinical characteristics of the NSCH study population, stratified by training and validation groups.

Characteristics Validation group Training group Total p-value

N (%) N (%) N (%)

Juvenile idiopathic arthritis 0.6115

No 66,796 (99.74) 155,844 (99.75) 222,640 (99.83)

Yes 172 (0.26) 383 (0.25) 555 (0.25)

Child’s age when survey [mean(SD)] 9.18 (5.26) 9.14 (5.26) 9.15 (5.26) 0.1106

Sex 0.4724

Boy 34,923 (51.6) 81,749 (51.8) 116,672 (51.7)

Girl 32,709 (48.4) 76,062 (48.2) 108,771 (48.3)

Race 0.1755

Hispanic 8,540 (12.7) 19,315 (12.3) 27,855 (12.4)

White, non-Hispanic 45,964 (68.1) 107,552 (68.3) 153,516 (68.3)

Black, non-Hispanic 4,240 (6.3) 10,075 (6.4) 14,315 (6.4)

Asian, non-Hispanic 3,535 (5.2) 8,356 (5.3) 11,891 (5.3)

American Indian or Alaska Native Non-Hispanic 408 (0.6) 940 (0.6) 1,348 (0.6)

Others 4,766 (7.1) 11,209 (7.1) 15,975 (7.1)

Maternal age at delivery [Mean(SD)] 30.18 (5.79) 30.17 (5.78) 30.17 (5.78) 0.8316

Premature birth (Yes) 7,196 (10.8) 16,862 (10.8) 24,058 (10.8) 0.7529

Low birth weight 0.6032

No 59,089 (91.5) 137,932 (91.6) 197,021 (91.6)

Low birth weight 4,637 (7.2) 10,684 (7.1) 15,321 (7.1)

Very low birth weight 826 (1.3) 1,984 (1.3) 2,810 (1.3)

Months of breastfeeding 0.2780

6 months or longer, or still breastfeeding 10,625 (15.8) 25,200 (16.1) 35,825 (16.0)

Children age 6–17 years 46,685 (69.5) 108,493 (69.3) 155,178 (69.3)

<6 months 9,823 (14.6) 22,972 (14.7) 32,795 (14.7)

BMI 0.0917

Normal weight 21,040 (31.8) 49,097 (31.8) 70,137 (31.8)

Children age 0–9 years, BMI not measured 33,873 (51.1) 79,660 (51.5) 113,533 (51.3)

Underweight 2,041 (3.1) 4,725 (3.1) 6,766 (3.1)

Overweight or obese 9,288 (14.0) 21,083 (13.6) 30,371 (13.8)

Tobacco use in household 0.1024

No one smokes in the household 58,399 (86.3) 136,794 (86.7) 195,193 (86.6)

Someone smokes, not inside the house 8,102 (12.0) 18,433 (11.7) 26,535 (11.8)

Someone smokes inside the house 1,131 (1.7) 2,584 (1.6) 3,715 (1.6)

Child’s household food insecurity 0.9119

Always afford to eat good nutritious meals 49,427 (74.8) 115,605 (74.9) 165,032 (74.9)

Always afford enough to eat but not always the kinds of food
we should eat

14,335 (21.7) 33,263 (21.6) 47,598 (21.6)

Sometimes could not afford enough to eat 1,980 (3.0) 4,617 (3.0) 6,597 (3.0)

Often could not afford enough to eat 357 (0.5) 844 (0.5) 1,201 (0.5)

(Continued)
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TABLE 1 (Continued)

Characteristics Validation group Training group Total p-value

N (%) N (%) N (%)

Adequacy of current insurance coverage 0.3187

Adequate 46,188 (68.7) 107,535 (68.5) 153,723 (68.6)

Not adequate 18,217 (27.1) 42,453 (27.1) 60,670 (27.1)

Uninsured 2,860 (4.3) 6,893 (4.4) 9,753 (4.4)

Physical activity (PA) 0.4178

Everyday 20,947 (31.3) 49,318 (31.6) 70,265 (31.5)

Children age 0–5 years, PA not measured 4,356 (6.5) 10,032 (6.4) 14,388 (6.4)

4–6 days 18,111 (27.1) 41,751 (26.7) 59,862 (26.8)

1–3 days 13,843 (20.7) 32,429 (20.8) 46,272 (20.7)

0 day 9,705 (14.5) 22,771 (14.6) 32,476 (14.6)

Children with a personal doctor or nurse (Yes) 51,632 (76.7) 120,418 (76.7) 172,050 (76.7) 0.9516

Children’s health condition (Yes)

Anxiety 6,102 (10.5) 14,132 (10.5) 20,234 (10.5) 0.6813

Allergy to food, drug, or insect 5,883 (8.7) 13,840 (8.8) 19,723 (8.8) 0.5680

Asthma 1,444 (2.2) 3,432 (2.2) 4,876 (2.2) 0.5468

Chronic physical pain in the past 12 months 4,361 (6.5) 9,997 (6.4) 14,358 (6.4) 0.3297

Depression 2,687 (4.6) 6,166 (4.6) 8,853 (4.6) 0.4999

Type 1 Diabetes 282 (0.4) 640 (0.4) 922 (0.4) 0.6947

Difficulty with eating or swallowing in the past 12 months 936 (1.4) 2,329 (1.5) 3,265 (1.5) 0.0944

Genetic or inherited condition 2,635 (3.9) 5,967 (3.8) 8,602 (3.8) 0.1985

Heart condition 913 (1.4) 2,172 (1.4) 3,085 (1.4) 0.6198

The table presents key variables including age, sex, race/ethnicity distribution, BMI, maternal age at delivery, length of breastfeed, and health conditions (e.g., anxiety, depression, asthma, allergy

to food, drug, or insect, diabetes). Continuous variables are reported as mean ± standard deviation, while categorical variables are presented as N and %. Statistical comparisons between the

training and validation groups were performed using appropriate tests (e.g., t-tests, Mann-Whitney U, chi-square, or Fisher exact test).

50.7% were boys, 60.9% were White, followed by Hispanic 14.4%

and Black 10.9%.

Table 1 showed the demographic and clinical characteristics

of the study population for both the training and validation

sets, revealing no significant differences between the two groups.

Table 2 demonstrated the univariate analysis of the 22 potential

predictors of JIA, indicating that all 22 variables were statistically

associated with JIA. Specifically, girls were more likely to report

having JIA than boys. Additionally, children with JIA, compared

to those without, had a lower maternal age at delivery (29.2

vs. 30.2), a higher prevalence of premature births (17.7% vs.

10.8%), of low birth weight (14.9% vs. 8.4%), of overweight or

obesity (33.6% vs. 13.7%), of household tobacco use (19.6% vs.

13.4%), of asthma (10.3% vs. 2.2%), and of heart conditions

(6.7% vs. 1.4%).

3.1 Nomogram variables derived from
LASSO logistic regression

Of the 22 variables included in the LASSO logistic regression

analysis, 16 were shown to be statistically significant (p< 0.05) with

optimal minimum λ value = 0.0000941 (Figures 1A, B). The JIA

predictive nomogram (Figure 2A) was constructed using these 16

variables, i.e., child’s age, sex, race, low birth weight, BMI, having

a genetic or inherited condition identified through a blood test,

anxiety, asthma, allergy to food, drug, or insect, Type 1 Diabetes,

heart condition, household’s ability to afford the food you need

during the past 12 months, chronic physical pain, difficulty with

eating or swallowing in the past 12 months, adequacy of current

insurance coverage, and child with a personal doctor or nurse. The

associated ORs and 95% CIs for each predictor by multivariable

logistic regression are demonstrated in Table 3.

3.2 Nomogram variables derived from
stepwise logistic regression

A stepwise logistic regression analysis was conducted as the

second method to identify the significant predictors of JIA. In

this analysis, 22 variables were again considered using a stepwise

model selection approach with a significant entry and exit level

of 0.15. The stepwise logistic regression yielded 13 variables to

construct a JIA predictive nomogram. These variables included the
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TABLE 2 Demographic and clinical characteristics of the NSCH study

population, stratified by children with juvenile idiopathic arthritis (JIA)

and without JIA.

Characteristics Non-JIA JIA p-value

N (%) N (%)

Child’s age when 9.13 (5.26) 13.29 (3.81) <0.0001∗

survey [mean(SD)]

Sex <0.0001∗

Boy 115,318 (51.8) 215 (38.7)

Girl 107,322 (48.2) 340 (61.3)

Race <0.0001∗

Hispanic 27,478 (12.4) 55 (9.9)

White, non-Hispanic 151,755 (68.3) 397 (71.7)

Black, non-Hispanic 14,018 (6.3) 53 (9.6)

Asian, non-Hispanic 11,719 (5.3) 8 (1.4)

American Indian or Alaska
Native Non-Hispanic

1,325 (0.6) 6 (1.1)

Others 15,812 (7.1) 35 (6.3)

Maternal age at 30.17 (5.78) 29.17 (6.32) <0.0001∗

delivery [mean(SD)]

Premature birth (Yes) 23,751 (10.8) 97 (17.7) <0.0001∗

Low birth weight <0.0001∗

No 194,701 (91.6) 444 (85.1)

Low birth weight 15,123 (7.1) 57 (10.9)

Very low birth weight 2,748 (1.3) 21 (4.0)

Months of <0.0001∗

breastfeeding

6 months or longer, or still
breastfeeding

152,969 (69.2) 520 (94.0)

Children age 6–17 years 32,498 (14.7) 19 (3.5)

Less than 6 months 35,557 (16.1) 14 (2.5)

BMI <0.0001∗

Normal weight 112,474 (51.6) 90 (17.0)

Children age 0–9 years, BMI
not measured

6,668 (3.1) 31 (5.9)

Underweight 69,167 (31.7) 231 (43.6)

Overweight or obese 29,831 (13.7) 178 (33.6)

Tobacco use in <0.0001∗

household

No one smokes in the
household

192,851 (86.6) 446 (80.4)

Someone smokes, not inside
the house

26,153 (11.8) 81 (14.6)

Someone smokes inside the
house

3,636 (1.6) 28 (5.0)

Child’s household <0.0001∗

food insecurity

Always afford to eat good
nutritious meals

163,231 (75.0) 291 (54.1)

(Continued)

TABLE 2 (Continued)

Characteristics Non-JIA JIA p-value

N (%) N (%)

Always afford enough to eat
but not always the kinds of
food we should eat

46,869 (21.5) 181 (33.6)

Sometimes could not afford
enough to eat

6,471 (3.0) 52 (9.7)

Often could not afford
enough to eat

1,168 (0.5) 14 (2.6)

Adequacy of current <0.0001∗

insurance coverage

Adequate 151,969 (68.6) 295 (53.9)

Not adequate 59,826 (27.0) 225 (41.1)

Uninsured 9,590 (4.3) 27 (5.0)

Physical activity (PA) <0.0001∗

Everyday 32,008 (14.5) 74 (13.7)

Children age 0-5 years, PA
not measured

69,671 (31.6) 35 (6.5)

4–6 days 45,694 (20.7) 133 (24.5)

1–3 days 59,025 (26.8) 200 (36.9)

0 day 14,131 (6.4) 100 (18.5)

Children with a 170,046 (76.8) 471 (86.1) <0.0001∗

personal doctor or

nurse (Yes)

Children’s health

condition (Yes)

Anxiety 19,878 (10.5) 200 (36.6) <0.0001∗

Allergy to food, drug, or
insect

19,505 (8.8) 156 (28.5) <0.0001∗

Asthma 4,789 (2.2) 56 (10.3) <0.0001∗

Chronic physical pain in the
past 12 months

13,855 (6.3) 364 (66.2) <0.0001∗

Depression 8,643 (4.5) 117 (21.6) <0.0001∗

Type 1 Diabetes 893 (0.4) 16 (2.9) <0.0001∗

Difficulty with eating or
swallowing in the past 12
months

3,181 (1.4) 58 (10.6) <0.0001∗

Genetic or inherited
condition

8,412 (3.8) 126 (23.1) <0.0001∗

Heart condition 3,031 (1.4) 37 (6.7) <0.0001∗

∗p < 0.05.

The table presents key variables including age, sex, race/ethnicity distribution, BMI, maternal

age at delivery, length of breastfeed, and health conditions (e.g., anxiety, depression, asthma,

allergy to food, drug, or insect, diabetes). Continuous variables are reported as mean

± standard deviation, while categorical variables are presented as N and %. Statistical

comparisons between the children with and without JIA were performed using appropriate

tests (e.g., t-tests, Mann-Whitney U, chi-square, or Fisher exact test).

child’s age, sex, race, low birth weight, BMI, having a genetic or

inherited condition identified through a blood test, asthma, allergy

to food, drug, or insect, household’s ability to afford the food you

need during the past 12 months, chronic physical pain, difficulty
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FIGURE 1

Identification of the optimal penalization coe�cient λ in the LASSO logistic regression. (A) The LASSO coe�cient profiles of the 22 variables. Child’s

age, sex, race, low birth weight, BMI, having a genetic or inherited condition identified through a blood test, anxiety, asthma, allergy to food, drug, or

insect, Type 1 Diabetes, heart condition, household’s ability to a�ord the food you need during the past 12 months, chronic physical pain, di�culty

with eating or swallowing in the past 12 months, adequacy of current insurance coverage, and child with a personal doctor or nurse were selected

using LASSO binary logistic regression analysis. The LASSO coe�cient profiles of the features were plotted. (B) The optimum parameter (lambda)

selection in the LASSO model performed 10-fold cross-validation through minimum criteria. The partial likelihood deviance (binomial deviance)

curve was presented versus log (lambda). Dotted vertical lines were shown at the optimum values by performing the lambda.min (red) and the

lambda.1se (blue).
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FIGURE 2

Nomograms for predicting JIA developed by LASSO logistic and logistic regression analysis. (A) Nomogram developed by LASSO logistic regression

to predict JIA; (B) nomogram developed by logistic stepwise regression to predict JIA.
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TABLE 3 Multivariable logistic regression analysis of JIA predictors identified through LASSO logistic regression and logistic stepwise selection methods.

Variables LASSO selection
method

OR (95% CI)

p-value Logistic stepwise
selection method

OR (95% CI)

p-value

Child’s age when survey 1.12 (1.06–1.19) <0.0001∗ 1.15 (1.09–1.21) <0.0001∗

Sex

Boy 1 1

Girl 1.34 (1.06–1.69) 0.0136∗ 1.33 (1.06–1.67) 0.0140∗

Race

Asian, non-Hispanic 1 1

Hispanic 2.06 (0.62–6.85) 0.6483 2.05 (0.62–6.81) 0.5865

White, non-Hispanic 3.14 (1.00–9.86) 0.0500 3.16 (1.01–9.93) 0.0526

Black, non-Hispanic 3.59 (1.07–11.99) 0.0440∗ 3.59 (1.08–11.99) 0.0486∗

American Indian or Alaska Native Non-Hispanic 3.24 (0.64–16.56) 0.4888 3.28 (0.64–16.77) 0.4926

Others 1.86 (0.53–6.50) 0.4424 1.99 (0.57–6.88) 0.5599

Low birth weight

No 1 1

Low birth weight 1.45 (1.02–2.06) 0.5484 1.48 (1.04–2.10) 0.5178

Very low birth weight 1.57 (0.79–3.09) 0.4536 1.61 (0.82–3.15) 0.4219

BMI

Normal weight 1 1

Children age 0–9 years 1.52 (0.89–2.60) 0.4111 1.63 (0.95–2.81) 0.2973

Underweight 1.26 (0.74–2.15) 0.9414 1.27 (0.75–2.15) 0.8469

Overweight or obese 1.41 (1.09–1.83) 0.4252 1.45 (1.12–1.88) 0.4127

Child’s household food insecurity

Always afford to eat good nutritious meals 1 1

Always afford enough to eat but not always the kinds of food we
should eat

1.12 (0.87–1.45) 0.1165 1.12 (0.87–1.44) 0.1194

Sometimes could not afford enough to eat 1.62 (1.08–2.44) 0.3212 1.65 (1.10–2.46) 0.2564

Often could not afford enough to eat 1.94 (0.95–3.95) 0.1978 1.87 (0.92–3.79) 0.2383

Adequacy of current insurance coverage

Adequate 1 1

Not adequate 1.27 (1.01–1.61) 0.4913 1.29 (1.03–1.63) 0.5288

Uninsured 1.30 (0.77–2.21) 0.5928 1.37 (0.82–2.29) 0.4657

Children with a personal doctor or nurse (Yes vs. No) 0.58 (0.41–0.82) 0.0019∗ 0.58 (0.41–0.81) 0.0015∗

Children’s health condition (Yes vs. No)

Anxiety 1.03 (0.80–1.33) 0.8203 – –

Allergy to food, drug, or insect 1.58 (1.21–2.06) 0.0009∗ 1.61 (1.24–2.10) 0.0004∗

Asthma 1.35 (0.90–2.02) 0.1488 1.36 (0.91–2.04) 0.1321

Chronic physical pain in the past 12 months 16.07 (12.27–21.05) <0.0001∗ 15.83 (12.15–20.63) <0.0001∗

Type 1 Diabetes 1.53 (0.68–3.45) 0.3040 – –

Difficulty with eating or swallowing in the past 12 months 1.78 (1.22–2.59) 0.0027∗ 1.82 (1.26–2.63) 0.0014∗

Genetic or inherited condition 2.45 (1.85–3.24) <0.0001∗ 2.65 (2.02–3.48) <0.0001∗

Heart condition 1.52 (0.94–2.46) 0.0892 – –

∗p < 0.05.

OR, Odds Ratio.

CI, Confidence Interval.
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with eating or swallowing in the past 12 months, adequacy of

current insurance coverage, and child with a personal doctor or

nurse (Figure 2B). Table 3 demonstrates the ORs for each predictor

derived from the multivariable logistic regression.

3.3 Prediction of JIA by nomogram

The process of developing the nomogram includes identifying

predictor variables located on the relevant axis (e.g., children’s age).

A straight line is then drawn upward from the value of the result

to the Points axis on the top of the nomogram to determine the

score received based on the children’s age variable. Next, we repeat

the above process to all identified predictors, and the total scores

are calculated by summing up each predictor’s scores. Searching

for the total score on the Total points axis. At last, we draw a

straight line down from there to obtain the risk of JIA. Using the

LASSO nomogram as an example, a 14-year-old (42 points) Black

(12 points) girl (10 points). She was born with a very low birth

weight (21 points) and was found to have a genetic or inherited

condition identified through a blood test at birth (33 points). Her

family often could not afford enough to eat during the past 12

months at the survey (24 points). She is allergic to food, drugs, or

insects (16 points), has asthma (11 points), has anxiety (2 points),

has chronic physical pain (100 points), has Type 1 Diabetes (18

points), has difficulty with eating or swallowing in the past 12

months (20 points), having inadequate insurance coverage (13

points), and having no personal doctor or nurse (20 points). The

total score is 342 points, indicating a JIA-predicted probability of

57.9% (Figure 2A).

3.4 Prediction of selected model
performance

In the LASSO logistic regression training set, the ROC curve

reveals that the resulting model has excellent discrimination with

an area under the curve (AUC) of 0.9002 (95% CI: 0.8814–0.9191)

(Figure 3A). The validation set also shows excellent discrimination

in LASSO logistic regression, with 0.8639 (95% CI: 0.8310–

0.8967) AUC (Figure 3B). The optimal Youden’s J cut-off value of

this nomogram’s sensitivity, specificity, and accuracy were 78.4%,

89.8%, and 89.8% in the training set; and 68.1%, 89.8%, and

89.8% in the validation set. Of the 16 variables selected in the

LASSO logistic regression model, 13 were shared with the stepwise

logistic regression model (except anxiety, Type 1 Diabetes, and

heart condition). The training set of stepwise logistic regression

has an AUC of 0.9130 (95% CI: 0.8968–0.9292) (Figure 3C), and

the validation set also shows excellent discrimination with 0.8798

(95%CI: 0.8507–0.9088) AUC. The sensitivity, specificity, and

accuracy were 79.1%, 90.2%, and 90.2%, respectively, in the training

set; and 69.0%, 90.9%, and 90.8% in the validation set (Figure 3D).

The calibration plots of models were used to provide better

information about the selected models, graphically showing good

agreement between the predicted and observed data in the training

and validation cohorts (Figure 4). Furthermore, the Decision Curve

Analyses (DCA) present significant net benefits of the predictive

LASSO and stepwise logistic models in the training set (Figures 5A,

C) and validation set (Figures 5B, D). These findings demonstrated

that our nomograms had significant potential for clinical use.

4 Discussion

In this study, the authors utilized the National Survey of

Children’s Health (NSCH) database, which included 223,195

children across all 50 states in the US from January 1, 2016, to

December 31, 2021. The aimwas to develop a predictive nomogram

for juvenile idiopathic arthritis (JIA) using LASSO and stepwise

logistic regression methods. The LASSO and stepwise logistic

regressionmodels identified several independent predictors for JIA,

including age, sex, race/ethnicity, low birth weight, BMI, genetic

or inherited conditions, asthma, food, drug, or insect allergies,

household food insufficiency, chronic physical pain, difficulty

swallowing or eating, and inadequate insurance coverage. Having

a personal doctor or nurse was a protective factor for JIA. The

LASSO logistic regression included anxiety, Type 1 Diabetes, and

heart condition as predictors for JIA, which the stepwise logistic

regression modeling did not choose, suggesting that these three

variables were at the borderline of significance.

Stepwise logistic regression, integrating both forward selection

and backward elimination, is a commonly used method for variable

selection in public health, medicine, economics, and social sciences

research (52), particularly in diagnostic studies. This approach aims

to balance model simplicity and predictive accuracy by iteratively

adding and removing variables based on statistical significance

and information criteria. It requires less computational power and

time than complex machine learning models, making it a practical

choice for large datasets. However, studies have found that a larger

number of predicting variables undermine its effectiveness and lead

to unstable parameter estimates (50, 53, 54). To this end, alternative

methods like penalized regression models (e.g., LASSO) have been

suggested, offeringmore robust and efficient variable selection (54).

The LASSO logistic regression is a statistical technique that has

gained popularity due to its effectiveness in tackling the overfitting

issue in regression analysis when there are many predictors or

when some variables are highly correlated. By introducing a penalty

parameter to the usual likelihood function, the LASSO method can

effectively shrink the coefficients of less important variables to zero,

resulting in a more parsimonious model. This approach also helps

avoid overestimating the model’s performance and reduces the

complexity of high-dimensional data, making it easier to interpret

and understand (44). Several studies have used stepwise logistic

regressions to build nomograms (55–59) and compared them to

the LASSO logistic regression results (60). The authors concluded

that both LASSO and stepwise logistic regression are suitable for

selecting and comparing predictors to screen potential children

with JIA early.

This study found that both age and sex were predictors for

JIA. We discovered that age was positively associated with the

probability of being diagnosed with JIA, which is consistent with

the previous study (39). JIA rarely occurs in babies younger than

6 months (61–63). The first peak of JIA is between the ages of 2

and 5 years, and the second is between 6 and 14 years (13, 64–

66). Although the term juvenile in JIA refers to the fact that it
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FIGURE 3

ROC curves illustrating the capability in predicting JIA. (A, B) are the result of LASSO logistic regression. (C, D) are the result of logistic regression.

typically begins in childhood, the condition can continue into

adolescence and adulthood for specific individuals (67). Several

studies have evidenced that sex is a risk factor for JIA (16–18, 68),

especially in the oligoarticular and rheumatoid factor (RF) negative

polyarticular subtypes (69). Oligoarticular is the most common JIA

subtype in developed countries, typically affecting girls under 6

years old (30). The RF-negative polyarticular JIA shows a bimodal

trend in girls (64). Sex differences in age peaks were also observed.

Some studies indicated no peaks for any age group at diagnosis for

boys (4), but for girls, two small peaks appeared at ages zero to 5

years and 12–15 years (39).

The LASSO and logistic models selected predictive factors

for JIA, such as low birth weight, BMI, food affordability in the

past 12 months, and difficulty with eating or swallowing in the

past year. In previous studies, these factors were also associated

with JIA. Low birth weight, defined as weight <2,500 grams, has

been linked to a higher risk of developing JIA (70–74). On the

other hand, different studies found that high birth weight was

also associated with a significantly decreased risk of JIA overall

(73, 74). However, what causes such a difference in low and

high birth weights (73) is unclear. In this study, we did not

have information regarding high birth weight. We discovered that
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FIGURE 4

Calibration plots of the binary fringe plot with 1,000 bootstrapping re-sample of LASSO logistic regression for JIA. (A, B) are the result of LASSO

logistic regression. (C, D) are the result of logistic regression. The X-axis showed the predicted probability of JIA. The Y-axis showed the actual

probability of JIA. The solid line indicates the performance of the developed nomogram model.

children with very low birth weight had a higher risk of JIA

than those with low birth weight. Obesity was reported to be

increased in children and young people with JIA (75). Children

with physical disabilities may have an increased risk for obesity,

which in turn might be a risk factor for inflammatory arthritis

in obese children compared to normal-weight children (76, 77).

A possible relationship between adipose tissue and inflammatory

arthritis is through the role of adipokines (76). We also found that

being underweight is associated with JIA. This finding is similar

to the observation of other studies indicating that children with
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FIGURE 5

Decision curve analysis for the developed nomogram model. (A, B) are the result of LASSO logistic regression. (C, D) are the result of logistic

regression.

arthritis had significantly lower weight and height than healthy

controls (75).

Lack of proper nutrition can affect the immune system,

potentially influencing the development of autoimmune conditions

(78, 79). Household food insufficiency is when a family does

not have enough food to meet their nutritional needs (80).

This insufficiency is an environmental factor that can increase

the risk of JIA, as it can be related to malnutrition, which

negatively affects the immune system, joints, and growth (78,

79). Research has indicated that food insecurity correlates with

elevated levels of proinflammatory cytokines, suggesting a possible

pathway through which food insecurity could influence the
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onset or worsening of autoimmune diseases (81). Furthermore,

malnutrition, especially vitamin D deficiency, has been linked

to the development of autoimmune diseases. Vitamin D is

essential for immune modulation, and its deficiency has been

associated with a higher risk of autoimmune disorders, such

as JIA. Studies have shown that low levels of vitamin D

can affect immune cell activity, potentially contributing to the

emergence of autoimmune diseases (82). Difficulty swallowing

or eating (dysphagia) is when someone has trouble moving

food or liquids from the mouth to the stomach. Dysphagia

can lead to mechanical feeding difficulties, such as trouble

with chewing and swallowing, which narrows food choices and

impairs nutritional intake, further exacerbating disease symptoms.

Chronic inflammation in these diseases can cause damage to

organs, including the gastrointestinal tract, through both the direct

action of autoantibodies and the side effects of pharmacological

therapies (75, 83, 84).

Things may get worse when a child has asthma, a risk factor

for JIA, as it can trigger or worsen the immune response and

inflammation in the joints. Some autoimmune diseases might share

common genetic or environmental triggers with allergic conditions

(85–87). Children with JIA were found to have increased levels of

activated CD4+ T-cells both in circulation and synovium (88–91).

Allergies can also increase the risk of JIA, as they can activate the

immune system and cause joint inflammation (87). Both asthma

and allergy were selected by LASSO logistic regression to predict

JIA in our study.

We found that anxiety is associated with JIA. Our finding was

consistent with previous studies (92). The prevalence of symptoms

of stress in youth with JIA ranged from 7% to 64% (93). JIA patients

have been found to have increased enzyme activity in dopamine

and serotonin metabolism, which may explain a tendency to

be associated with depression, anxiety disorders, and cognitive

impairment (92, 94). Immune deficiencies can also have an impact

on blood flow to the brain. Patients with immune deficiencies

experience a significant decrease in the size of the right frontal and

right parietal lobes.

In contrast, the size of the left parietal and occipital lobes

increases significantly compared to the control group. These

regions of the brain are known to be involved in anxiety

(95). In addition, the long duration of illness is found to be

associated with a higher proportion of psychiatric disorders (95).

Although previous studies connected depression and JIA (92–

95), we did not find depression was associated with JIA in this

present study.

The LASSO logistic regression also included Type 1 Diabetes

Mellitus (T1D) and heart condition as predictors of JIA. JIA and

T1D are both autoimmune diseases and can coexist in the same

individual. Studies have reported a higher prevalence of T1D

in patients with JIA compared to non-JIA groups (96). Modern

diabetes technologies like personal insulin pumps and continuous

glucose monitoring can help to minimize the deteriorating effect

of JIA exacerbations and rheumatoid treatment on metabolic

control of diabetes (97). JIA has been found to be associated with

cardiovascular disorders (98–100), which is consistent with our

findings that having a heart condition is a predictive factor for

JIA. Heart conditions can increase the risk of JIA by causing

inflammation, infection, and stress that can affect the immune

system and the joints (14, 99). Patients with JIA are known to

experience pericardial, myocardial, or endocardial involvements

(14, 98). Endocarditis, for instance, can cause aortic regurgitation

or mitral regurgitation, which may require valve surgery (101,

102). Furthermore, recent studies show that young patients with

rheumatologic disorders have becomemore susceptible to ischemic

coronary artery diseases due to premature atherosclerosis (98).

Both LASSO and stepwise logistic regression selected chronic

pain to predict JIA in our study. Pain in JIA is multifactorial.

Chronic pain in pediatrics is commonly defined as prolonged

pain that lasts longer than 3 months or any recurrent pain that

occurs at least three times throughout 3 months. A study found

that 39% of patients reported pain on all diary days over the 8

weeks, while only 5 % reported no pain over the study period

(103, 104). Children with persistent pain due to JIA experience

significantly more problems with physical, emotional, social, and

school functioning than healthy individuals (32). JIA itself causes

joint pain and inflammation. However, having chronic pain from

other sources might exacerbate the overall discomfort experienced

by a person with JIA (101, 102). Chronic physical pain can increase

the risk of JIA, as it can alter the pain perception and the nervous

system, influencing inflammation and joint function (103, 104).

The financial cost of JIA can be high (10). Inadequate insurance

coverage can limit access to healthcare, diagnosis, treatment, and

follow-up, worsening disease outcomes and complications in JIA

patients. There are discrepancies in healthcare access, as people

with public insurance have worse results, such as a greater chance

of long-term functional disability (105). Despite extensive research,

there is no single definitive test that doctors can use to diagnose

JIA. However, physicians may suspect that a child has the disease

during multiple visits if they present with unexplained joint pain,

stiffness, or swelling that has persisted for at least six weeks. The

diagnosis of JIA is typically based on a combination of clinical

evaluation, laboratory tests, and imaging studies (25, 30). It is highly

beneficial for children with JIA to visit their primary care physicians

or nurses whenever needed, as early diagnosis and ongoing

medical care can help control their condition to prevent joint

damage and improve long-term outcomes (30, 106). Numerous

studies have also shown that detecting and treating JIA early can

alleviate joint pain and stiffness, enabling children to move and

function more comfortably. This, in turn, can improve their overall

wellbeing and ability to participate in everyday activities. Early

treatment can also lead to better long-term outcomes for children

with JIA, reducing the risk of complications and the need for

surgical interventions such as joint replacements (10, 107). Timely

diagnosis and treatment can also help reduce overall healthcare

costs associated with JIA, as effective management can lead to

fewer hospitalizations, surgeries, and other expensive interventions

(29). JIA can have an impact on a child’s growth and development,

particularly in the case of sizeable joint involvement. However, early

treatment can mitigate these effects and support normal growth

patterns. While various diseases, such as asthma, allergies, diabetes,

and heart disease, have been found to be associated with JIA, this

study did not explore in depth how these comorbidities interact to

influence the risk of JIA. Future research should further investigate

these interactions.
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4.1 Study limitation

This study has several limitations: (1) It is a repeated cross-

sectional study focusing on predictive modeling to understand

associations between measured factors, and therefore, it does not

evaluate causal pathways or make causal inferences. Potential

causal associations, such as the associations of JIA with obesity,

inflammation, anxiety, asthma, allergy, heart condition, chronic

pain, and household food insufficiency, require additional studies

to establish; (2) the questions in the survey questionnaire to

identify the diagnosis of arthritis did not mentioned the term

“idiopathic.” Also, parents’ familiarity with arthritis was not

measured in the survey. These could be possible sources of

information bias. (3) Approximately 1% (n = 2,248) of children

in the NSCH dataset were excluded from the current analysis

due to missing responses to JIA-related questions from their

parents. Excluding this missing data could introduce selection

bias, potentially stemming from a collider effect. However, further

investigation is required to determine whether the missingness

was associated with the predictor variables and the outcome. To

assess potential bias, we compared children with and without

missing JIA information in the data based on the predictor variables

selected by LASSO logistic regression (Supplementary Table 2).

While some variables indicated significant differences between

the non-missing and missing groups, the authors still could

not conclusively establish the presence of selection bias as we

lacked information regarding the association between JIA and

the collider (reason of missing). On the other hand, the NSCH

weighting adjustments were generally effective in minimizing the

nonresponse bias and enhancing the survey’s representativeness

(34, 38–40). (4) This dataset did not include genetic and some

perinatal information. JIA is a complex genetic disease that does

not demonstrate a single gene-basedMendelian inheritance pattern

(13). Extensive review has been conducted on genetic variants,

such as PTPN22, HLA-A2, HLA-B27, HLA DRB1∗01, DRB1∗08,

DRB1∗11, DRB1∗13, DPB1∗02, and DQB1∗04, that contribute to

JIA susceptibility (1, 108, 109). This information was not collected

in the NSCH; (5) this study did not have information about the

JIA subtypes. Each subtype can have varying predictive factors,

characteristics, and degrees of severity and may require different

treatment approaches; (6) due to still existing trends in the under-

diagnosis of JIA, this study may have missed some undiagnosed

children with JIA in the comparison group. This can underestimate

our findings; (7) the nomograms were developed based on data

from U.S. children. Therefore, caution should be exercised when

applying these tools to children outside the U.S., as differences

in demographics, healthcare systems, and other factors may affect

their generalizability.

5 Conclusion

Using two well-validated predictor models, we developed

nomograms for the early prediction of JIA in children based on

NSCH database data. The tools are also available for parents and

health professionals to utilize these nomograms. Our easy-to-use

nomograms are not intended to replace the standard diagnostic

methods. Still, they are designed to assist parents, clinicians, and

researchers in better-estimating children’s potential risk of JIA. We

advise individuals utilizing our nomogram model to be mindful

of potential pre-existing selection biases that may affect referrals

and diagnoses.
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