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Background: Sub-Saharan Africa (SSA) has a disproportionately high malaria 
fatality rate globally, with young children accounting for the majority of fatalities. 
The objective of this study is to investigate the spatiotemporal dynamics of 
malaria infection risk and assess the effect of vector control interventions on 
malaria infection rates in SSA nations.

Methods: We utilized data from the Malaria Atlas Project regarding the prevalence 
of Plasmodium falciparum malaria infections and vector control interventions 
across 634 administrative areas in 45 SSA countries over a decade. This study 
adopted spatiotemporal regression models using Markov-chain Monte Carlo 
methods with a Bayesian setup.

Results: Between 2011 and 2020, the average annual prevalence rates of 
malaria infection among children aged 2 to 10 in SSA diminished from 21.32% 
in 2011 to 16.75% in 2016, with a slight resurgence observed in 2017. Each unit 
increase in the number of individuals utilizing insecticide-treated nets (ITN) 
annually correlates with a 34.07% reduction in the risk of malaria infection. A rise 
in malaria cases has prompted SSA to undertake serious control measures. The 
auto-regressive process reveals a highly significant temporal correlation, while 
the global spatial dependency parameter indicates a modest spatial correlation. 
The highest risk of malaria infection prevalence among children aged 2 to 10 
was indicated in states in the West-central, Central, and certain Eastern regions.

Conclusion: Given that the West-central, Central, and select Eastern states 
exhibit the highest rates of malaria infection, the global end malaria councils and 
the malaria control and elimination program should prioritize interventions in 
these regions, enhancing vector control measures and providing comprehensive 
training on their effective utilization to mitigate malaria risk in these areas.
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1 Introduction

Malaria claims a considerable number of lives. The most common 
malaria type in Sub-Saharan Africa (SSA) is Plasmodium falciparum 
malaria, which can be fatal. Severe malaria can have a 20% fatality rate 
(1). Infected blood cells with malaria from Plasmodium parasites cling 
to the endothelial lining of blood vessels, resulting in tissue damage 
and obstruction of the vessel (2). This infection causes a coma if it 
spreads to the brain (3). Respiratory failure may develop if the lungs 
are compromised; indeed, respiratory distress manifests in 40% of 
children and 25% of adults having serious malaria induced by 
Plasmodium falciparum (4). If the recipient is pregnant, the placenta 
can induce maternal anemia, early labor, a higher risk of stillbirth, and 
a small birth weight (2). In SSA, gestational malaria collectively results 
in up to 200,000 infant deaths annually (5).

Africa accounts for a disproportionate share of global malaria 
fatalities, mostly due to the prevalence of Plasmodium falciparum 
malaria (6). Malaria mortality has been steadily decreasing outside of 
Africa since the 1980s, but it has been increasing within the continent, 
with 1.613 million fatalities in 2004 (7). Since that time, malaria fatalities 
have decreased, however they remain significantly higher than in other 
places (8). In 2019, malaria resulted in approximately 558,000 fatalities 
globally, with 534,000 occurring in Africa (9). The WHO reports that 
96% of the 627,000 malaria fatalities globally in 2020 transpired in SSA, 
resulting in 602,000 deaths from the disease in that region (9). This rise 
is ascribed to the coronavirus pandemic, which jeopardised the 
availability of malaria control services such as indoor residual spraying 
(IRS) and insecticide-treated bed nets (10). The majority of malaria 
deaths occur in children under 5 years old (11), with children ages one 
to three being the most affected. According to Mbishi et  al. (12), 
children under 5 years in SSA nations were still at risk for malaria.

Following World War II, the introduction of pesticides like 
dieldrin (DLD) and dichloro-diphenyl-trichloroethane (DDT) led to a 
sharp decline in malaria cases in various regions of Africa (13). By the 
1950s, malaria had been eliminated in the United States (14). In this 
time, the cost of the antimalarial drugs chloroquine fell, resulting in 
widespread use throughout Africa during the 1960s and 1970s. Even 
so, chloroquine-resistant parasites began to emerge in the 1970s, and 
as of the 1980s, disease was once again spreading (13). Since the early 
2000s, combination therapy based on artemisinin, including 
artemisinin and many other drugs, has been widely recognized as the 
most effective treatment for malaria (15).

Okumu (2020) states that the use of pesticide-covered mosquito 
nets can reduce mosquito exposure to malaria by 25–30% (16). In 
historical and program documentation, IRS has also been shown to 
help reduce malaria; however, randomized control studies have not 
consistently shown IRS to be  an effective strategy (17). Recent 
developments in control efforts have led to numerous advances, 
including quick diagnostic tests and especially effective medications, 

including the artemisinin combination therapy. Increased use of 
insecticide-treated bed nets, various vector control techniques, and 
preventative intermittent chemotherapy treatments for individuals at 
risk have all contributed to a decrease in the incidence of malaria (18).

Trends combine mapping, spatiotemporal modeling, and 
storytelling to bring the global issue of malaria closer to different 
audiences. This tool provides malaria risk, burden, and intervention 
data through maps, graphs, and tables to easily visualize and explore 
trends in malaria and related topics at different geographic scales. Even 
though only a few studies (19–21) have been conducted on the effects 
of vector control interventions on changes in the incidence of malaria 
parasitemia in various countries, none of the studies used 
spatiotemporal data nature ranging more than 2 years, and there is a 
lack of broad knowledge regarding the disease at the SSA regional level. 
The purpose of this study is to evaluate the effects of vector control 
initiatives on malaria infection risk at 634 sub-national levels in 45 SSA 
nations among children aged 2 to 10, from 2011 to 2020, as well as to 
estimate spatiotemporal patterns of malaria infection risk changes. The 
study’s findings will shed light on the effectiveness of actions, and the 
National Malaria Control Program (NMCP) in SSA countries and the 
Ministry of Health (MoH) will utilize them to review programs and 
allocate resources most effectively to achieve their objectives.

2 Materials and methods

2.1 Settings

This study was carried out in 634 administration level 1 
(sub-national level) that received funding for vector control programs 
(Insecticide-Treatment Net (ITN), Indoor Residual Spraying (IRS), 
and Antimalarial Effective Treatment) over the study period (2011–
2020) in 45 SSA countries settings to quantify the temporal and spatial 
distribution of changes in malaria infection risk and evaluate the 
influence of vector control initiatives on the risk of malaria infection 
at 634 sub-national levels in 45 SSA countries among children aged 
2–10 between 2011 and 2020. SSA refers to the African continent 
territories south of the Sahara Desert. The regions of Central Africa, 
East Africa, Southern Africa, and West Africa make up the SSA 
(Figure  1). Although the SSA countries go by different titles for 
administration level 1, for the sake of this study, they were all referred 
to as states. The Supplementary Figure S1 and Supplementary Table S1 
contained the study area’s map and names for each state.

2.2 Data sources

The Malaria Atlas Project Data Platform provides several tools for 
studying, examining, and interacting with malaria data (22). The portal 
also includes malaria data to varying degrees of detail to meet different 
demands. We  used a recently published database of Plasmodium 
falciparum clinical infection prevalence and vector control intervention 
data in the SSA obtained from the Malaria Atlas Project Data Platform 
website. 1 For our models, we used the estimates of malaria infection 
prevalence for Plasmodium falciparum parasite rate to the age 

1 https://malariaatlas.org
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group 2–10 years old ( )−2 10PfPR , as Plasmodium falciparum malaria 
has the highest mortality in children in the SSA. We aggregated data 
by averaging ( )−2 10PfPR  at the first administrative level within a 
country in the SSA (i.e., the state in this study) between 2011 and 2020, 
using shape files provided by the Database of Global Administrative 
Areas dataset version 4.1. 2 We used the proportion of malaria infection 
for ( )−2 10PfPR  (per 100 children) as a dependent variable and the 
coverage of malaria vector control interventions as covariates (Table 1).

2.3 Statistical models

This study is based on the Plasmodium falciparum malaria 
prevalence for children aged 2 to 10 years old in the SSA from 2011 

2 www.gadm.org

to 2020. First, we  used Anselin Local Moran’s I  statistic (local 
indicators of spatial association [LISA]) to quantify it on a local 
scale. The LISA statistics were used to detect malaria clustering and 
locate hotspots. The features of ArcMap software version 10.8 were 
used to conduct these investigations. Multiple options exist to 
model spatiotemporal data related to the different coverage of 
malaria vector control intervention data sets because SSA countries 
have 634 administrative states and areal units. Here, we present the 
relevant covariates and analyze the autoregressive (AR) model, 
developed by Rushworth et  al. (23) which describes the 
spatiotemporal pattern in the mean response by using a single set 
of geographically and temporally autocorrelated random effects. 
These effects follow a multivariate autoregressive process of order 1 
or 2. Allowable data models are binomial, Gaussian, and 
Poisson (24).

There are various determinants of the effect of interventions on 
Plasmodium falciparum malaria prevalence risk. These include the 
proportion of people who sleep under ITN, the proportion of people 

FIGURE 1

Map of the study area. Source of shapefile: Database of Global Administrative Areas v.4.1 (www.gadm.org), own map output from ArcGIS v.10.8 (https://
desktop.arcgis.com).
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who have access to ITN in their homes, the proportion of people who 
sleep under ITN among those who have access to ITN in their homes, 
the proportion of households that have IRS coverage, and the 
proportion of malaria cases that are successfully treated with 
antimalarial medication. We define treatment as the proportion of 
malaria cases that were successfully treated with antimalarial 
medications. It is possible that states with high or low rates of malaria 
infection also have the highest or lowest rates of effective antimalarial 
medication. The response variable of this study is the proportion of 
malaria infection for −2 10PfPR  (per 100 children). The Malaria Atlas 
Project Data Platform provides only the proportion of malaria 
infection for −2 10PfPR , we adopt the Gaussian distribution in our 
modeling. However, the observed response, being a proportion, is 
better modeled using a logit transformation in the first place. The logit 
transformed proportions are assumed to follow the normal error 
distribution in the Generalized Linear Models (GLM). Since the 
response is in the logit scale transform, we  also logit transform 
the covariates.

2.3.1 Spatio-temporal autoregressive model
Let ktY  for =1,..,634k  and = …1, ,10t , denote the logit transformed 

estimated proportion of malaria infection for −2 10PfPR . In this study, 
= 634n  is the number of administration areas (states) in the SSA 

countries and =10T  is the number of years we have data. The top-level 
model is specified as:

 
β ψ ∈′ 

= = + + = … = … − 
log , 1, ,634, 1, ,

ˆ
ˆ ,10

1
kt

kt kt kt kt
kt

pY x k t
p

 
(1)

where ˆktp  is the estimated proportion of malaria infection for 
−2 10PfPR , ( )∈ 2~ 0,kt N v  independently, ( )= …1, ,kt kt ktpX x x  is a 

vector of p control intervention covariates, ( )β β β= …1, , p  is the 
vector of covariates regression parameter and ψ kt  are spatiotemporal 
random effects models (25, 26). In Equation (1), the basic linear 
model is obtained as a special case when ψ = 0kt  for all values of k and 
t . In cases when both the dependent variable and the covariates are 
log-transformed variables in this study, the interpretation is given as 
the predicted percentage change in the dependent variable when the 
covariate increases by some percentage. To get the proportional 
change in Y  associated with a p percent increase in X , we calculate 

( )α = +  log 100 /100p  and take αβ̂e  linear-log. So that the percent 
change Y  associated with percent increase in X  is ( )αβ× −

ˆ
100 1e .

There are two versions of this model, which are based on either a 
first (AR(1)) or a second (AR(2)) order temporal autoregressive 

process. Rushworth et al. (23) presented the first-order model, which 
uses a multivariate first-order autoregressive process with a spatially 
autocorrelated precision matrix to characterize the spatiotemporal 
structure. This is expanded in the second model, which uses a spatially 
autocorrelated precision matrix and a multivariate second-order 
autoregressive process. If one wants to assess how the spatial structure 
in the data has changed over time, these models are suitable. Below 
are the model specifications for each scenario (Equation 2).

The AR(1) model specifies:
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The AR(2) model specifies:
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(3)

Here ( )φ φ φ= …1 , ,t t Kt  is the vector of random effects for time t 
(Equation 3), which evolve via a multivariate first or second-order 
autoregressive process with temporal autoregressive parameter(s) ρT  
(AR(1) model) or ( )ρ ρ

1 2T T,  (AR(2) model). The mean induces 
temporal autocorrelation, whereas the variance induces spatial 
autocorrelation ( )τ ρ −12 , SQ W . The corresponding precision matrix 
( )ρ, SQ W  was proposed by (27) and corresponds to the CAR models. 

This matrix’s algebraic form is provided by

 ( ) ( ) ( )ρ ρ ρ = − + − , 1 1 ,S S SQ W diag W W I  (4)

where 1 is the ×1K  vector of one while I is the ×K K  identity 
matrix (Equation 4). As with the other models, the random effects 
are zero-mean centered, and the default hyperparameter values are 

TABLE 1 Intervention covariates.

Name Metric Definition

ITN use (in 100 people) Use The proportion of the population that sleeps under an Insecticide-Treated Net during a defined 

year

ITN access (in 100 people) Access The proportion of the population with access to an Insecticide-Treated Net in their household 

during a defined year

ITN use rate (in 100 people) Use Rate The proportion of people sleeping under an Insecticide-Treated Net, among those with access 

to an Insecticide-Treated Net in their household during a defined year

IRS coverage (in 100 households) Coverage The proportion of households that received indoor residual spraying in a given year

Treatment (in 100 malaria cases) Antimalarial Effective Treatment The proportion of malaria cases that receive effective treatment with antimalarial medicine
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( )= =1, 0.01a b , with flat and conjugate inverse-gamma priors 
provided for ( )ρ ρ ρ ρ

1 2
, , ,S T T T  and τ 2, respectively. The dependence 

parameters ( )ρ ρ,S T  can be fixed at values in the unit interval [0, 1] 
rather than being estimated in the model, while ( )ρ ρ

1 2
,T T  can also 

be fixed.

2.3.2 Model fitting, choice, and validation statistic
The models in this study are fitted in a Bayesian setting using 

Markov-chain Monte-Carlo simulation. Gibbs sampling is used for all 
parameters, including the variance and regression parameters ( )β , 
whose entire conditional distributions have a closed-form distribution. 
Metropolis or Metropolis-Hastings Steps are used to update the 
remaining parameters.

We first compare four different models including the AR(2) 
model. In this study, the independent error regression model is the 
first model, followed by the ANOVA model (28), the AR(1) model, 
and the AR(2) model. To compare the studied models, we use the 
Deviance Information Criterion (DIC) (29) and the Watanabe Akaike 
information criterion (WAIC) (30), two widely used criteria to 
compare models in a fully Bayesian setting. The model with the 
smallest value of DIC and WAIC is the one with a better balance 
between the model adjustment and complexity. However, it is 
reassuring to see that the penalty parameters are estimated to 
be positive.

In this study, we selected only the four most widely used model 
validation criteria, especially for prediction using spatiotemporal 
modeling. These are Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Continuous Ranked Probability Score 
(CRPS), and Coverage (CVG) to see the best goodness-of-fit, the 
smallest value is the best goodness-of-fit. However, CVG is not a 
discrepancy measure like the other three criteria. The theoretical 
value of ( )−α100 1  will be  the optimal value. The model that 
produces a CVG value closest to ( )−α100 1  is to be chosen as the 

best model. The model validation is performed automatically by 
specifying the optional vector-valued (valid-rows) argument 
containing the row number of the data frame (26). In this study, 10 
% of the data set was used for model validation using the 
CARBayesST package in R version 4.4.1 for the additional argument-
valid rows supplied.

We do a permutation test for every year of data independently and 
compute Moran’s I statistic (31) to measure the existence of spatial 
autocorrelation in the residuals from this model. The alternative 
hypothesis of the permutation test indicates significant spatial 
autocorrelation, while the null hypothesis is that there is no 
spatial autocorrelation.

3 Results

3.1 Descriptive statistics results

The yearly average proportion of malaria infection for −2 10PfPR  
in the SSA worldwide from 2011 to 2020 was presented in Figure 2. 
According to the findings, the proportion of malaria infection for 

−2 10PfPR  dropped from an average of 21.32 in 2011 to 16.75 in 2016, 
with a minor increase observed between 2016 and 2017. However, it 
dropped from 16.91 in 2017 to 16.52 in 2019 and then rose to an 
average of 17.78 in 2020.

The risk of Plasmodium falciparum parasite malaria infection 
among children aged 2 to 10 in each state is depicted in Figure 3, 
which is the geographic distribution aggregated of the averaged 
proportion of malaria infection for −2 10PfPR  in the SSA across the 
study period. According to the results, the states around the West-
central, Central, and certain Eastern states have the highest proportion 
of malaria infection for −2 10PfPR , while the states surrounding the 
Southern, Horn of Africa, and Northwest regions in SSA have the 

FIGURE 2

Temporal trend of the average proportion of malaria infection for −PfPR2 10  in SSA from 2011 to 2020.
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lowest frequency. Between 2011 (baseline year) and 2020 (endline 
year), the Supplementary Figure S2 showed changes in 634 
administrative regions, including the percentage change in malaria 
prevalence and the number of locations where the proportion 
increased, decreased, or remained stable.

In order to determine which states have a high number of malaria 
infections for −2 10PfPR  in the SSA over the study period while their 
neighbors have low numbers, or which states have low numbers of 
malaria infections while their neighbors have high numbers of malaria 
infections, Figure 4 in this study shows the results that identify states 
that either have higher or lower malaria infections than the 
neighboring areas. It also identifies outlier states that are significantly 
different from their neighbors. According to the results, the SSA high 
cluster areas over the study period were the West-central, Central, and 
some parts of the Southeast, whereas the Northwest, Northeast, and 
certain sections of the eastern and southern states were low cluster 

areas. However, the states around North Madagascar were low cluster 
areas, and the South of Madagascar remained insignificant.

In our study findings, over the study period the Low-High outliers 
states are Bamako and Gao in Mali, Montserrado in Liberia, Abidjian 
in Côte d’Ivoire, Greater Accra in Ghana, Maritime in Togo, Lagos, 
Delta, Enugu and Federal Capital Territory (Abuja) in Nigeria, Nord-
Ouest and Ouest in Cameroon, Littorial in Equatorial Guinea, Lunda 
Sul in Angola, Lakes in South Sudan, Turkana in Kenya, and Sironko, 
Kibale, Kiboga and Luwera in Uganda. However, high-low outliers 
states of malaria infections for −2 10PfPR  in the SSA over the study 
period are Cuando Cubango in Angola, and Cibitoke in Burundi 
(Figure  4). The high cluster, low cluster, low-high and high-low 
outliers areas results of malaria infections for −2 10PfPR  in the SSA 
from 2011 to 2020 were provided in the Supplementary Figure S3.

The estimated yearly proportion of malaria infection for −2 10PfPR  
of 634 states in the SSA regions between 2011 and 2020 is shown in 

FIGURE 3

Spatially aggregated the proportion of malaria infection for −PfPR2 10  in the SSA over the study period. Source of shapefile: Database of Global 
Administrative Areas v.4.1 (www.gadm.org), own map output from ArcGIS v.10.8 (https://desktop.arcgis.com).
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Figure  5. The findings indicate that between 2011 and 2020, the 
proportion of malaria infection varied over time in each state in 
SSA. The results showed that between 2011 and 2020 the proportion 
of malaria infection was high in states around the Western and Central 
regions and low in states surrounding the Southern and some Eastern 
areas. Nonetheless, a few states in the Eastern area exhibit a decline 
between 2011 and 2019. During the study period, certain states in the 
Central African Republic showed declines, while other states in the 
region around Gabon and the Democratic Republic of the Congo 
showed significant rises. Nonetheless, during the study period, malaria 
infections decreased in numerous states in Uganda. Furthermore, 
during the study period, malaria infection rates were rising in the 
states surrounding Namibia and Botswana in 2014 and 2017.

According to the results, there was strong evidence of unexplained 
spatial autocorrelation in the residuals from 2011 to 2020 after 
adjusting for the effects of the intervention covariates. The annual 
proportion of malaria infections had positive autocorrelation from 
2011 to 2020 in the SSA global, ranging from 0.42851 to 0.50947, and 
all p-values were less than 0.05 (Table 2).

3.2 Spatiotemporal regression model 
results

Four different spatiotemporal regression models were fitted and 
compared. The linear trend model comes first, followed by the 
ANOVA model, the AR(1) model, and the AR(2) model. The DIC and 
WAIC criterion values for these models are shown in Table 3. The 
results show that the AR(1) model was selected based on DIC and 
WAIC. The DIC and WAIC criterion values of the AR(1) model are 
significantly lower than those of the other models. The AR(1) model’s 
DIC and WAIC are negative because the independent error variance 
( )2v  is thought to be quite modest (Table 4).

The validation results shown in Table 5 are based on 6,340 (=634×
10) observations as we chose all 10 time points and 634 states for 
validation. Compared to the other models, the AR(1) model performs 
marginally better. The coverage value appears to be 97.634 for the 
6,340 prediction intervals. The Supplementary material contains a plot 
of the predictions against the observed values (Supplementary  
Figure S4). The sites for which the =y x line displayed in blue, in the 

FIGURE 4

Cluster and outlier analysis malaria infection for −PfPR2 10  in the SSA over the study period (2011–2020). Source of shapefile: Database of Global 
Administrative Areas v.4.1 (www.gadm.org), own map output from ArcGIS v.10.8 (https://desktop.arcgis.com).
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FIGURE 5

Temporal trend of the proportion of malaria infection for −PfPR2 10  in the SSA at each state from 2011 to 2020.

TABLE 2 Global Moran’s I autocorrelation values of annual malaria 
infection prevalence rates in the SSA.

Year Moran’s I p-value

2011 0.43991 0.001

2012 0.42851 0.001

2013 0.45083 0.001

2014 0.44329 0.001

2015 0.45928 0.001

2016 0.47630 0.001

2017 0.48364 0.001

2018 0.47112 0.001

2019 0.50297 0.001

2020 0.50947 0.001

TABLE 3 Model choice criteria values for spatiotemporal regression 
models.

Model DIC P.dic WAIC P.waic

Linear −725.115 1222.736 −588.673 1132.426

ANOVA 4414.804 633.464 4432.229 592.610

AR(1) −5506.542 4997.465 −6937.510 2603.101

AR(2) −1584.215 4833.897 −2764.493 2669.930

TABLE 4 Parameter estimates from the spatiotemporal AR(1) model.

Coefficient Mean 2.5% 97.5%

Intercept −1.510 −1.774 −1.247

ITN use −0.601 −0.704 −0.500

ITN access 0.428 0.323 0.535

ITN use rate 0.633 0.587 0.680

IRS coverage 0.019 0.007 0.030

Treatment 0.506 0.446 0.564

2v 0.010 0.008 0.011

τ2
0.598 0.509 0.700

ρS
0.134 0.106 0.165

ρT
0.953 0.942 0.964

TABLE 5 Model validation criteria statistics.

Model RMSE MAE CRPS CVG

Linear 0.217 0.156 0.129 94.479

ANOVA 0.328 0.241 0.195 94.953

AR(1) 0.185 0.106 0.176 97.634

AR(2) 0.294 0.164 0.228 96.214

The bold value indicates the selected the model.
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image does not appear in the 95% prediction intervals are indicated 
by the red-colored open circles. As a result, the analysis given above 
shows that AR(1) is the best model. Three concurrent Markov chains 
are used to run the AR(1) model; each runs 69,740 MCMC samples, 
with the first 6,340 samples eliminated as the burn-in period. 6,340 
samples are available for inference after the data are thinned by 10 to 
lower the autocorrelation in the Markov chains. To make sure the 
Markov chains seem to have converged, we included the posterior 
distributions of all the parameters in the Supplementary Figures S5–S8, 
together with the trace plots and density estimates. The posterior 
distributions for parameters are centered near their real values 
(Table 4), and there is no evidence that the figures do not converge 
(Supplementary Figures S5–S8).

The selected AR(1) model’s parameter estimate is shown in 
Table 4. The model shows that each of the five intervention covariates 
is significant. ITN use is negatively significant, as predicted, suggesting 
that increased ITN use lowers the proportion of malaria infection in 
children aged 2 to 10  in SSA. If there are higher rates of malaria 
infection among children aged 2 to 10 in SSA, then ITN access, ITN 
use rate, IRS coverage, and effective treatment will all increase. This is 
because the coefficients of ITN access, ITN use rate, IRS coverage, and 
antimalarial effective treatment are all positively significant, even after 
controlling for spatiotemporal correlations in the data. The 
significance of fitting the geographic model is reaffirmed by the 
estimation that the spatial variance (τ 2) is greater than the independent 
error variance ( 2v ). The global spatial dependency parameter (ρS) 
indicates a moderate spatial correlation. In SSA, the auto-regressive 
process exhibits a significant temporal correlation (ρT ). The findings 
revealed that the spatial correlation ρS  is smaller than the temporal 
autocorrelation ρT .

According to this study, the SSA risk of malaria infection among 
children ages 2 to 10 will drop by 0.60% for every 1% increase in the 

population sleeping under ITN each year. If the average yearly rate of 
malaria infection in SSA climbs by 0.43%, the proportion of 
population with access to ITN in their household during a defined 
year will be  increase by one-percent. In addition, if the annual 
percentage of malaria infections in the SSA rises by 0.63%, the 
proportion of persons sleeping under ITN in households with access 
to ITN will rise by 1% during a given year. Furthermore, if the 
percentage of malaria infections in the SSA rises by 0.02% per year, 
the number of families covered by IRS rises by 1% within a given year. 
Moreover, if the annual average malaria infection rate in the SSA rises 
by 0.51%, the proportion of malaria cases receiving effective 
antimalarial therapy will rise by 1 % (Table 4).

The spatial aggregation of fitted values of the proportion of 
malaria infection response variable throughout the study is plotted in 
Figure 6a. The fitted map and the observed map in Figure 3 are in 
excellent agreement. The discretized color categories do not match in 
a small number of states, perhaps because of the discretization process 
itself. The results showed that the states in the West-central, Central, 
and certain Eastern regions had the highest risk of malaria infection 
among children aged 2 to 10. However, the Northwest, Southern, and 
Horn of Africa states have the lowest risk of malaria infection. The 
states with the highest risk of malaria infection among children aged 
2 to 10 years were those surrounding Equatorial Guinea, Cameroon, 
Angola, Congo, Gabon, Central African Republic, and the Democratic 
Republic of Congo in the Central region; South Sudan, Uganda, East 
Burundi, Malawi, Zambia, and Mozambique in the Eastern region; 
and Guinea, Sierra Leone, Liberia, Mali, Côte d’Ivoire, Burkina Faso, 
Ghana, Togo, Benin, Niger, and Nigeria in the Western region with 
credible intervals of posterior means ranging between 2.00 and 4.16 
(Figure 6a).

The spatially aggregated residuals of the proportion of malaria 
infection in the SSA during the study period are displayed in 

FIGURE 6

Spatially aggregated for posterior means of fitted values and residuals of the malaria infection prevalence rates over the study period in the SSA. (a) 
Spatially aggregated of fitted values. (b) Spatially aggregated of residuals. Source of shapefile: Database of Global Administrative Areas v.4.1 (www.
gadm.org), own map output from ArcGIS v.10.8 (https://desktop.arcgis.com).
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Figure 6b. We examined the residuals to seek any discernible spatial 
pattern provided to the spatial map. For every observed data point, 
we acquire the so-called response residuals (observed-fitted) to create 
the spatial residual map. There are no overwhelming spatial patterns 
in the residual map indicating a need for additional investigation.

In this study, we used the temporal trend for the posterior mean 
of fitted values to estimate the yearly averages of 634 states in the SSA 
between 2011 and 2020. The temporal trend for the fitted values of the 
annual proportion of malaria infections is shown in Figure 7. The 
results indicate that during the study period, each state had a different 
risk value for the yearly proportion of malaria infections in children 
aged 2 to 10 years due to the Plasmodium falciparum parasite. Between 
2011 and 2020, the states around the Central, Western, and certain 
Eastern states had the highest risk of contracting malaria for −2 10PfPR
, while the states surrounding the Southern region had the lowest risk 
compared to other regions. Malaria infections increased in a few 
Southern states between 2012 and 2017 and fell between 2017 
and 2020.

We check the AR(1) model’s residuals to see whether there are any 
overwhelming temporal dependencies of 634 states from 2011 to 
2020 in the SSA. The residuals are plotted in Figure 8, and it is evident 
that the temporal patterns are not displayed in this plot. In 2011, there 
were very few significant data points in the East Africa region; yet the 
related residuals’ absolute values were significantly smaller. As a result, 
it is believed that the AR(1) model fits the data well.

Figure 9 shows the results of transformed observed values and raw 
overall trends in the SSA global, which may have been caused by 

trends in the intervention covariates. The trends of the observed 
values and fitted values look similar. According to the results, the 
proportion of malaria infections increased in 2017 after declining 
between 2011 and 2016. However, the pandemic caused the prevalence 
rates to rise in 2020 after declining between 2017 and 2019.

4 Discussion

According to this study, the average percentage of children 
infected with malaria fell from 21.3% in 2011 to 16.8% in 2016, with 
a small increase observed in 2017. However, it fell from an average of 
16.9% in 2017 to 16.5% in 2019, before rising to an average of 17.8% 
in 2020 due to the coronavirus pandemic. Between 2011 and 2020, the 
proportion of malaria infections varied throughout all SSA states. 
According to Stonely (7), malaria transmission risk is high in West-
central, Eastern, and West Africa, but low in the southern region of 
Africa due to the climatic network effect. In this study, the Northwest, 
Northeast, and certain regions of the eastern and southern states were 
low cluster areas, whereas the West-central, Central, and some 
Southeast states were SSA high cluster areas during the studied 
period. However, the South of Madagascar remained inconsequential, 
and the nations surrounding North Madagascar were low cluster areas.

According to Giardina et al. (19), while the overall risk of malaria 
has decreased in many SSA countries, there are high parasitemia 
clusters that enhance the estimated spatial variance, and the change in 
malaria risk varies substantially by location. The significance of fitting 

FIGURE 7

Posterior mean of fitted values for temporal trend for malaria infection prevalence rates in the SSA at the state level.
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a spatial model is confirmed in this study by the estimate that the 
variation between locations is greater than the independent error 
variance. A moderate level of spatial correlation is indicated by the 
global spatial dependency parameter. The temporal correlation of the 

auto-regressive process in SSA is significant, and the temporal 
autocorrelation is greater than the spatial correlation.

According to Okumu (16), employing insecticide-treated 
mosquito nets can reduce exposure to malaria-carrying mosquitoes 

FIGURE 8

Posterior mean of residuals for temporal trend for malaria infection prevalence rates in the SSA at the state level.

FIGURE 9

Temporal trend of the observed values and average fitted values for yearly malaria infection rates in SSA from 2011 to 2020.
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by 25–30%. According to this study, for every unit increase in the 
number of people sleeping under ITN annually, the SSA risk of 
malaria infection among children aged 2 to 10 will decrease by 
34.07%. Avrakotos (32) states that the US President’s Malaria Initiative 
(PMI) works with countries to stop malaria by providing mosquito 
nets, spraying insecticides on dwellings, giving out preventative drugs, 
training medical professionals, and sponsoring malaria research. In 
addition to collaborating with community partners to promote regular 
mosquito net use, PMI has helped distribute 500 million insecticide-
treated mosquito nets since 2005 (33). According to this study, the 
percentage of the population with access to ITN in their household 
during a given year will rise by a unit if the average annual rate of 
malaria infection in SSA increases by 34.54%. Additionally, if the SSA 
annual percentage of malaria cases increases by 55.08%, the percentage 
of people sleeping under ITN in homes with access to ITN will 
increase by a unit in a given year. Furthermore, if the SSA malaria 
infection rate increases by 1.32%, there will be one extra household 
covered by IRS in a given year. Besides, the percentage of malaria cases 
receiving effective antimalarial therapy will increase by one unit if the 
SSA yearly average malaria infection rate increases by 42.01%. The 
PMI website has featured a number of accomplishments made by its 
partner countries since its launch. Since 2006, the average number of 
malaria cases and deaths in PMI’s partner nations has decreased by 26 
and 43%, respectively (14). According to this study, the states with the 
highest risk of malaria infection among children aged 2 to 10 in the 
SSA were West-central, Central, and a part Eastern. Nonetheless, the 
Northwest, Southern, and Horn of Africa states have the least chance 
of having a high malaria infection. According to this study, the states 
surrounding Equatorial Guinea, Cameroon, Angola, Congo, Gabon, 
Central African Republic, and Democratic Republic of Congo in the 
Central region, South Sudan, Uganda, Burundi, Zambia, Malawi, and 
Mozambique in the Eastern region, and Guinea, Sierra Leone, Liberia, 
Mali, Côte d’Ivoire, Burkina Faso, Ghana, Togo, Benin, Niger, and 
Nigeria in the Western region had the highest risk of malaria infection 
among children aged 2 to 10 years in the SSA during the study period. 
Although it showed an approximate decline in the average proportion 
of malaria infection in the SSA from 2011 to 2020, it started to rise in 
2020 due to the COVID-19 Pandemic, which affected the whole 
health system globally (34, 35).

The limitations of this study should be considered when evaluating 
the findings. We omitted a number of risk factors that influence the 
prevalence of malaria infections in the SSA, including socioeconomic 
and meteorological conditions, because these variables were not in 
the dataset.

5 Conclusion

This study discovered that between 2011 and 2020, the effect of 
vector control activities on the rate of malaria cases varies by time and 
location in 634 states across 45 SSA nations. During the study period in 
the SSA, the estimated spatial autocorrelation is lower than the estimated 
temporal autocorrelation, while the estimated spatial variation is greater 
than the independent error variance. In this study, the malaria infections 
prevalence among children aged 2 to 10 decreased as the population’s 
use of ITN increased. For every increase in malaria cases among 
children between the ages of 2 and 10 in SSA, the percentage of people 
who have access to ITN in their homes would rise. Additionally, the 
proportion of families that have received IRS and the percentage of 

people sleeping under ITN -among those with access -would both 
increase. Moreover, the percentage of malaria cases that receive effective 
antimalarial medicine treatment would increase. Globally, the SSA 
annual malaria infection prevalence among children aged 2 to 10 
decreased between 2011 and 2016, with a modest uptick observed in 
2017. Nonetheless, during 2017 and 2019, the malaria infections 
prevalence decreased. Children aged 2 to 10 were most likely to get 
malaria in states located in the West-Central, Central, and Eastern 
regions. However, the Northwest, Southern, and Horn of Africa states 
have the lowest risk of having an elevated rate of infections with malaria. 
We recommend that the global end malaria councils and the malaria 
control and elimination program act in West-Central, Central, and some 
Eastern states to increase the number of interventions vector control and 
provide training on how to use it to reduce malaria risk in the region, 
because the greatest rates of infection with malaria in children between 
the ages of two and ten have been observed in these states.
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