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Background: Sand and dust storms (SDSs) cause considerable health risks 
worldwide. China is a country seriously affected by SDSs, however only few 
studies researched the risk of SDS in China. The insufficient evidence on SDS 
hampers effective measures to mitigate its harm.

Objective: To reveal the mortality risks associated with SDSs in Jinan City and 
identify sensitive populations vulnerable to these events.

Methods: For this time-stratified case-crossover study, we collected daily data 
on all-cause, circulatory, and respiratory deaths, as well as air pollution and 
meteorological information from Jinan City in China between January 1, 2013, 
and November 30, 2022. We  initially utilized a time-stratified case-crossover 
design and logistic regression model to examine the short-term relationship 
between SDSs and mortality risks, adjusting for specific variables such as mean 
temperature, humidity, wind speeds, and holidays. Subsequently, we conducted 
stratified analyses by age, gender, and season.

Results: A total of 53 SDSs were observed, lasting for 88 days during the study 
period, which accounted for 2% of the study period. The excess mortality risks 
associated with SDSs were 13% (95% CI: 4–22%), 4% (95% CI: 1–8%), and 3% 
(95% CI: 1–6%) for respiratory, circulatory, and all-cause death, respectively. 
Females and people over 65 years of age are vulnerable to respiratory deaths 
caused by SDSs.

Conclusion: Short-term exposure to SDSs caused the significantly elevated risks 
of respiratory, circulatory and all-cause death. Females and individuals over the 
age of 65 are particularly vulnerable to the effects of SDSs.
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1 Introduction

Sand and dust storms (SDSs) are meteorological events caused by the ongoing release of 
significant amounts of mineral sand and dust particles into the atmosphere during specific 
favorable meteorological and synoptic conditions (1, 2). Generally, sand and dust particles 
were transported from one place to another by wind (3).

Poor air quality caused by SDSs threatens over 150 countries worldwide (4). The prevalence 
of SDSs has raised significant concern due to their harmful effects on human health (5, 6). 
Current investigations into the relationship between SDSs and health have primarily 
concentrated on the impact of SDS events on hospitalization and mortality rates. Research has 
shown that SDSs were notably linked to hospitalization rates in China (7, 8) and the Canary 
Islands, Africa (9). Independent studies from North America (10), Europe (11), and Oceania 
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(12) indicated that SDSs increased non-accidental mortality. Several 
studies in East Asia have revealed that SDSs significantly raised 
all-cause and circulatory death rates (13–15). A recent study (16) 
demonstrated that exposure to SDS events was associated with an 
increased risk of circulatory and respiratory mortality in China, Asia.

Jinan City is located in the eastern part of China that is vulnerable 
to the effects of SDSs (16), with a population over 9 million. However, 
there is no study to investigate the effect of SDSs passing through Jinan 
City on mortality risks. To compensate for the limitation, this study 
explored the effects of SDSs passing through Jinan City on the risks of 
respiratory, circulatory, and all-cause death in the population based 
on a decade of mortality data in the city.

2 Materials and methods

2.1 Study area

This study area, Jinan City, is located in the mid-western of 
Shandong Province in Eastern China with low north high terrain 
south. It has a population of 9 million. The geographic position is 
between 36°01′N ~ 37°32′N and 116°11′E ~ 117°44′E. It belongs to 
typical warm temperate continental monsoonal climate zone that 
is characterized by a pronounced monsoon, four distinct seasons, 
a dry spring with little rain, a warm and rainy summer, a cool and 
dry autumn and a cold and little snow in winter. The perennial 
dominant wind direction of the city is from the southeast and 
east-southeast.

2.2 Data sources

We obtained death records from the China Cause of Deaths 
Reporting System (CDRS) and categorized causes using the 
International Classification of Diseases 10th Revision (ICD-10). Our 
dataset covered death from all-cause, circulatory diseases (ICD-10 
codes I00-I99), and respiratory diseases (ICD-10 codes J00-J99).

The assessment of air pollution’s impact on mortality was 
conducted by analyzing the concentrations of various air 
pollutants: coarse particulate matter (PM10), fine particulate matter 
(PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon 
monoxide (CO), and 8-h ozone (O3-8h). There were 28 urban air 
quality monitoring stations to carry out real-time monitoring of 
these pollutants. They covered all the areas of Jinan City, whose 
sites are shown in Supplementary Table S1. Data of air pollutants 
were from the Jinan Ecological Environmental Protection Bureau 
website.1

Meteorological information, such as daily mean temperature (T, 
°C), average relative humidity (RH, %), average air pressure (P, hPa), 
and average wind speeds (Wind, m/s), was collected from the China 
Meteorological Science Data Sharing Service Network.2 All data 
above were from the period between January 1, 2013, and November 
30, 2022.

1 http://fb.sdem.org.cn:8801/airdeploy.web/AirQuality/MapMain.aspx

2 http://data.cma.cn/

2.3 SDS definition

In this study, referring to the related study, SDS day was defined 
as day with a daily PM10 concentration exceeding 400 μg/m3 and a 
PM2.5 to PM10 concentration ratio below 0.4 (16, 17).

2.4 Backward airflow trajectory analysis

We obtained the Global Data Assimilation System (GDAS) 
meteorological dataset from https://www.ready.noaa.gov/index.php 
and used MeteoInfoMap software (version 3.7.2; Chinese Academy of 
Meteorological Sciences; Beijing, China) to calculate 24-h backward 
airflow trajectories of SDSs. In China, there are three major sources of 
SDSs affecting population’s health, including the Taklamakan Desert 
and deserts of Inner Mongolia in China, and deserts of Mongolia, with 
the Taklamakan Desert affecting its nearby regions (18, 19), the 
deserts of Inner Mongolia in China and Mongolia contribute mainly 
to SDSs affecting China’s inland. To align with the airflow trajectories 
of SDSs impacting Jinan City, we first inputted the GDAS dataset for 
the days when these SDSs occurred using the MeteoInfoMap software. 
Next, we filled in the date, longitude, latitude, and sampling point 
height information in the respective data fields to calculate and fit the 
trajectories of the SDSs. This method yielded a strong simulation of 
the various source trajectories of SDSs. SDSs locations were identified 
based on their passage through Inner Mongolia in China, Mongolia 
or other areas, and their direction were recognized based on SDSs 
locations relative to Jinan City (Supplementary Table S2).

2.5 Statistical analyses

Firstly, we conducted descriptive analysis of the data, presenting 
indicators such as minimum (Min), maximum (Max), median (M), first 
quartile (P25), and third quartile (P75). Secondly, a time-stratified case-
crossover study and logistic regression model was performed to evaluate 
the association between exposure to SDSs and mortality risks. The specific 
variables of mean temperature, humidity, wind speeds, and holidays were 
adjusted in the model. The design principle of a time-stratified case-
crossover study is to stratify time, comparing the case phase and control 
phase within the same month, thus avoiding the confounding effects of 
long-term temporal trends. The control phase was selected to correspond 
to the same weekday of the other weeks within the same month and year 
as the case phase (e.g., if the SDS day occurred on the Wednesday of the 
4th week of February 2013, the control days are chosen as the Wednesdays 
of the 1st, 2nd, and 3rd weeks of February 2013). The logistic regression 
model is a predictive tool used to estimate the probability of occurrence 
of the response variable, which varies with the dependent variables. 
We  utilized the Wilcoxon rank-sum test to compare mortality risks 
between SDS days and non-SDS days.

Referring to the model in the related studies (16, 17), 
we determined the main model (Equation 1) in this study. It was 
as follows:

 

( ) ( ) ( )
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,

α β  = + + + + 
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The definition of each variable in the model is shown in 
Supplementary material.

The following (Equation 2) calculated odds ratio (OR) for mortality 
associated with SDS events basing on the estimated β coefficients:

 ( )OR e β=  (2)

2.6 Stratified analyses

Moreover, stratified analyses were conducted based on season 
(spring and winter), age (<65 and ≥ 65), and gender (males and females). 
Statistical differences between stratified estimates were estimated by 
two-sample Z-tests with the following formula (Equation 3):

 
( ) ( )2 2

1 2 1 2/ SE SEβ β− +
 

(3)

β1 and β2 are regression coefficients specific to two subgroups. SE1 
and SE2 are their corresponding standard errors.

2.7 Definition of lag days

We investigated the delayed impact of 31 days after the SDS, and 
observed that the risks of all-cause and circulatory death ceased by the 
6th day after SDSs (lag 6), while the risk of respiratory death 
diminished at lag 3. Therefore, the lag days for both conditions were 
consistently identified as 6 days.

2.8 Sensitivity analyses

Sensitivity analyses were conducted by adjusting the degrees of 
freedom for the temperature variable (df = 7, 8, 9) and using different 
degrees of freedom for relative humidity and wind speed variables 

(df = 4, 5, 6) in spline functions (16). In addition, three alternative 
definitions of SDSs were tested by altering the PM2.5 to PM10 
concentration ratio (0.35 and 0.45) or considering only PM10 
concentration (16).

Statistical analyses were performed using Rstudio software 
(version 4.2.3; Posit Inc., MA, United States). All tests were two-sided 
with statistical significance set at a p-value less than 0.05.

3 Results

3.1 Summary statistics for SDSs and 
mortality due to SDSs

During the 10-year study period, 53 SDSs were recorded, with a 
duration of 88 days, representing 2% of the total study period. Figure 1 
showed the annual emergence number of SDSs which primarily 
transpired from March to May and from November to January of the 
subsequent year.

The demographic characteristics of deaths, meteorological factors, 
and air pollutants during SDS days and non-SDS days were displayed 
in Table  1. The number of deaths and the PM10 concentrations 
significantly increased during the study period (Figure 2). During 
SDSs, the concentrations of PM10, PM2.5, SO2, NO2, and CO were 
notably elevated compared to non-SDS days, whereas levels of O3 
significantly decreased (Supplementary Table S3). Additionally, the 
daily death counts of all-cause, circulatory, and respiratory showed a 
significant elevation on SDSs days in comparison to non-SDS days 
(Supplementary Table S4).

After calculating the backward airflow trajectories of SDSs passing 
through Jinan City, the study classified the source locations of SDSs 
into Mongolia (9, 17%); Inner Mongolia in China (18, 34%); Inner 
Mongolia in China and Mongolia (16, 30%); and other regions (10, 
19%). The transportation routes identified were northwest (41, 77%); 
northeast (8, 15%); southwest (2, 4%); and west (2, 4%) 
(Supplementary Figure S1).

FIGURE 1

The yearly and monthly emergence number of sand and dust storms from 2013 to 2022 in Jinan City, China.

https://doi.org/10.3389/fpubh.2025.1535543
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shen et al. 10.3389/fpubh.2025.1535543

Frontiers in Public Health 04 frontiersin.org

3.2 Association between SDSs and 
mortality due to SDSs

A significant increase in the risks of respiratory, circulatory and 
all-cause death are shown in Figure 3, with the highest death risk 
observed at lag0 [odds ratio (OR) = 1.13, 95% confidence interval 
(CI): 1.04, 1.22], lag0 (OR = 1.04, 95% CI: 1.01, 1.08), lag5 (OR = 1.03, 
95% CI: 1.01, 1.06), respectively.

3.3 Stratified analyses results

In subgroups analysis of age, we observed that the risk of respiratory 
death associated with SDSs in the age group ≥65 was higher than that 
in the age group <65, with the maximum lag effect in the age group ≥65 
emerged on lag2 (OR = 1.25, 95% CI: 0.98, 1.60), and that in the age 

group <65 occurred on lag0 (OR = 1.12, 95% CI: 1.03, 1.22). The risks 
of all-cause death were notably increased in both age groups, with the 
maximum lag effect in the age group ≥65 appeared on lag2 (OR = 1.05, 
95% CI: 1.01, 1.10), and that in the age group <65 occurred on lag5 
(OR = 1.03, 95% CI: 1.01, 1.06), but their group differences were not 
significant. Meanwhile, the risks of circulatory death were significantly 
elevated in both age groups, with the maximum lag effect in the age 
group ≥65 occurred on lag4 (OR = 1.07, 95% CI: 1.01, 1.15), and that 
in the age group <65 emerged on lag0 (OR = 1.04, 95% CI: 1.01, 1.08), 
but their group differences were not significant (Figure 4).

Additionally, it was observed that the risk of respiratory death was 
higher in females compared to males, with the highest risk in females 
occurring at lag2 (OR = 1.19, 95% CI: 1.06, 1.34) and in males at lag0 
(OR = 1.16, 95% CI: 1.04, 1.29). There was a significant increase in the 
risks of all-cause death in both genders, with the highest risk in males 
at lag5 (OR = 1.05, 95% CI: 1.02, 1.08) and in females at lag0 

TABLE 1 Summary statistics of mortality of all-cause, circulatory and respiratory, meteorological and air pollutants variables during SDSs and non-SDS 
days from 2013 to 2022 in Jinan city, China.

Variable SDS days Non-SDS days

n (%) Min P25 M P75 Max n (%) Min P25 M P75 Max

All-cause death counts 10,572 (100) 76 104 116 132 211 407,090 (100) 62 99 111 126 225

<65 year 2,794 (26) 17 26 31 36 55 104,295 (26) 8 25 29 34 54

≥65 year 7,778 (74) 44 75 86 97 178 302,795 (74) 37 72 82 96 178

Male 5,817 (55) 36 57 66 73 103 227,293 (56) 31 55 63 71 127

Female 4,755 (45) 33 45 52 60 108 179,797 (44) 24 42 49 58 119

Circulatory death counts 5,846 (100) 33 57 64 73 123 216,915 (100) 24 50 59 70 143

<65 year 1,069 (18) 3 9 12 14 23 37,649 (17) 2 8 10 13 26

≥65 year 4,777 (82) 23 48 52 61 113 179,266 (83) 17 41 48 58 118

Male 2,940 (50) 13 28 32 39 56 111,130 (51) 8 25 30 37 79

Female 2,906 (50) 16 28 32 38 68 105,785 (49) 9 23 29 35 73

Respiratory death counts 907 (100) 2 7 10 13 38 32,882 (100) 0 6 8 12 31

<65 year 88 (10) 0 0 1 2 4 3,246 (10) 0 0 1 1 7

≥65 year 819 (90) 1 6 9 12 34 29,576 (90) 0 5 8 11 28

Male 485 (53) 1 3 5 7 18 17,690 (54) 0 3 5 7 19

Female 422 (47) 0 3 5 6 20 15,192 (46) 0 2 4 6 17

Meteorological

RH (%) 88 (−) 18 33 47 65 97 3,533 (−) 15 41 55 70 100

Mean.T. (°C) 88 (−) -3 3 13 19 33 3,533 (−) -12 6 17 25 34

Pressure (hPa) 88 (−) 981 992 997 1,003 1,013 3,533 (−) 975 988 997 1,004 1,022

Wind (m/s) 88 (−) 1 2 2 3 8 3,533 (−) 0 2 2 3 8

Air pollution

PM10 (μg/m3) 88 (−) 199 244 332 456 798 3,533 (−) 5 75 111 158 399

PM2.5 (μg/m3) 88 (−) 76 88 104 264 443 3,533 (−) 4 33 51 83 280

SO2 (μg/m3) 88 (−) 7 37 66 149 429 3,533 (−) 5 12 21 42 382

CO (μg/m3) 88 (−) 391 1,033 1,426 3,381 6,555 3,533 (−) 277 707 925 1,232 5,102

NO2 (μg/m3) 88 (−) 15 46 59 92 165 3,533 (−) 9 29 40 54 137

O3 (μg/m3) 88 (−) 11 27 84 112 238 3,533 (−) 7 62 100 149 282

PM2.5/PM10 88 (−) 0.2 0.4 0.4 0.6 0.8 3,533 (−) 0.1 0.4 0.5 0.6 0.9

SDSs, sand and dust storms; Min, Minimum; P25, 25th percentile; M, Median; P75, 75th percentile; Max, Maximum; Mean.T., Mean Temperature; RH, Relative humidity; PM2.5, Fine particulate 
matter; PM10, Coarse particulate matter; SO2, Sulfur dioxide; CO-Carbon monoxide; NO2, Nitrogen dioxide; O3, Ozone.
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(OR = 1.04, 95% CI: 1.01, 1.07), although the differences between the 
groups were not significant. Additionally, the risks of circulatory death 
significantly rose in both genders, with the highest risk in males at lag5 
(OR = 1.05, 95% CI: 1.01, 1.10) and in females at lag4 (OR = 1.04, 95% 
CI: 1.00, 1.09), but the group differences were not significant (Figure 4).

In a stratified analysis of the seasons, we observed that SDSs in the 
two seasons notably increased risks of all-cause, circulatory, 
respiratory death, but the differences of these groups were not 
significant. The maximum lag effect of all-cause death in the spring 
appeared on lag0 (OR = 1.05, 95% CI: 1.01, 1.08), while that in the 
winter occurred on lag5 (OR = 1.06, 95% CI: 1.02, 1.10). The 
maximum lag effect of circulatory death in the spring appeared on 

lag0 (OR = 1.08, 95% CI: 1.04, 1.13), while that in the winter occurred 
on lag5 (OR = 1.06, 95% CI: 1.01, 1.11). The maximum lag effect of 
respiratory death in the spring appeared on lag1 (OR = 1.18, 95% CI: 
1.05, 1.31), while that in the winter occurred on lag0 (OR = 1.19, 95% 
CI: 1.05, 1.36) (Figure 5).

3.4 Sensitive analyses results

The sensitivity analyses showed that the main findings remained 
nearly unchanged, suggesting that the main model had a good fit and 
produced stable results (Supplementary Figures S2, S3).

FIGURE 2

Temporal trends of death due to all-cause, circulatory, and respiratory with the concentration of PM10 during SDSs from 2013 to 2022 in Jinan City, 
China. Red Points represent the SDSs days; Black line represents PM10 concentration; Orange line represents all-cause death; Blue line represents 
circulatory death; Green line represents respiratory death. SDSs = sand and dust storms; PM10 = coarse particulate matter.

FIGURE 3

Summary of lag effect of sand and dust storms on the risks of all-cause, circulatory and respiratory death from 2013 to 2022 in Jinan City, China. The 
“*” represents statistically significant.
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FIGURE 5

Summary of lag effect of sand and dust storms during the different seasons on the risks of all-cause, circulatory and respiratory death from 2013 to 
2022 in Jinan City, China. The “*” represents statistically significant.

4 Discussion

We conducted a retrospective analysis to explore the 
association between SDSs passing through Jinan City and mortality 
risks over the past decade. We observed that SDSs passing through 
Jinan City originate from Inner Mongolia in China, Mongolia, or 
other regions. Meanwhile, Jinan City is a region prone to the 
impact of SDSs (16). Our findings indicated a notable rise in the 
risks of respiratory, circulatory, and all-cause death linked with 
SDSs. This is consistent with the study by Pouri et al. who observed 
that SDSs resulted in a 18%, 25%, and 16% elevated risk of 
respiratory, circulatory, and all-cause death, respectively (20). A 
previous study in China also demonstrated that SDSs lead to an 

elevated excess mortality risk from circulatory and respiratory 
diseases. They found an 8.9% elevated excess mortality risk for 
respiratory death due to SDSs (16), which was lower than the result 
of our study in Jinan City, suggesting that SDSs passing through 
Jinan City were even more dangerous and needed attention.

In line with a previous study (20), our study revealed that the 
older adult are more vulnerable to respiratory death due to SDSs. The 
increased vulnerability of the older adult to air pollution can 
be attributed to the natural deterioration of the immune system with 
age (21). This decline in immune function reduces their ability to 
resist environmental hazards effectively (22–24). In addition, older 
people are more prone to chronic diseases, which can worsen their 
current diseases and even cause mortality (25). Older adult individuals 

FIGURE 4

Subgroups analysis of lag effect of sand and dust storms on the risks of all-cause, circulatory and respiratory death from 2013 to 2022 in Jinan City, 
China. The “*” represents statistically significant.
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with chronic obstructive pulmonary disease (COPD) faced increased 
mortality rates after exposure to outdoor air pollution (26, 27).

Our findings suggest that females face a heightened risk of 
respiratory death related to SDS events. The study of Pouri et al. (20) 
also revealed that SDSs notably elevated respiratory mortality in 
females. Several studies have proved that air pollution is more likely 
to have severe influences on females (28–31). These may be explained 
by gender variances in physiological structures that females have 
narrower airway dimensions and higher breathing rates (32). One 
study showed that females have a faster respiratory rate than males 
(33), which could be  a possible reason why women are more 
susceptible to the effects of air pollution than men.

China is a country significantly affected by SDSs. With increasing 
awareness of the dangers posed by SDSs, various strategies have been 
proposed to mitigate the health risks associated with air pollution 
events, including SDSs (34–37).

5 Conclusion

Short-term exposure to SDSs caused the significantly elevated 
risks of respiratory, circulatory and all-cause death. Females and 
people over 65 years of age are vulnerable to respiratory deaths caused 
by SDSs. This study, conducted in Jinan City, offers new evidence 
regarding the adverse effects of SDSs on the risks of respiratory, 
circulatory, and all-cause mortality through a time-stratified case-
crossover analysis.
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