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Objectives: This study investigated association between long-term PM2.5 
exposure and lung cancer incidence, focusing on Jiangsu Province, China. 
We aimed to explore the effects of historical PM2.5 with time lags and build a 
prediction model using machine learning methods.

Study design: An ecological epidemiology study.

Methods: Lung cancer incidence data from Jiangsu Province (2014–2018) were 
combined with annual PM2.5 concentration data from satellite sources for the 
previous 10 years (lag 0 to lag 9). Correlation and grey correlation analyses were 
performed to evaluate the lagged relationship between PM2.5 exposure and lung 
cancer incidence. To address the multicollinearity problem in the data, ridge 
regression, support vector regression, and back propagation artificial neural 
network were employed. The combined prediction model was constructed 
using the optimal weighting method.

Results: The incidence of lung cancer was significantly correlated with PM2.5 
concentration at different historical time points, with the strongest correlation 
at lag 9. The combined prediction model that integrates multiple prediction 
methods showed higher accuracy and reliability in predicting lung cancer 
incidence than a single model.

Conclusion: Long-term exposure to PM2.5, especially exposure with a long lag time, is 
closely related to lung cancer incidence. The integrated machine learning prediction 
model can be used as a reliable tool to assess the health risks of air pollution.
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1 Introduction

According to the latest cancer statistics released by the International Agency for Research 
on Cancer, lung cancer remains one of the most common malignant tumors, accounting for 
11.4% of new cancer cases and 18.0% of cancer-related deaths worldwide in 2020 (1, 2). 
Among males, lung cancer ranks as the leading cause of cancer incidence and mortality. In 
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females, lung cancer ranks third in incidence after breast and 
colorectal cancers, and second in mortality, only preceded by breast 
cancer (1). In China, lung cancer tops the list of cancer types in terms 
of both incidence and mortality, with over 700,000 deaths attributed 
to lung cancer in 2020, imposing a significant disease burden (3).

Air pollution, a major threat to public health, is closely associated 
with an increased risk of lung cancer (4). As a major component of 
air pollution, fine particulate matter (PM2.5) carries various harmful 
substances and can be directly inhaled and deposited throughout the 
respiratory tract, including the deepest alveolar epithelial cells, 
thereby inducing lung injury or respiratory dysfunction and further 
increasing the risk of lung cancer (5). In our previous study, 
we  delved into the epidemiological trends of PM2.5-related lung 
cancer in China using global burden of disease data (6). It was found 
that while disability-adjusted life years (DALYs) attributed to lung 
cancer caused by household pollution sources showed a downward 
trend, those caused by air pollution sources increased significantly, 
highlighting the significant role of outdoor particulate pollution in 
increasing the burden of lung cancer. Therefore, this study focuses 
on investigating the potential association between PM2.5 
concentrations in the outdoor environment and lung 
cancer incidence.

The impact of annual average PM2.5 concentrations in the 
atmosphere on lung cancer incidence may be  a long-term 
accumulative process, implying that the incidence of lung cancer may 
be  related to long-term exposure to PM2.5 over years rather than 
directly linked to the current PM2.5 concentration (7–9). Although no 
study has yet definitively determined the exact duration of the 
sustained impact of PM2.5 concentrations on lung cancer incidence, 
several studies have suggested that there exists a time lag effect 
between lung cancer incidence and exposure to air pollution 
concentrations, with a latency period of at least 7–8 years for lung 
cancer caused by atmospheric PM2.5 (9–11). Based on this research 
background, this study analyzes lung cancer incidence data from 
selected regions in Jiangsu Province from 2014 to 2018, combined 
with satellite-derived annual average PM2.5 concentration data from 
the past 10 years (including the current year), to reveal the potential 
association and lag effect between PM2.5 concentrations and lung 
cancer incidence, and to construct corresponding machine learning 
prediction models.

2 Methods

2.1 Data sources

The data sources for this study comprise two main parts: lung 
cancer incidence rates and PM2.5 concentrations.

The lung cancer incidence data were obtained from the official 
cancer registry of the Jiangsu Provincial Center for Disease Control 
and Prevention (CDC), covering the period from 2014 to 2018 in 
multiple regions of Lianyungang and Suzhou cities. This cancer 
registry operates under standardized national protocols for data 
collection, verification, and quality control, ensuring high levels of 
reliability and completeness. All cases were classified according to the 
International Classification of Diseases for Oncology, 3rd Edition 
(ICD-O-3) (12) 和 ICD-10 (13) coding standards, encompassing lung 
cancer cases within the range of C34.0-C34.9.

The PM2.5 concentration data were sourced from a satellite-
derived dataset developed by the School of Medicine at Washington 
University in St. Louis (14, 15). This dataset combines information 
from multiple sources, including satellite remote sensing, chemical 
transport models, and ground-based monitoring stations, to estimate 
ground-level PM2.5 concentrations with high spatial and temporal 
resolution. The integration of diverse data sources, along with the 
application of advanced statistical modeling techniques, ensures the 
accuracy and robustness of PM2.5 estimates. The dataset has been 
widely validated and applied in international environmental health 
studies, supporting its credibility and applicability in this research 
(16–18).

In this study, we utilized Python and ArcGIS10.5 software to 
extract high-resolution annual average PM2.5 concentration data for 
each study region during the corresponding years of lung cancer 
incidence (2014–2018), as well as for the previous nine years (2005–
2018). These exposure values were labeled as lag0 to lag9, 
representing cumulative exposure windows and serving as key 
indicators for evaluating the long-term impact of PM2.5 on lung 
cancer incidence.

2.2 Statistical analysis and modeling

2.2.1 Correlation and grey relational analysis
In this study, we first employed correlation analysis to evaluate the 

relationship between lung cancer incidence and PM2.5 concentrations 
from different lag years (lag0 to lag9). To determine the appropriate 
correlation method, we conducted a Shapiro–Wilk test to assess the 
normality of both variables across each lag year. When both variables 
exhibited a normal distribution (p > 0.05), we applied the Pearson 
correlation coefficient; otherwise, the Spearman rank correlation 
was used.

Additionally, we employed grey relational analysis to assess the 
degree of similarity in trends between lung cancer incidence and PM2.5 
concentrations across different lag years. Grey relational analysis helps 
identify which lag periods show the strongest relational closeness with 
the observed incidence patterns, thereby revealing the most influential 
exposure windows for lung cancer risk.

2.2.2 Collinearity test and ridge regression model
Before conducting multivariate statistical analysis, we calculated 

the correlation coefficient matrix, variance inflation factor (VIF), 
tolerance, eigenvalues, and condition index to examine the correlation 
and collinearity among PM2.5 concentrations from different lag years, 
ensuring the stability of model construction. To address potential 
multicollinearity issues, we adopted the ridge regression model to 
assess the relationship between PM2.5 concentration lag factors and 
lung cancer incidence. The optimal regularization parameter was 
selected based on the ridge trace plot to guarantee the predictive 
performance of the model.

2.2.3 Support vector regression (SVR) model
Using the SVR model, we  constructed lung cancer incidence 

prediction models with four different kernel functions (linear, 
Sigmoid, RBF, and polynomial). By comparing the mean squared 
error (MSE) and R2 score, the optimal kernel function was selected, 
and feature importance analysis was performed based on this model.
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2.2.4 The back propagation artificial neural 
network (BP-ANN)

The BP-ANN was employed to further explore the relationship 
between PM2.5 concentration lag factors (lag0 to lag9) and lung cancer 
incidence. The BP-ANN learns complex patterns in the data for 
prediction by simulating the working mechanism of human brain 
neurons. We set three hidden layers, optimizing the number of nodes 
in each hidden layer between 5 and 20 to balance the complexity and 
generalization ability of the model. The input layer contains 10 nodes, 
corresponding to the 10 PM2.5 concentration lag factors. The ReLU 
activation function was chosen to improve the learning efficiency and 
prediction accuracy of the network.

2.2.5 Combined prediction model
To further enhance prediction accuracy and stability, 

we constructed a combined prediction model that integrates the ridge 
regression model, SVR, and BP-ANN. The weights of each individual 
model were determined using the standard deviation method, 
reciprocal variance method, and optimal weighting method. The 
prediction results of different models were then fused to reduce errors 
and uncertainties. We comprehensively evaluated the performance of 
the combined prediction model using indicators such as the mean 
absolute error (MAE), MSE, mean absolute percentage error (MAPE), 
and Theil’s U statistic.

3 Results

3.1 Correlation analysis between lung 
cancer incidence and PM2.5 concentration

As shown in Supplementary Table S1, both the lung cancer 
incidence rates and PM2.5 concentration data across lag0 to lag9 passed 
the Shapiro–Wilk normality test (p > 0.05). Therefore, the Pearson 
correlation coefficient was used to assess the correlation between lung 
cancer incidence and PM2.5 concentrations at each lag year.

The results of the univariate correlation analysis 
(Supplementary Table S2) showed that lung cancer incidence was 
significantly correlated with PM2.5 concentrations at lag3, lag4, lag5, 
lag7, lag8, and lag9, with the strongest correlation observed at lag9. In 
contrast, some lag years, such as lag6, did not show statistically 
significant associations (p > 0.05). This suggested that the association 
between PM₂.₅ exposure at a single lag year and lung cancer incidence 
may not always be strong. It is important to note that this univariate 
analysis serves as a preliminary exploration and may not fully capture 
the complex and cumulative nature of air pollution’s impact on 
cancer development.

The grey relational analysis (Table 1) provided complementary 
insights, revealing consistently strong relational degrees between PM2.5 
concentrations and lung cancer incidence across all lag years, with 
lag3, lag8, and lag9 showing the highest overall association. This 
suggests that the effect of PM2.5 exposure may span multiple years and 
reflect long-term cumulative risk rather than isolated time points.

Overall, these analyses offer preliminary evidence of temporal 
associations between long-term PM2.5 exposure and lung cancer 
incidence, supporting further exploration using multivariate modeling 
approaches to capture the potential cumulative effects of air pollution 
across multiple time periods.

3.2 Prediction of lung cancer incidence 
using machine learning models

3.2.1 Feature analysis of influencing factors for 
lung Cancer incidence

The correlation coefficient matrix of the 10 influencing factors 
(lag0 to lag9) is presented in Supplementary Table S3, revealing 
varying degrees of correlation among these factors. For example, the 
correlation coefficient between lag1 and lag0 was as high as 0.951, and 
the correlation coefficient between lag9 and lag4 reached 0.787, 
indicating a strong positive correlation. Therefore, before constructing 
the prediction model, it is necessary to perform a collinearity test to 
ensure the selection of an appropriate model and the robustness and 
validity of the prediction results.

Supplementary Tables S4, S5 present the results of the collinearity 
test. The results showed that the VIF values of most factors exceeded 
10, indicating significant collinearity. Specifically, the VIF values of 
lag1 and lag0 reached 69.89 and 55.65, far exceeding the conventional 
threshold of 10 for identifying significant collinearity. Correspondingly, 
the tolerance values of these variables were extremely low, with the 
tolerance of lag1 and lag0 being only 0.014 and 0.018, respectively, 
further confirming the collinearity issue among the variables. In 
Supplementary Table S5, we observed that as the dimension increased, 
the eigenvalues gradually decreased. The eigenvalues from the third 
to the eleventh dimension were almost zero. Simultaneously, the 
condition indices of these dimensions exceeded 30 and increased with 
the increase in dimension. These observations indicate that there is 
significant multicollinearity among the influencing factors, which 
needs to be considered in subsequent analysis and model building.

Given the significant collinearity issue revealed in the 
aforementioned analysis among the influencing factors, to enhance the 
prediction accuracy of the lung cancer incidence prediction model, 
this study will employ Ridge Regression, SVR, and BP-ANN as 
subsequent modeling methods. These methods exhibit high robustness 
in handling datasets with collinear variables, effectively reducing the 
negative impact of collinearity on the performance of prediction 
models, thus optimizing the prediction effect of lung cancer incidence.

3.2.2 Prediction of lung cancer incidence rate 
model based on ridge regression

A ridge trace plot was initially constructed to observe the 
impact of different ridge parameters k on the regression 

TABLE 1 Grey relational analysis results of lung cancer incidence.

2014 2015 2016 2017 2018 Overall

lag9 0.678490 0.558407 0.612215 0.583663 0.514258 0.693152

lag8 0.640411 0.551083 0.614859 0.577470 0.536022 0.694986

lag7 0.675807 0.555470 0.618089 0.589302 0.515062 0.684973

lag6 0.668597 0.549478 0.627684 0.582683 0.575642 0.685135

lag5 0.669268 0.547409 0.618063 0.631675 0.534171 0.679667

lag4 0.656381 0.544861 0.657607 0.587821 0.538573 0.690066

lag3 0.648477 0.565997 0.620572 0.582679 0.520465 0.699169

lag2 0.630912 0.543396 0.612611 0.591382 0.598212 0.684857

lag1 0.643389 0.534456 0.633955 0.632408 0.622666 0.648438

lag0 0.645247 0.561204 0.648804 0.663933 0.611975 0.640340
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coefficients. Figure 1 demonstrated the changing trends of each 
coefficient under varying degrees of regularization, specifically 
how the coefficient of each variable (e.g., lag0 to lag9) varied with 
the change in k values. When the ridge parameter k exceeded 100, 
we observed a stable pattern in the regression coefficients of the 10 
influencing factors, including lag0 to lag9. However, considering 
that an increase in k was accompanied by an increase in MSE, a 
higher ridge parameter k might weaken the goodness of fit of the 
regression equation. Therefore, we  selected the coefficients of 
influencing factors under k = 100 as the parameters for the ridge 
regression model, aiming to balance the bias and variance of the 
model. At this point, the coefficients were stable and the MSE was 
within an acceptable range, ensuring that the goodness of fit of the 
model was not compromised by an excessively high 
ridge parameter.

As shown in Supplementary Table S6, when k = 100, the modified 
VIF values of all variables were below 5, indicating effective control of 
collinearity. It was evident that the selected ridge parameter k = 100 
significantly reduced multicollinearity in the model. At this time, the 
MSE of the model was 0.8290, and R2 was 0.3193.

Figure 2 compared the predicted values of the ridge regression 
model with the actual values. The blue lines and dots represented the 
actual observations, while the red dashed lines and crosses represented 
the predicted values of the ridge regression model. It could be observed 
from the figure that the model’s predictions were very close to the 
actual observations at most data points, with the relative error 
basically controlled within 10%. The error ratios of most data points 
were concentrated in a lower range (below 3%), indicating that the 
model provided relatively accurate predictions for most data points 
and demonstrated good predictive performance.

3.2.3 Prediction of lung cancer incidence rate 
model based on SVR

Supplementary Table S7 presents the performance evaluation 
results of various kernel function models. The MSE of the linear kernel 
model was 2.6861 with an R2 score of −0.5603, indicating that its 
predictive performance not only failed to surpass the baseline 
prediction using simple mean but was even worse. The performance of 
the polynomial kernel model was even more unsatisfactory, with an 
MSE of 3.6491 and an R2 score plummeting to −1.1196, suggesting its 
prediction effectiveness fell far below the baseline level. In contrast, the 
performance of the Sigmoid kernel model showed improvement, with 
the MSE decreasing to 1.8743 and the R2 score rising to −0.0887. While 
this still indicated a relatively weak predictive capability, it represented 
significant progress compared to the linear kernel model. Among all 
kernel functions, the radial basis function (RBF) kernel model 
exhibited the optimal performance, with its MSE reduced to 0.8860 
and the R2 score increasing to 0.4854, indicating that the model was 
able to capture data variability effectively and make accurate predictions.

Based on the model performance evaluation results, we selected the 
RBF kernel for training the SVR model and further calculated the 
importance of each factor in the model. As shown in Figure 3, it can 
be observed that the contribution of each lag variable (lag0 to lag9) to the 
model’s prediction of lung cancer incidence rate varies. The lag4 feature 
had the highest average importance score, indicating its significant 
contribution to the prediction results. Followed closely by lag9, which 
also scored relatively high, suggesting its importance in predicting lung 
cancer incidence. Other features such as lag3, lag8, and lag0 scored 
moderately, while the importance scores of lag1, lag6, lag2, lag7, and lag5 
gradually decreased, with lag5 scoring the lowest, indicating its minimal 
impact on the prediction results in the current model.

FIGURE 1

Ridge trace plot of lung cancer incidence.
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Figure 4 compares the predicted values of the SVR model with 
the actual values. The blue lines and dots represent the actual 
observations, while the red dashed lines and crosses represent the 
predicted values of the SVR model. It can be observed from the 
figure that the model’s predictions are very close to the actual 
observations at most data points, with the average relative error 
less than 10%. The error ratios of most data points are concentrated 

in a lower range (below 5%), reflecting the model’s good predictive 
accuracy at most data points.

3.2.4 Prediction of lung cancer incidence rate 
model based on BP-ANN

As shown in Supplementary Table S8, the model performed best with 
a node count of 7 in the hidden layer, achieving the lowest MSE value.

FIGURE 2

Comparison of ridge regression prediction and actual observed values for lung cancer incidence.

FIGURE 3

Feature importance scores of various factors in the SVM model for lung cancer incidence prediction.
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Figure 5 presents a comparison between the predicted values of 
the BP-ANN model and the actual values. The blue lines and dots 
represent the actual observations, while the red dashed lines and 
crosses represent the predicted values of the model. It can 
be observed from the figure that the model’s predictions are very 
close to the actual observations at most data points, with an average 
relative error of less than 15%. The majority of error values are 
concentrated in a lower range, further confirming the effectiveness 
of the BP-ANN model in prediction. However, there are also some 
larger error values, suggesting that we need to pay attention to and 
reduce these larger prediction errors in further improvements to the 
model to enhance its overall predictive performance.

3.2.5 Combined prediction model for lung cancer 
incidence rate

In this study, we constructed three combined prediction models 
by assigning different weights to the aforementioned individual models 
(ridge regression, SVR, and BP-ANN) using the standard deviation 
method, reciprocal variance method, and optimal weighting method. 
The detailed weight distribution is presented in Supplementary Table S9.

As shown in the comparison of model performance results in 
Table 2, the combined model using the optimal weighting method 
exhibited the best performance across all evaluation metrics. It 
achieved an MAE of 0.434, MSE of 0.310, MAPE of 7.72%, and a 
Theil’s U statistic of 0.0475, indicating a high level of predictive 
accuracy and reliability of the combined model.

3.3 Discussions

Previous studies on the association between PM2.5 exposure 
and lung cancer risk usually relied on the average exposure level 
within a fixed time period, and the selection of exposure years in 

different studies often differed greatly, which may lead to greater 
heterogeneity and may mask the true temporal and cumulative 
effects of PM2.5 exposure on lung cancer risk (19–21). This study 
preliminarily revealed the epidemiological association between 
long-term air pollution and lung cancer incidence by accurately 
matching annual PM2.5 concentrations in the past 10 years with 
annual lung cancer incidence data in representative cities in 
Jiangsu Province. Through lag effect analysis, we found that the 
strength of the association between PM2.5 exposure and lung cancer 
incidence showed significant time-dependent characteristics. 
Univariate correlation analysis showed that several lagged years 
(such as lag3, lag4, lag5, lag7, lag8, and lag9) were significantly 
associated with lung cancer incidence, with lag9 having the 
strongest correlation. However, some years (such as lag6) did not 
reach statistical significance, indicating that the association 
between PM2.5 exposure and lung cancer incidence in a single 
lagged year was not stable. This finding is consistent with the 
conclusions of Chen et  al.’s spatial epidemiological study using 
geographically weighted regression, whose results showed 
significant annual fluctuations in the explanatory power of multi-
year PM2.5 for lung cancer incidence (22). In addition, univariate 
analysis may not be sufficient to fully capture the complexity of the 
effects of PM2.5 on lung cancer development. In contrast, gray 
correlation analysis, which evaluated the overall temporal pattern, 
showed that there was a consistent strong association in all lagged 
years, with lag3, lag8, and lag9 showing the highest association 
levels. These findings suggest that the health effects of PM2.5 
exposure span many years and reflect long-term cumulative risks 
rather than individual effects at specific time points, supporting the 
hypothesis that air pollution has a potential cumulative effect on 
lung cancer (9, 23, 24). This also highlights the importance of the 
lag effect in the association between PM2.5 and lung cancer 
incidence, indicating that PM2.5 exposure levels at different 

FIGURE 4

Comparison of SVM model prediction and actual observed values for lung cancer incidence.
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historical time points are an important predictor of current lung 
cancer risk. This lag effect may be  related to the gradual 
accumulation of chronic inflammatory response, oxidative stress, 
and genetic damage in the lungs after PM2.5 exposure, which 
ultimately leads to carcinogenesis many years later (2, 25).

When further exploring the comprehensive impact of PM2.5 
exposure on lung cancer incidence at different historical time 
points, this study found significant collinearity problems in the 
lagged variables through correlation analysis. To address this 
problem and improve the prediction performance of the model, this 

paper used robust machine learning methods such as ridge 
regression, SVR and BP-ANN for modeling. The model results show 
that machine learning methods can effectively deal with 
multicollinearity problems and provide relatively accurate 
prediction results. In the ridge regression model, when the 
regularization parameter k = 100 was selected, the model showed 
good stability and fit, and significantly reduced the impact of 
multicollinearity on the results. The SVR model performed better 
than other kernel functions after using the RBF kernel function, and 
could better capture the nonlinear characteristics of the data. In 
particular, the lag4 and lag9 variables showed high importance in 
multiple models, further verifying the long-term cumulative effect 
of PM2.5 exposure on lung cancer incidence at different lag periods. 
The BP-ANN model has great potential in prediction accuracy. 
Although some data points have large errors, the overall prediction 
error is small, indicating that it has strong prediction ability.

However, each of these single models has its limitations. Ridge 
regression’s primary drawback lies in its sensitivity to the ridge 
parameter, whose prediction performance depends on its selection. 
Although the optimal k-value can optimize predictions, the choice of 
this parameter is still controversial and can be influenced by subjective 
judgments, thereby affecting the prediction results (26). However, 
each of these single models has its limitations. Ridge regression’s 
primary drawback lies in its sensitivity to the ridge parameter, whose 
prediction performance depends on its selection. Although the 
optimal k-value can optimize predictions, the choice of this parameter 
is still controversial and can be influenced by subjective judgments, 
thereby affecting the prediction results (27). While BP-ANN excels at 
handling nonlinear relationships, its complex structure often leads to 
overfitting and requires a large amount of data (28, 29).

Combination forecasting models have been proven to effectively 
improve prediction accuracy in various fields, such as financial market 

FIGURE 5

Comparison of BP artificial neural network model prediction and actual observed values for lung cancer incidence.

TABLE 2 Performance comparison of different prediction models and 
their combination methods.

Model type MAE MSE MAPE 
(%)

Theil’s U 
statistic

Ridge regression 0.7668 0.8290 14.2115 0.0777

Support vector 

machine 0.4828 0.4343 9.0163 0.0560

BP artificial 

neural network 0.4449 0.3215 7.8682 0.0484

Standard 

deviation 

(combination) 0.5602 0.4953 10.3766 0.0600

Reciprocal of 

variance 

(combination) 0.6261 0.5850 11.6066 0.0653

Optimal 

weighting 

(combination) 0.4339 0.3104 7.7227 0.0475
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forecasting (30, 31), hydroclimatic forecasting (32, 33), and health risk 
prediction (9, 34). By integrating the advantages of multiple models, 
combination models can enhance the robustness and accuracy of 
predictions (30). This study constructed a combination forecasting 
model by integrating the results of single prediction models to leverage 
the strengths of each model while reducing their uncertainties and 
biases. The integrated prediction model performs best by combining 
the prediction capabilities of each single model through weighted 
averaging. In particular, after adopting the optimal weighting method, 
the integrated model showed higher prediction stability and accuracy, 
providing a more reliable tool for long-term risk assessment of PM2.5 
exposure and lung cancer incidence.

Overall, the machine learning model effectively solves the 
multicollinearity problem in the traditional regression model and 
can better capture the complex nonlinear relationship between 
PM2.5 exposure and lung cancer incidence. Future research can 
combine more environmental factors and individual health data to 
further optimize and verify the predictive ability of these models, 
and provide a more scientific basis for public health policies and 
preventive measures.

Although this study provides some insights into the epidemiological 
relationship between long-term PM2.5 exposure and lung cancer 
incidence, several limitations should be addressed in future studies. 
First, the geographical scope of this study was limited to representative 
cities in Jiangsu Province, which may limit the generalizability of the 
findings to other regions with different environmental and social 
factors. In addition, the analysis focused on PM2.5 exposure and lung 
cancer incidence, and other potential risk factors such as individual 
smoking, occupational exposure, and genetic predisposition were not 
included. Inclusion of specific individualized factors in future studies 
may improve the accuracy of predictions. In addition, this study 
considered a 10-year lag period, while longer exposure periods may 
also significantly affect lung cancer risk, indicating the need for further 
exploration of extended lag periods. Future studies should also expand 
their geographical scope to include different regions, integrate more 
environmental and personal health data, and incorporate real-time 
monitoring and genomic data. These steps will improve model accuracy, 
provide a more comprehensive understanding of lung cancer risk, and 
provide more personalized risk assessments, ultimately contributing to 
the development of more effective public health strategies.
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