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Prediction of respiratory diseases 
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In recent years, the random forest model has been widely applied to analyze the 
relationships among air pollution, meteorological factors, and human health. To 
investigate the patterns and influencing factors of respiratory disease-related 
medical visits, this study utilized data on medical visits from urban areas of Tianjin, 
meteorological observations, and pollution data. First, the temporal variation 
characteristics of medical visits from 2013 to 2019 were analyzed. Subsequently, 
the random forest model was employed to identify the dominant influencing 
factors of respiratory disease-related medical visits and to construct a statistical 
forecasting model that relates these factors to the number of visits. Additionally, 
a predictive analysis of medical visits in Tianjin for the year 2019 was conducted. 
The results indicate the following: (1) From 2013 to 2019, the number of medical 
visits exhibited seasonal fluctuations, with a significant decline observed in 2017, 
which may be directly related to adjustments in hospital policies. (2) Among the 
meteorological factors, average temperature, relative humidity, precipitation, and 
ozone concentration significantly influenced the variation in medical visits, while wind 
speed, precipitation amount, and boundary layer height were of lesser importance. 
Furthermore, different linear relationships exist among the meteorological factors; 
specifically, meteorological factors show a negative correlation with pollutant 
elements, and there is a strong correlation among the pollutant factors. (3) When 
the number of medical visits ranged from 50 to 200, the predictions made by the 
random forest model closely matched the actual values, demonstrating strong 
predictive performance and the ability to effectively forecast daily variations in 
medical visits over extended periods, thus exhibiting good stability and generalization 
capability. (4) However, since the random forest model relies on a large amount 
of data for model validation, it has limitations in capturing extreme variations in 
medical visit numbers. Future research could address this issue by integrating 
different models to enhance predictive capabilities.
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1 Introduction

Over the past century, fossil fuel combustion and unequal, unsustainable energy and land 
use have caused a global temperature increase of 1.1°C above pre-industrial levels (1–3). This 
rise has led to more frequent and intense extreme weather events, along with increasingly 
severe impacts on nature and people in all regions. Further increases in global temperature are 
expected to intensify these hazards. More severe heatwaves, heavier rainfall, and other extreme 
weather events pose greater risks to human health and ecosystems. Extreme heat has resulted 
in deaths in every region. As the planet continues to warm, the negative effects of climate 
change on food and water security will grow. When these risks combine with other challenges, 
such as epidemics and conflicts, the situation becomes even harder to manage. The focus on 
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loss and damage highlights that the most vulnerable people and 
ecosystems experience the greatest losses and damages (4).

A growing body of research shows that climate change is creating 
widespread health risks globally. It is intensifying heatwaves, 
increasing wildfires, raising flood risks, and worsening droughts (5). 
These changes contribute to higher rates of heat-related mortality, 
pregnancy complications, and cardiovascular diseases. As with many 
climate-related issues, the risks and hazards are most severe in regions 
with the least capacity to adapt (6, 7).

Hospitals worldwide have faced significant challenges due to 
extreme weather (8). Many are increasingly unprepared to handle 
storms, high temperatures, and other climate-related events that are 
becoming more frequent. Floods claimed the lives of COVID-19 
patients at a hospital in Mexico (9). Severe flooding affected hospitals 
in India. Hospitals on the West Coast struggled to maintain indoor air 
quality during wildfires. Hurricanes damaged the roof of a rural 
hospital in Louisiana (10–12).

In recent years, as living standards have improved, health has 
become an important focus of daily life (13–15). The desire for better 
health and longer lives has become increasingly urgent. Traditional 
weather forecasts are no longer sufficient to meet public needs, leading 
to a growing demand for more specific and professional forecasting. 
Because of the strong link between meteorological conditions and 
health, it is essential to conduct in-depth research on medical 
meteorology (16, 17). This includes developing meteorological 
indicator systems and prediction models tailored to local health needs. 
Medical meteorological forecasting aims to help individuals take 
preventive measures and assist medical institutions in preparing for 
disease prevention and control in a more targeted and timely 
manner (18).

The relationship between the meteorological environment and 
human health is complex. It often follows a nonlinear pattern and is 
influenced by additional non-environmental factors. In recent years, 
the promotion and application of random forest models have 
significantly advanced the understanding of this correlation (19). 
Random forest is an algorithm designed to control the overfitting 
tendency of decision trees. It achieves this through bagging (bootstrap 
aggregation), which involves sampling the training set with 
replacement. This method effectively handles collinearity and 
interactions among variables, including other independent variables 
and external factors. It also compensates for missing or incomplete 
inputs, making it a flexible tool for analyzing the impact of 
intervention measures on air quality time series (20–23).

The random forest model is particularly useful when the number 
of explanatory variables is large, the relationship between the response 
and explanatory variables is unclear, or the response variable does not 
conform to specific distribution requirements (24). While relatively 
few studies have applied random forest models for prediction, existing 
research highlights their strong fitting performance. In China, medical 
meteorological forecasting is still in its early stages. Advancements in 
science and technology, along with increasing environmental 
awareness, are expected to drive further research in this area. These 
developments will likely promote the growth of medical 
meteorological forecasting and its broader practical applications (25).

Currently, research on predicting patient numbers using machine 
learning models and examining the effects of climate conditions (e.g., 
temperature, humidity, pressure, wind, and pollutants) on respiratory 
diseases primarily focuses on average monthly data and short-term 

forecasts. Most studies rely on ARIMA, GAM, and GLM models (26). 
However, these methods often struggle to capture the complexity of 
non-linear relationships and interactions among multiple 
environmental factors (27, 28). In contrast, ARIMA excels at modeling 
time series with strong temporal patterns, but its capacity to handle 
nonlinear relationships is limited, making it more suitable for 
univariate or low-dimensional datasets. GAM provides a balance 
between nonlinear modeling and interpretability, but it requires 
careful selection of smoothing functions and struggles with temporal 
dependencies without extensions. In the study of urban heatstroke 
found that the evaluation and indicate that the random forest model 
stands out among all the compared models with its smallest MSE, 
RMSE, and R2 value closest to 1, which suggests that it has higher 
accuracy in predicting the number of heatstroke victims per day (29).
Our study addresses these limitations by employing the Random 
Forest (RF) model, which is better equipped to handle these 
challenges. By doing so, we aim to improve predictive accuracy and 
deepen the understanding of how environmental variables influence 
respiratory health (30).

The random forest model offers several advantages over other 
statistical models and is particularly effective in fitting the nonlinear 
effects of meteorological factors (31–35). First, it accounts for 
interactions between variables and handles datasets with a large 
number of features efficiently. Second, by introducing double 
randomness—random sampling of training data and random 
selection of variable subsets—it enhances resistance to overfitting (36). 
Third, it is highly robust to missing values and outliers, reducing the 
influence of outliers by averaging the results of all regression trees. 
Fourth, it requires relatively few parameters for model construction. 
Finally, the model-building process inherently includes cross-
validation, enhancing reliability (37). These features make the random 
forest model a powerful tool for analyzing complex environmental 
and health data.

Tianjin is situated in the northern temperate zone, on the east 
coast of the Eurasian continent in the mid-latitudes (38). Its climate is 
primarily influenced by the East Asian monsoon circulation, resulting 
in a warm temperate semi-humid monsoon climate. Proximity to 
Bohai Bay further amplifies the influence of the marine climate. As a 
major city in one of China’s three key economic regions along the 
eastern coast and one of the three major metropolitan areas in 
Northeast Asia, Tianjin plays a pivotal role in regional development 
(39, 40). It serves as a modern port city, a vital hub for sea-land 
transport in Northeast Asia’s urban corridors, and a key connection 
point for the “Belt and Road” initiative. Investigating the effects of 
meteorological changes and pollutant concentrations on respiratory 
diseases in Tianjin provides critical insights into the relationships 
between human activities, meteorological factors, and atmospheric 
environmental quality. Moreover, these findings have significant 
practical applications for environmental planning, urban development, 
pollution control, and public health management in the Beijing-
Tianjin-Hebei region (41). Employing random forest models to 
forecast outpatient respiratory disease caseloads enables more effective 
public health interventions within urban environments. These 
projections facilitate crucial actions including the optimization of 
healthcare resource allocation, the dissemination of timely public 
health advisories, and the implementation of preventative measures 
designed to mitigate the impact of predicted increases in 
respiratory disease.
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2 Methods and data

2.1 Data

The data used in this article include respiratory outpatient medical 
data, meteorological data, and pollutant data. Respiratory outpatient 
medical data includes the number of outpatient visits to the respiratory 
department, patient age and gender during the period from April 2013 
to December 2019. Meteorological data comes from the Tianjin 
Meteorological Bureau, including observation data of meteorological 
elements such as temperature, relative humidity, wind speed, and 
precipitation. The hourly concentration monitoring data of pollutants 
(NO2, SO2, O3, PM2.5, PM10) comes from the National Urban Air 
Quality Real-time Publishing Platform.1

To ensure the accuracy of the research results, strict adherence 
was maintained to the “Ambient Air Quality Standards” (GB3095-
2012). Quality control was applied to the original data from the 
monitoring stations, which involved removing missing values and 
outliers from the environmental variables. Ultimately, a total of 
414,887 valid data points were selected, resulting in a data missing rate 
of 0.12%.

2.2 Random forest

Random forest is an ensemble learning method that combines 
multiple decision trees, where each tree is built using independently 
sampled random vectors from the original data (Bagging algorithm) 
(42). The algorithm optimizes node selection for each independent 
variable based on the residual sum of squares (RSS). At each node, it 
splits the data to minimize the residuals of the two resulting subsets, 
thereby enhancing predictive accuracy.

The training dataset for the random forest model included daily 
records of outpatient visits to the respiratory department from April 
2013 to December 2018. The validation dataset, used for evaluating 
model performance, consisted of daily outpatient data from 2019. The 
model inputs included meteorological variables, pollutant variables 
and temporal variables (date_unix, day of the year, weekday, and hour 
of the day). The date_unix variable represents the number of seconds 
since January 1, 1970 (43). It was used to explain hourly mean 
concentrations of pollutant data. This approach allowed for the 
integration of temporal and meteorological factors, providing a robust 
framework for analyzing air quality data. The random forest model 
was implemented using the latest “rmweather” R package.

2.3 Feature importance analysis using the 
SHAP algorithm

SHAP (Shapley Additive Explanations) is a widely adopted 
method in interpretable machine learning, designed to explain the 
prediction outcomes of complex models. The SHAP framework 
assigns an importance weight to each feature, quantifying its 
contribution to the model’s predictions. This approach provides 

1 http://106.37.208.233:20035/

insights into how individual features influence model behavior, 
making it a valuable tool for understanding machine learning 
models (42).

Compared to other interpretable machine learning methods, 
SHAP offers several distinct advantages:

 1 Consistency: SHAP ensures both global and local consistency 
in its explanations, which enhances the reliability and stability 
of the results.

 2 Local Accuracy: SHAP provides feature importance at the 
individual sample level, enabling detailed explanations for 
single predictions.

 3 Feature Importance Ranking: SHAP ranks features by their 
importance, helping users identify the most significant 
predictors and facilitating feature selection.

3 Results

3.1 Statistical description

3.1.1 Change characteristics of the number of 
medical visits

The cumulative number of respiratory system consultations in 
Tianjin from April 2013 to December 2019 was 414,887. Figure 1 
illustrates the time series of outpatient visits during this period, 
revealing a cyclical annual pattern. Each year, the number of visits 
typically peaked at the beginning and end of the year, with lower 
numbers in the middle months.

Daily outpatient visit data were collected for the 81-month 
period from April 2013 to December 2019. The average number of 
daily visits was 225.50, with a minimum of 9 and a maximum of 847 
cases per day. The trend in daily visits, shown in Figure 1, exhibits 
significant fluctuations. Notably, there are two peak periods 
annually. However, a marked decline in the number of visits 
occurred from 2016 to 2017. Analysis suggests that this decline 
coincided with institutional changes at the hospital, including a 
reduction in doctors’ weekend consultation hours. These external 
factors substantially affected the number of patients and must 
be accounted for in the modeling process to minimize their impact 
on predictions.

Seasonal analysis (Figure  2) highlights distinct patterns in 
outpatient visits. A minor peak occurs in July, while a sharp increase 
begins in October as temperatures drop during winter. This seasonal 
trend indicates a higher frequency of medical consultations in both 
summer and winter. Box plot analysis for each month further reveals 
significant variability in outpatient visits during July and the winter 
months, with both higher patient numbers and larger 
fluctuations observed.

The COVID-19 pandemic in early 2020 profoundly disrupted 
hospital outpatient services. As of July 2021, the monthly number of 
visits had not returned to pre-pandemic levels. February also 
consistently shows a decline in outpatient visits each year due to the 
Chinese Lunar New Year, during which fewer people seek medical 
care. Given the significant impact of the pandemic on outpatient 
numbers after January 2020, only data from 2013 to 2018 were used 
to develop the predictive model. Data from 2019 were subsequently 
employed for model validation.
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3.2 Analysis of changes in meteorological 
elements and pollutant concentrations

The summary statistics for patient numbers, daily average 
meteorological factors, and pollutant concentrations from 2013 to 
2018 are presented in Table 1. The data indicate that the average 
temperature, maximum temperature, and minimum temperature 

in Tianjin during this period were 289 K, 309.9 K, and 259.6 K, 
respectively. The average relative humidity was 44.70%, and the 
average wind speed was 4.28 m/s. Regarding air pollutants, the 
average concentrations of PM10 and PM2.5 were 110.15 and 
68.45 mg/m3, respectively. The average concentrations of O₃, NO₂, 
SO₂, and CO were 57.30, 47.27, 25.11, and 1.36 mg/m3, 
respectively.

FIGURE 1

Daily average changes in the number of outpatient visits to the respiratory department.

FIGURE 2

Analysis of the monthly average number of patients.
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From 2013 to 2019, the average temperature in Tianjin was 289 K, 
with a maximum temperature of 309.90 K and a minimum 
temperature of 259.60 K. These data suggest that Tianjin experiences 
a relatively mild climate with pronounced seasonal variations. The 
average relative humidity was 44.702%, indicating a moderately dry 
environment that could influence public health and daily life. The 
average wind speed of 4.28 m/s reflects relatively stable wind 
conditions, which may play a role in the dispersion and dilution of 
air pollutants.

Tianjin’s air quality indicators reveal significant pollution levels. 
The average PM10 concentration was 110.15 μg/m3, and the average 
PM2.5 concentration was 68.45 μg/m3, both of which exceed the safety 
thresholds set by many countries. These particulate matters are known 
to irritate the respiratory system. PM10 particles, when inhaled, can 
cause conditions such as asthma and chronic bronchitis. PM2.5, due 
to its smaller size, can penetrate deeper into the alveoli and 
bloodstream, potentially impacting the cardiovascular system.

The average concentrations of other air pollutants further 
highlight the severity of Tianjin’s air quality challenges. Ozone (O₃) 
averaged 57.30 μg/m3, nitrogen dioxide (NO₂) 47.27 μg/m3, sulfur 
dioxide (SO₂) 25.19 μg/m3, and carbon monoxide (CO) 1.39 μg/m3. 
These gases, particularly in industrial and high-traffic areas, contribute 
to poor air quality. Elevated levels of ozone and nitrogen oxides are 
known to irritate the respiratory tract and may trigger asthma attacks 
or exacerbate lung diseases.

Tianjin’s geographical location and rapid industrialization have 
created favorable conditions for air pollution. As a northern coastal 
city, Tianjin has a dense industrial infrastructure, including numerous 
manufacturing plants, petrochemical enterprises, and energy 
industries, which release substantial pollutants during production. 
Additionally, the increasing use of motor vehicles has made exhaust 
emissions a major source of urban air pollution. Growing traffic 
volumes have further deteriorated air quality, particularly in the 
city center.

In addition, as urbanization progresses, the green coverage rate 
remains relatively low, and the urban heat island effect is becoming 
more prominent. This effect leads to higher temperatures, which in 
turn promote the formation of ozone. Elevated temperatures facilitate 
chemical reactions, resulting in increased ozone concentrations. At 
the same time, high humidity conditions may cause pollutants to 

accumulate and form haze. This phenomenon is particularly 
noticeable during the autumn and winter months, often leading to 
reduced visibility and, in some cases, meteorological disasters.

Extended exposure to such environmental conditions significantly 
increases health risks. Studies have shown that poor air quality is 
directly linked to the incidence of chronic respiratory diseases, 
cardiovascular diseases, and lung cancer. Children and the older adult 
are especially vulnerable to these pollutants, often experiencing 
allergic reactions or acute health issues. Pregnant women living in 
highly polluted environments may face risks to fetal development, 
including complications such as low birth weight. In recent years, 
Tianjin has faced a severe air pollution problem, which is closely 
related to its climate, geographical features, and human activities. In 
rapidly developing cities, it is essential for the government to 
implement effective policies to improve air quality. The public’s health 
and quality of life must be  prioritized. Only through raising 
environmental awareness and strengthening pollution control 
measures can a healthier living environment be created for citizens.

3.3 Correlation between main 
meteorological factors and daily 
emergency room visits for respiratory 
diseases in Tianjin from 2013 to 2019

Figure  3 presents the Spearman’s correlation between key 
meteorological elements and the number of daily emergency 
department visits for respiratory diseases in Tianjin from 2013 to 
2019. Temperature, relative humidity, precipitation, and ozone are all 
negatively correlated with the number of outpatient visits for 
respiratory diseases to varying degrees. Among these, the correlation 
between average temperature and ozone is the strongest, followed by 
the effect of precipitation.

Overall, the influence of temperature is particularly significant. 
Current research indicates that among various meteorological factors, 
temperature and humidity are closely related to the incidence of 
respiratory diseases. A recent study conducted by scholars from 
Finland and the United Kingdom found that when room temperature 
ranges from 18 to 26°C and relative humidity is between 17 and 40%, 
increasing humidity helps alleviate dryness in the nose, reduces nasal 

TABLE 1 Frequency distribution of main meteorological elements and air pollution in Tianjin from 2013 to 2018.

Mean Minimum P25 Median P75 Maximum

Wind_speed (m/s) 4.28 0.82 3.19 4.10 5,015 11.77

Temperature (K) 289 259.60 277.90 291.10 299.2 309.90

Relative-humidity (%) 44.70 6.09 29.58 43.70 57.91 94.25

Planetary-boundary-layer-height (m) 520.01 42.28 347.69 489.56 647.4 2048.84

Precipitation (mm) 18.54 0.73 5.93 13.55 28.39 72.62

Pm10 (μg/m3) 110.15 10.66 63.55 93.84 138.55 483.60

Pm2.5 (μg/m3) 68.45 6.86 34.30 55.15 87.36 383.98

O3 (μg/m3) 57.30 2.81 26.55 50.56 79.57 191.07

No2 (μg/m3) 47.27 9.14 31.20 43.08 59.62 176.20

So2 (μg/m3) 25.11 2.41 9.26 15.41 29.03 237.13

Co (mg/m3) 1.36 0.29 0.88 1.18 1.62 8.46
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congestion, and relieves symptoms of a dry throat. Conversely, an 
increase in room temperature can exacerbate dry throat symptoms. 
This suggests that there is an optimal range for the effects of 
temperature and humidity on the respiratory system. Extremes in 
either temperature or humidity, whether too high or too low, can have 
detrimental effects on respiratory health. This implies that the 
combined effects of temperature and humidity on the respiratory 
system are nonlinear. Furthermore, short-term exposure to high 
concentrations of ozone can lead to respiratory irritation, including 
symptoms such as sore throat, cough, and wheezing. Prolonged 
exposure to ozone may result in reduced lung function and an 
increased risk of chronic respiratory diseases. Additionally, ozone 
exposure can cause lung tissue inflammation, impair alveolar 
function, and reduce the efficiency of oxygen exchange. Therefore, it 
is crucial to protect the respiratory system by minimizing exposure 
to ozone.

 (1) The impact of individual meteorological factors on the number 
of patient visits: In this study, we  calculated the Spearman 
correlation coefficients between 14 factors and the number of 

patients to assess the strength of their relationships. The 
coefficients for the number of doctors and the operating time 
of medical resources were 0.82 and 0.83, respectively, indicating 
a strong positive impact on patient visits. As the number of 
doctors increases or medical resources expand, patients are 
more likely to seek treatment due to reduced waiting times and 
improved satisfaction. The correlation between time and the 
number of patients was 0.63, suggesting that longer time 
provide more opportunities for patients to seek care. In 
contrast, environmental factors, such as air pollution and 
climate conditions, exhibited relatively low correlations with 
patient visits, most of which were negative. For instance, the 
Spearman coefficients for PM10 and PM2.5 were 0.05 and 0.07, 
indicating minimal effects. Negative correlations were also 
observed for relative humidity (−0.09), precipitation (−0.17), 
wind speed (−0.05), and boundary layer height (0.10), 
suggesting that adverse weather conditions may discourage 
hospital visits. Higher humidity and precipitation could deter 
individuals from going out, while strong winds might 
negatively affect physical health, leading people to stay home. 

FIGURE 3

Correlation analysis of various factors on the number of patients. 1. Average temperature, 2. Relative humidity, 3. Precipitation, 4. Wind speed, 5. 
Boundary layer height, 6. Pm10, 7. Pm2.5, 8. o3, 9. No2, 10. So2, 11. co, 12. Clinic hours, 13. Number of doctors, 14. Medical resources (the product of clinic 
hours and number of doctors), 15. Number of patients; the value range is between −1 and 1, where −1 indicates a complete negative correlation, 1 
indicates a complete positive correlation, and 0 indicates no linear relationship; the area of the circle indicates the absolute value of the correlation 
coefficient, and the color depth indicates the strength of the correlation.
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Furthermore, the coefficients for pollutants such as O3, NO2, 
SO2, and CO were − 0.22, 0.19, 0.14, and 0.13, respectively, 
with the negative correlation for O3 indicating that higher 
ozone levels may reduce the likelihood of seeking medical 
treatment, particularly for individuals with pre-existing 
respiratory conditions. Additionally, the correlation coefficient 
for average temperature and patient visits was −0.21, revealing 
a significant negative relationship. This suggests that extreme 
temperatures, both high and low, may discourage individuals 
from seeking medical attention. Hot weather may prompt 
people to remain indoors, thereby reducing healthcare visits, 
while sudden temperature fluctuations could exacerbate 
seasonal health conditions, leading to temporary increases in 
patient numbers. Overall, extreme temperature conditions tend 
to negatively impact medical-seeking behavior.

 (2) The linear relationships among meteorological factors: The 
correlation coefficient is a statistic used to measure the strength 
and direction of the linear relationship between two variables. 
Based on the correlation coefficients shown in Figure 3, it can 
be observed that the lighter the color of the number, the weaker 
the linear relationship between the two meteorological factors. 
Among these factors, the boundary layer height has a relatively 
weak correlation with other factors (correlation 
coefficient < 0.5). The average temperature and precipitation 
have a more pronounced effect on pollutant factors compared 
to other meteorological variables. Additionally, there is a strong 
correlation among the pollutant factors.

The combined influence of environmental factors and medical 
resources provides an important context for changes in patient 
numbers. A complex interaction exists between the availability of 
medical resources, doctors’ work schedules, and the impact of 
environmental factors on public health. Environmental risks may 
drive people to seek medical services, while the availability of 
healthcare resources determines their access to care. Thus, enhancing 
the allocation of medical resources and improving environmental 
quality are critical for promoting better health outcomes and 
healthcare utilization. Together, these factors interact through various 

mechanisms, influencing individuals’ decisions to seek medical 
attention and, ultimately, contributing to changes in patient numbers.

3.4 Establishment of respiratory disease 
prediction model

A prediction model was developed using daily emergency 
department visit data for respiratory diseases in Tianjin from 2013 to 
2018. The model accounts for various factors, including long-term 
trends, weekly and holiday effects, as well as meteorological variables 
such as average temperature, relative humidity, average wind speed, 
boundary layer height, and precipitation. Additionally, air pollution 
levels (PM10, O3, SO2, NO2, etc.) were incorporated to assess their 
combined impact. Figure 4 presents a regression scatter plot of the 
model fitting. The data points are evenly distributed around the solid 
line, indicating that the random forest model explains more than 80% 
of the variation in patient numbers, demonstrating its strong 
predictive performance. The model exhibits a small error between 
predicted and observed values, further confirming its reliability and 
providing a solid foundation for future research.

The goodness-of-fit analysis evaluates the existing predictive 
model. In this study, we employed linear regression to test the model 
(Figure 4a). By inputting the original data into the model, we obtained 
the fitted values and compared these results with the actual observed 
values. The figure indicates a close linear relationship between the 
predicted values and the actual values. Most data points are 
concentrated near the regression line, suggesting a good fit between 
the predicted and actual values. Additionally, the slope of the 
regression line is close to 1, indicating an accurate proportional 
relationship between the predicted and actual values. However, there 
are a few outliers, which may result from not considering all 
influencing meteorological factors or from random errors in the data.

The residual plot can be used to assess whether the model’s 
residuals are consistent with random errors. Figure 4b presents the 
density plot of the model’s predicted residuals, which helps evaluate 
the model’s fit. The horizontal axis represents the magnitude of the 
residuals, while the vertical axis indicates the corresponding 

FIGURE 4

Model fitting analysis. (a) Quantile-quantile plot. (b) Density plot of the model’s predicted residuals.
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density of the residuals. The height of the density reflects the 
proportion of the residuals and allows for a visual assessment of 
their distribution, providing a preliminary judgment of the model’s 
fit. The results in Figure 4B show that the distribution of the model’s 
residuals follows a unimodal, bell-shaped curve, consistent with a 
normal distribution.

3.5 Establishm model interpretability 
analysis

3.5.1 SHAP analysis
To evaluate the importance of different meteorological variables, 

the SHAP model was applied. Figure  5 illustrates the importance 
ranking of individual variables, while Figure 6 shows the distribution 
of SHAP values derived during the construction of the random 
forest model.

Variable importance plays a critical role in selecting predictors for 
the random forest model. In this study, meteorological data were used 
as pre-selected influencing factors. Redundant variables with weak 
correlations were eliminated based on their importance, thereby 
streamlining the prediction model and enhancing its operational 
efficiency. For the case of Tianjin, the pre-selected influencing factors 
were evaluated, as shown in Figure 5. This ranking indicates that the 
higher the influence of a factor, the greater its importance. Specifically, 
sulfur dioxide (SO2), ozone (O3), and temperature were identified as 
significantly more important than other meteorological factors. The 
findings suggest that the number of patients in Tianjin is most 
sensitive to variations in SO2, O3, and temperature.

When predicting the number of patients, the ranking of 
variables provides valuable insights into the influence of different 

factors. Among these, sulfur dioxide (SO2) and ozone (O3) ranked 
first and second, respectively, highlighting their significant impact 
on the number of patients. Sulfur dioxide, a major air pollutant, 
is strongly linked to respiratory diseases. Elevated concentrations 
of SO2 can irritate the airways, leading to symptoms such as 
coughing and wheezing, which may increase the demand for 
medical treatment. Ozone, a byproduct of chemical reactions 
between pollutants in the presence of sunlight, is more prevalent 
during the summer months. High ozone concentrations also have 
substantial negative effects on public health, with many 
individuals experiencing difficulty breathing, further contributing 
to an increase in medical visits. Thus, the high importance of 
these two pollutants can be  understood as a direct threat to 
public health.

Temperature ranks closely behind other variables in its influence 
on the number of medical visits. Changes in temperature can affect 
the immune system and overall physiological condition. Cold weather 
often leads to an increase in respiratory infections, while hot climates 
may cause heat-related illnesses such as heat stroke. Consequently, 
temperature changes are a key factor influencing both people’s health 
and their medical behavior.

The variable “doctor” also emerged as an important factor. The 
number of doctors and their distribution significantly impact the 
frequency of medical visits. When there are fewer doctors in a region, 
patients may delay seeking treatment due to difficulties in accessing 
healthcare. Even when symptoms become severe, individuals may wait 
until the condition worsens before seeking medical attention. Thus, 
the availability of medical professionals directly influences patients’ 
willingness and ability to seek care.

Precipitation is another relevant factor. Heavy rainfall often leads 
people to stay indoors, reducing outdoor activities, which in turn can 

FIGURE 5

Importance of single factor variables.
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impact the spread of respiratory diseases. However, in cases of extreme 
weather, such as heavy storms, transportation disruptions may affect 
people’s ability to access medical services. Additionally, precipitation 
can influence the transmission of certain infectious diseases. For 
example, during the rainy season, increased mosquito breeding can 
lead to outbreaks of diseases like dengue fever, thereby driving an 
increase in medical visits.

Particulate matter and gaseous pollutants, such as PM10 and NO2, 
also rank highly in their importance. These pollutants have well-
established negative effects on both the respiratory and cardiovascular 
systems. PM10 particles can penetrate the lungs and cause a variety of 
health issues, while nitrogen dioxide (NO2) often exacerbates 
respiratory conditions such as asthma when combined with other 
pollutants. This highlights the strong connection between air quality 
and public health.

As a professional environmental parameter, the planetary 
boundary layer appears in the variable importance ranking, 
highlighting its impact on local air quality. The height of the planetary 
boundary layer influences the diffusion of pollutants. A lower 
boundary layer results in higher pollutant concentrations, which 
degrade air quality and increase the number of medical visits. In 
contrast, a higher boundary layer aids in the dilution of pollutants, 
reducing their harmful effects on public health.

Wind speed and relative humidity are also relevant factors. High 
wind speed facilitates the dispersion of pollutants, reducing their 
concentration in a given area, which can alleviate pollution-related 
health issues. Relative humidity interacts with respiratory health, as a 
high humidity environment may promote the growth of mold and 
bacteria, leading to an increased number of visits for allergies or 
respiratory conditions.

Although fine particulate matter (PM2.5) ranks lower in the 
importance ranking, its health impacts should not be underestimated. 
PM2.5 can penetrate deep into the alveoli and even enter the 
bloodstream, causing significant damage to the heart and lungs. 
Despite its lower rank, its influence on the number of medical visits 
may vary across different regions and time periods.

Analyzing the importance ranking of these variables provides 
valuable insights into the complex relationship between environmental 
factors and public health. This model not only offers a scientific basis 
for health policy development but also provides essential information 
for managing and preventing medical needs. Factors such as pollutant 
levels, temperature, and the availability of medical professionals 
interact to shape individuals’ health status, which, in turn, influences 
changes in the number of medical visits. This underscores the 
importance of considering multiple environmental and social factors 
in public health management.

SHAP (SHapley Additive exPlanations) values quantify the impact 
of a specific feature value by comparing it to the prediction made 
when the feature assumes a baseline value.

Variables with high SHAP values are considered important, while 
meteorological variables with SHAP values close to zero are of lesser 
importance. As illustrated in the figure, the doctor’s sitting time 
contributes significantly to changes in the number of patients. Among 
the meteorological variables, temperature is shown to have a major 
impact on patient numbers. Additionally, sulfur dioxide and ozone, as 
pollutants, demonstrate a substantial contribution, highlighting the 
importance of addressing ozone pollution and acid rain in the context 
of respiratory diseases. Although rainfall is less important, it is 
associated with low SHAP values, which aligns with the concept of wet 
deposition of aerosols.

FIGURE 6

SHAP analysis.
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3.5.2 Partial dependence analysis
Partial dependence plots are a useful tool for visualizing how 

specific features affect model predictions. Like permutation 
importance, partial dependence plots are computed after model 
fitting and applied to real, unmodified data. By examining the 
relationship between variations in environmental factors and hospital 
visits, the results suggest that the relationship between pollutant 
concentrations and health outcomes is complex. These findings 
highlight a strong connection between air quality and public health. 
For example, nitrogen dioxide (NO₂) concentrations exhibit a dual 
effect. At low concentrations (0–50  μg/m3), NO₂ is negatively 
correlated with the number of hospital visits, suggesting that 
improved air quality in this range may reduce respiratory disease 
incidences. However, as concentrations increase to 50–125 μg/m3, a 
positive correlation emerges, indicating that higher pollution levels 
are linked to a greater demand for medical treatment. This shift may 
be  due to the heightened health risks associated with higher 
pollutant concentrations.

Similarly, ozone (O₃) demonstrates a comparable dual effect. In 
the range of 0–50 μg/m3, O₃ is negatively correlated with the number 
of patients, indicating better public health at lower pollution levels. 
However, as O₃ concentrations rise to 125–150 μg/m3, a positive 
correlation emerges, which may be due to the severe health risks 
posed by high ozone concentrations in the air. The negative 
correlation observed with relative humidity suggests that high 
humidity causes physical discomfort, particularly for individuals with 
respiratory diseases.

Regarding particulate matter, both PM10 and PM2.5 show a clear 
positive correlation with hospital visits. Increases in PM10 
concentrations correlate with higher patient numbers, underscoring 
the adverse effects of fine particulate matter on public health. PM2.5, 
in particular, demonstrates the closest relationship with patient visits 
within the concentration range of 100–125 μg/m3. These particles can 
penetrate deep into the lungs, enter the bloodstream, and impair 
cardiopulmonary function. A similar positive correlation was 
observed for sulfur dioxide (SO₂), further reinforcing the detrimental 
health effects of airborne pollutants.

The boundary layer height also revealed a significant negative 
correlation with hospital visits within the range of 0–500 meters. 
Lower boundary layer heights may trap pollutants near the ground, 
worsening air quality and increasing respiratory disease-related visits. 
Precipitation generally shows a negative correlation with patient 
numbers at 0–50 mm, but turns positive at higher precipitation levels 
(50–70 mm). Precipitation helps reduce airborne pollutants, leading 
to fewer health issues. Additionally, complex interactions between 
increased humidity and changes in precipitation patterns contribute 
to public health outcomes.

Temperature also exhibits a clear positive correlation with hospital 
visits. High temperatures often exacerbate respiratory diseases, and 
hot weather increases ozone levels, further raising the demand for 
medical treatment. Wind speed has a more nuanced effect, showing a 
negative correlation at low wind speeds (0–5 m/s) and a positive 
correlation at higher wind speeds (5–9 m/s). This likely reflects the 
various mechanisms involved in wind-driven pollutant dispersion. At 
lower wind speeds, pollutants can accumulate in a specific area, 
negatively impacting public health. However, at higher wind speeds, 
pollutants may disperse or be  diluted, improving air quality and 
reducing medical treatment needs (Figure 7).

3.6 Research on prediction and forecast of 
respiratory diseases

To assess the prediction accuracy of the random forest model for 
ozone (O3) in estimating the number of daily emergency patients in 
Tianjin, the model was tested using data from 2013 to 2018 as the 
training set. The model incorporated 13 influencing factors, including 
average temperature, relative humidity, precipitation, wind speed, 
PM10, PM2.5, O3, NO2, SO2, CO, sitting time, number of doctors, and 
medical resources, to predict the daily number of respiratory patients 
for 2019. The predicted values were compared with the actual 
observed values (Figure 8). Figure 8 illustrates the distribution of the 
observed and predicted values for the number of respiratory patients 
in Tianjin in 2019. The high degree of consistency between the two 
suggests that the model performs well in predicting daily fluctuations 
in patient numbers. The strong goodness of fit indicates that the 
random forest model is effective for forecasting long-term daily 
changes in the number of respiratory patients in Tianjin.

4 Conclusion

 (1) This study analyzed the temporal and seasonal variations in the 
number of outpatient visits for respiratory conditions in 
Tianjin from 2013 to 2019. The number of visits exhibited 
fluctuations with the seasons, with significantly higher 
numbers in summer and winter compared to spring and 
autumn. A notable decline occurred in 2017, which may 
be  directly related to adjustments in hospital policies. 
Considering the trends in meteorological factors and 
pollutants, there is a clear overlap between the peaks in 
outpatient visits and temperature and precipitation during the 
summer. This suggests that the increase in outpatient visits may 
be associated with meteorological factors.

 (2) The changes in outpatient visits show a nonlinear relationship 
with both meteorological and pollutant factors. Among these, 
average temperature, relative humidity, precipitation, and 
ozone have a strong correlation with the number of visits. The 
correlation between boundary layer height and other factors is 
weaker. The impact of average temperature and precipitation 
on pollutant factors is more pronounced compared to other 
meteorological elements. Additionally, there is a strong 
correlation among the pollutant factors. In the analysis of the 
importance of meteorological factors, it was found that sulfur 
dioxide, ozone, average temperature, and precipitation 
significantly influence the model’s predictions of outpatient 
visit numbers, while wind speed, precipitation, and boundary 
layer height have a smaller effect.

 (3) When the number of outpatient visits is between 50 and 200, 
the random forest model demonstrates a high goodness of fit 
between predicted and actual values, indicating good predictive 
performance. This model effectively predicts the long-term 
daily variations in outpatient visits. Future work should focus 
on further optimizing model parameter selection and 
improving the model’s temporal resolution to achieve more 
accurate predictions.

 (4) Although the random forest model effectively predicts long-
term daily variations in outpatient visits, it lacks the ability to 
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capture extreme values. This limitation arises because the 
random forest model relies heavily on large datasets for 
modeling and validation; insufficient sample sizes for extreme 
value data directly affect the model’s predictive accuracy. 
Therefore, to enhance the prediction of outpatient visits for 

respiratory conditions, future research could combine different 
models to improve predictive capabilities. Additionally, 
integrating this method with traditional mechanistic models, 
such as ARIMA, may yield more precise predictions while 
reducing time costs.

FIGURE 7

Partial dependence analysis of each factor on the number of patients.

FIGURE 8

Comparison of predicted value and actual value in 2019.
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