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Objective: To investigate the individual or combined effects of polycyclic 
aromatic hydrocarbons (PAHs) on metabolic dysfunction-associated steatotic 
liver disease (MASLD) in U.S. adults.

Methods: We enrolled 3,130 participants aged 20 and over from the 2007–2016 
National Health and Nutrition Examination Survey (NHANES) and analyzed six 
urinary PAH metabolites. The Poisson regression, Bayesian kernel machine 
regression (BKMR), and weighted quantile sum (WQS) regression models were 
used to assess the associations between PAHs and MASLD.

Results: After adjusting for covariates, Poisson regression model showed 
significant associations [RRs (95% CIs)] between higher exposure quartiles of 
2-hydroxynaphthalene (2-NAP) [Q2: 1.35 (1.06, 1.73); Q3: 1.67 (1.35, 2.07); Q4: 
1.62 (1.23, 2.15); p-trend < 0.001], 2-hydroxyfluorene (2-FLU) [Q3: 1.36 (1.08, 
1.70); p-trend = 0.073], 1-hydroxyphenanthrene (1-PHE) [Q4: 1.35 (1.03, 1.76); 
p-trend = 0.009], and 1-hydroxypyrene (1-PYR) [Q3: 1.37 (1.12, 1.69); Q4: 1.33 
(1.01, 1.76); p-trend = 0.025] and MASLD (p < 0.05), compared with Q1. BKMR 
model exhibited a positive trend between mixed PAHs and MASLD. The WQS 
index constructed for six PAHs was significantly related to MASLD [OR (95% CI): 
1.25 (1.06, 1.49)].

Conclusion: This study suggests that exposure to PAHs, individually or in 
combination, may be associated with an increased risk of MASLD.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease 
globally, which can eventually develop into hepatocellular carcinoma and liver failure (1). It 
represents the liver manifestation of a multisystem disease that is heterogeneous in its 
underlying causes, presentations, progression, and outcome (2). Given the imperfect 
nomenclature and diagnostic criteria of NAFLD, a revised definition of metabolic 
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dysfunction-associated fatty liver disease (MAFLD) was proposed by 
an expert panel in 2020 (3). Unlike NAFLD, the diagnosis of MAFLD 
does not necessitate the exclusion of other chronic liver disorders or 
significant alcohol consumption. Recently, considering the Delphi 
consensus, the term MAFLD has been replaced with the new term 
metabolic dysfunction-associated steatotic liver disease (MASLD) (4). 
While the use of medical terminology such as “steatosis” may be seen 
as over medicalizing the lexicon to some extent, it avoids the pejorative 
and stigmatizing connotations of the term “fatty” and facilitates 
patients’ disclosure of their health status. Moreover, the perception 
among healthcare providers that “fatty liver” is an indolent condition 
has led to only limited success in raising disease awareness. With 
therapeutics on the horizon, a renewed focus on identifying “at-risk” 
patients, coupled with the adoption of new, more precise terminology, 
such as “steatotic” may increase awareness and attention to the 
disease (4).

MASLD emphasizes the significant impact of cardiac metabolic 
risk factors on the pathogenesis and progression of steatotic liver 
disease, and is more accurate in the identification of people who are 
at higher risk of type 2 diabetes mellitus (T2DM) (5). MASLD can 
result in the development of liver fibrosis, liver cirrhosis and 
hepatocellular carcinoma, and extrahepatic complications including 
T2DM, cardiovascular disease (CVD), renal disease and certain 
extrahepatic cancers (6, 7). It is estimated that the global prevalence 
of MASLD among adults is about 30% (8). MASLD causes significant 
global health and economic burden, and no specific drug treatments 
are currently approved (6). Therefore, there is a great need to identify 
risk factors for MASLD and develop prevention strategies.

Polycyclic aromatic hydrocarbons (PAHs) constitute a category of 
persistent, semivolatile organic pollutants featuring several fused 
benzene rings in various structural configurations (9). PAHs can 
be generated through biological processes as well as from incomplete 
combustion, originating from both natural and anthropogenic 
sources, such as forest and brush fires, or vehicle emissions and smoke, 
and are primarily introduced into the human body via ingestion, skin 
contact, and inhalation (10). Upon entering the body, PAHs are 
converted into hydroxylated metabolites, readily excreted in urine 
(11). Therefore, hydroxylated PAH metabolites in urine effectively 
reflect PAHs exposure (12). Certain PAHs are recognized as 
carcinogens, mutagens, and teratogens, representing a serious health 
risk (13). Prior studies demonstrated PAHs may be  implicated in 
asthma, nerve injury, CVD, kidney and liver damage, cataracts, skin 
redness and inflammation, and adverse birth outcomes (14, 15).

The liver is the primary organ responsible for metabolizing PAHs 
and contains high levels of cytochrome P450 (CYP). PAH-induced 
activation of the aryl hydrocarbon receptor (AhR) regulates CYP 
expression (16). Abnormal activation of AhR can interfere with the 
estrogen signaling pathway (17), leading to oxidative stress and 
inflammatory responses (18, 19), which may contribute to insulin 
resistance (20), and ultimately result in liver damage. In a study of a 
nationally representative sample of U.S. adults, PAHs exposure was 
found to be associated with increased insulin resistance, impaired β 
cell function, and an increased prevalence of metabolic syndrome 
(21). A study involving Korean women found that PAHs may 
contribute to the pathogenesis of insulin resistance through 
methylation mediated inhibition of the IRS2 gene (22).

Epidemiological studies indicated negative impacts of certain 
PAHs on hepatic enzymes and NAFLD. A study from China 

demonstrated a correlation between urinary PAH metabolites and 
elevated levels of gamma-glutamyltransferase (GGT), ALT, and 
aspartate aminotransferase (AST) in adults (23). ALT and AST serve 
as sensitive indicators of liver cell damage, which are often used to 
assess liver dysfunction (24). GGT is one of the best predictors of liver 
mortality. The results of studies investigating the associations between 
PAHs and NAFLD are inconsistent. A study by the Korean National 
Environmental Health Survey (KoNEHS) showed that exposure to 
low levels of volatile organic compounds and PAHs might adversely 
affect the risk of NAFLD in adolescents, with 2-hydroxyfluorene 
(2-FLU) being the largest contributor (25). However, no significant 
association between 2-FLU exposure and NAFLD risk was found in a 
study of US adults (26). Although previous studies have primarily 
investigated NAFLD, the relationship between PAHs exposure and 
MASLD remains uncertain.

Consequently, based on data from five consecutive survey cycles 
of the National Health and Nutrition Examination Survey (NHANES) 
from 2007 to 2016, this study used statistical methods such as Poisson 
regression, restricted cubic spline (RCS), weighted quantile sum 
(WQS) regression, and Bayesian kernel machine regression (BKMR) 
to explore the relationship between individual and combined exposure 
to PAHs and the risk of MASLD, as well as differences in associations 
across age groups and sex.

Methods

Study population

Data from five separate NHANES cycles (2007–2008, 2009–2010, 
2011–2012, 2013–2014, and 2015–2016), a population-based survey 
designed to assess the health and nutritional status of the 
non-institutionalized U.S. population, were combined. In brief, the 
exclusion criteria were: (1) aged under 20 years old; (2) pregnant 
women; (3) excessive alcohol consumption; (4) viral hepatitis (positive 
for serum hepatitis B surface antigen or for serum hepatitis C antibody 
or RNA); (5) without complete measurements of urinary PAH 
metabolites; (6) without sufficient information to evaluate MASLD 
status; (7) with missing covariate information. In total, 3,130 
participants were included in the analysis (Figure 1). All participants 
gave written informed consent, and the study methods were endorsed 
by the National Center for Health Statistics’ Research Ethics Review 
Board and the Centers for Disease Control and Prevention.1

Measurement of PAH metabolites

Urine samples were collected from participants in NHANES using 
glass containers for subsequent transport to the Division of Laboratory 
Sciences at the National Center for Environmental Health. 
Monohydroxylated metabolites of PAHs were the specific analyses 
measured in NHANES. Because PAH metabolites have short half-lives 
and can be collected non-invasively, urine samples are appropriate 
biomarkers of recent exposure and are commonly used in 

1 https://www.cdc.gov/nchs/nhanes/index.htm
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biomonitoring studies (27). Previous studies have shown that a single 
urine sample can be representative of an individual’s normal PAHs 
exposure level (28). The urinary PAH metabolites investigated in this 
study were 1-hydroxynaphthalene (1-NAP), 2-hydroxynaphthalene 
(2-NAP), 3-hydroxyfluorene (3-FLU), 2-FLU, 1-hydroxyphenanthrene 
(1-PHE), and 1-hydroxypyrene (1-PYR). If the analytic result value 
was below the limits of detection (LOD), it was substituted with the 
LOD divided by the square root of 2. The detailed introduction can 
be found in the Supplementary materials.

Definition of MASLD

In this study, the definition of MASLD was based on hepatic 
steatosis, no excessive alcohol consumption, no viral hepatitis, and 
at least one of the following five cardiometabolic risk factors: (1) 
body mass index (BMI) ≥ 25 kg/m2 or waist circumference > 94 cm 
for male or > 80 cm for female; (2) fasting plasma glucose 
(FPG) ≥ 5.6 mmol/L or 2-h post-load glucose (2hPG) ≥ 7.8 mmol/L 
or hemoglobin A1c (HbA1c) ≥ 5.7% or T2DM or treatment for 
T2DM; (3) blood pressure ≥ 130/85 mmHg or specific 
antihypertensive drug treatment; (4) plasma triglycerides 
(TG) ≥ 150 mg/dL or lipid lowering treatment; (5) plasma high 
density lipoprotein cholesterol (HDL-c) ≤ 40 mg/dL for male or ≤ 
50 mg/dL for female or lipid-lowering treatment (4). Individuals 
were considered to have hepatic steatosis if their U.S. fatty liver 
index (USFLI) score was 30 or more (29). USFLI = ey/(1 + ey) × 100, 
where y = −0.8073 × non-Hispanic black + 0.3458 × Mexican 

American + 0.0093 × age + 0.6151 × loge (GGT) + 0.0249 × waist 
circumference + 1.1792 × loge (insulin) + 0.8242 × loge 
(glucose) − 14.7812. If the participants belong to “non-Hispanic 
black” and “Mexican American,” the value of “non-Hispanic black” 
and “Mexican American” is 1, and if they do not belong to that 
ethnicity, it is 0.

Covariates

Based on existing literature, we  selected and adjusted some 
covariates: age, sex, race/ethnicity, education levels, marital status, 
poverty income ratio (PIR), the cycle of NHANES, creatinine, cotinine 
and physical activity. Detailed classifications are in the 
Supplementary material.

Statistical analysis

Continuous variables were presented as medians (IQR, 
interquartile ranges), while categorical variables were expressed as 
counts (percentages) to describe participant characteristics. Wilcoxon 
rank sum tests were employed to assess discrepancies in continuous 
variables between MASLD and non-MASLD participants, while 
Chi-square tests were utilized for categorical variables. To address the 
non-normal distribution of the data, the urinary levels of PAH 
metabolites were transformed using the natural logarithm (ln). 
Spearman correlations were calculated between exposures.

FIGURE 1

Flowchart for selecting eligible participants (National Health and Nutrition Examination Survey, United States, 2007–2016).
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Three multivariate Poisson regression models were developed to 
estimate the relative risks (RRs) and 95% confidence intervals (CIs) 
associated with the risk of MASLD related to exposure to PAHs. 
We used the number of people included in each cycle of this study as 
an offset. The results of the over discretization test were not significant 
(p = 1.000), indicating that Poisson regression is appropriate for the 
analysis. The models were fitted by using the ln-transformed PAH 
levels as continuous variables and further categorized into quartiles, 
with quartile 1 (Q1) as reference. Model 1 was adjusted for creatinine 
only. Based on Model 1, Model 2 was further adjusted for age, sex, 
race, educational level, marital status, PIR, cycle. Based on Model 2, 
Model 3 was further adjusted for cotinine and physical activity. In 
addition, we  performed subgroup analysis to examine possible 
differences in the associations between exposure to PAHs and MASLD 
regarding age and sex. We then used RCS with three knots at the 5th, 
50th, and 95th percentiles to determine the dose–response relationship 
between PAHs and MASLD in a fully adjusted model.

BKMR was employed for the analysis of the combined effect of six 
PAH mixtures on individuals with MASLD. BKMR is a non-parametric 
Bayesian variable selection framework that allows the assessment of 
the combined effects of chemical mixtures on outcomes (30). BKMR 
can effectively estimate exposure-response functions which include 
both nonlinear and non-additive effects, and can determine important 
mixture components through variable selection (31). This study used 
Markov chain Monte Carlo for 10,000 iterations to fit the 
BKMR model.

WQS regression is also a commonly utilized statistical approach 
for investigating the impacts of multiple chemical exposures on health 
outcomes and for calculating the weights of mixture components to 
evaluate their relative contributions (32). The WQS index is a weighted 
average of PAHs, each transformed into categorical variables by 
quantiles. A training set consisting of 40% of the data was randomly 
sampled, with the remaining 60% allocated for model validation, and 
bootstrap resampling was set to 1,000. Adjusting for the 
aforementioned covariates, the association between the WQS index of 
the mixture and MASLD was assessed in both positive and 
negative directions.

Sensitivity analyses were performed to assess primary results 
robustness. Firstly, we  included the continuous variable Healthy 
Eating Index 2015 (HEI-2015) as a new covariate in the regression 
model, while retaining all original covariates. Subsequently, the binary 
variable (yes/no) occupational exposure (available for the 2007–
2012 cycle) was used to replace HEI-2015 in the regression model. 
Finally, both HEI-2015 and occupational exposure were included as 
covariates in the model.

For the complex sampling design of NHANES, this study used 
appropriate weights. A two-sided p-value of < 0.05 was considered 
statistically significant. All analyses were conducted in Stata 15.0 and 
R soft-ware (version 4.2.3). The R package “bkmr” and “gWQS” were 
used to implement BKMR and WQS, respectively.

Results

Population characteristics

According to the inclusion criteria shown in 
Supplementary Figure S1, a total of 3,130 participants were enrolled 

from NHANES. Of these participants, 1,067 were diagnosed with 
MASLD, with a sample weighted prevalence rate of 31.98% (Table 1). 
The median age of all participants was 49 (IQR: 34–63) years, 
predominantly female (50.13%). Participants with and without 
MASLD differed significantly in age, sex, race, education level, marital 
status, and physical activity (p < 0.001).

Concentration distribution of PAH 
metabolites and their correlation

The characteristics of six PAH metabolites were shown in 
Supplementary Table S1. The detection rates of all six chemicals in 
urinary samples were greater than 80%. The median and IQR of 
concentrations (ng/ml) of 1-NAP, 2-NAP, 3-FLU, 2-FLU, 1-PHE, and 
1-PYR among were 1602.75 (4773.00), 4518.50 (8360.00), 78.00 
(176.00), 201.30 (388.00), 118.70 (151.00), 110.00 (171.00), 
respectively.

The Spearman correlation coefficients between the ln-transformed 
PAH metabolites are depicted in Figure 2. All PAH metabolites were 
significantly and positively correlated with each other. 2-FLU and 
3-FLU had the strongest correlation (r = 0.95, p < 0.001), followed by 
2-FLU and 1-PHE (r = 0.77, p < 0.001), 2-FLU and 1-PYR (r = 0.77, 
p < 0.001).

Association of PAHs with MASLD

To assess the individual impact of PAHs on MASLD, three 
multivariate Poisson regression models were constructed (Table 2). 
After adjusting all the covariates, in the continuous variable models, 
there were significant associations between 2-NAP and 1-PHE and 
MASLD risk with the RR values of 1.18 (95% CI: 1.08, 1.28) and 1.14 
(1.04, 1.25) respectively. Compared with Q1, the higher quartiles of 
2-NAP [Q2: 1.35 (1.06, 1.73); Q3: 1.67 (1.35, 2.07); Q4: 1.62 (1.23, 
2.15); p-trend < 0.001], 2-FLU [Q3: 1.36 (1.08, 1.70); p-trend = 0.073], 
1-PHE [Q4: 1.35 (1.03, 1.76); p-trend = 0.009], and 1-PYR [Q3: 1.37 
(1.12, 1.69); Q4: 1.33 (1.01, 1.76); p-trend = 0.025] exhibited a 
heightened risk of MASLD in the fully adjusted model.

Subgroup analysis

We performed subgroup analysis by age to examine potential risk 
of MASLD (Supplementary Table S2). Significant interaction terms 
by age were observed for 1-NAP (P-interaction = 0.025) and 3-FLU 
(P-interaction = 0.027), and 2-FLU (P-interaction = 0.040). We found 
a positive relationship [RRs (95% CIs)] between 2-NAP [Q2: 1.92 
(1.14, 3.23); Q3: 2.21 (1.31, 3.74); Q4: 2.22 (1.20, 4.11); 
p-trend = 0.012] and MASLD in the age group 20–39 years. Among 
people aged 40–59 years, there was an elevated risk of MASLD 
associated with the higher quartile exposure compared to Q1, 
including 2-NAP [Q3: 1.74 (1.18, 2.56); Q4: 1.65 (1.10, 2.46); 
p-trend = 0.007], 2-FLU [Q3: 1.79 (1.23, 2.60); Q4: 1.83 (1.23, 2.74); 
p-trend = 0.002]. In the continuous variable models, there were 
statistical associations between 2-NAP [1.21 (1.02, 1.44)] and 3-FLU 
[0.87 (0.77, 0.99)] and MASLD in the 20–39 age group. In the 40–59 
age group, 2-NAP [1.19 (1.05, 1.35)], 2-FLU [1.18 (1.05, 1.32)], 
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1-PHE [1.26 (1.11, 1.42)], and 1-PYR [1.18 (1.01, 1.37)] were 
significant positively associated with MASLD. In individuals aged 
60 years or older, only 2-NAP [1.12 (1.01, 1.24)] exposure was 
positively associated with MASLD risk.

Significant interaction term by sex was observed for 1-PYR 
(P-interaction = 0.042). In the female subgroup, individuals in the 
higher quartiles of 2-NAP [Q2: 1.54 (1.05, 2.26); Q3: 1.87 (1.31, 2.66); 
Q4: 1.95 (1.33, 2.86); p-trend < 0.001], 2-FLU [Q4: 1.76 (1.18, 2.63); 
p-trend = 0.007], 1-PHE [Q3: 1.52 (1.09, 2.12); Q4: 1.48 (1.01, 2.18); 
p-trend = 0.016], and 1-PYR [Q2: 1.36 (1.02, 1.80); Q3: 1.96 (1.41, 
2.72); Q4: 1.91 (1.23, 2.95); p-trend = 0.002] were positively associated 
with MASLD (Supplementary Table S3). The results of continuous 

variable models are also consistent. In the male subgroup, 2-NAP [Q3: 
1.51 (1.18, 1.93); Q4: 1.42 (1.02, 1.97); p-trend = 0.016] and 2-FLU 
[Q3: 1.48 (1.13, 1.94); p-trend = 0.417] were positively associated with 
MASLD. 2-NAP [1.13 (1.02, 1.24)] was associated with MASLD in the 
continuous variable models.

Dose–response relationships between 
PAHs and MASLD

The RCS models represented the dose–response relationship 
between individual PAH metabolites and MASLD risk 

TABLE 1 Participant characteristics by MASLD status in adults from NHANES 2007–2016 (National Health and Nutrition Examination Survey, 
United States, 2007–2016).

Variables Total (n = 3,130) Non-MASLD (n = 2063) MASLD (n = 1,067) p

Age (years), median (IQR) 49 (34–63) 45 (32–61) 54 (40–67) <0.001

Sex, n (%) <0.001

 Male 1,561 (49.87) 967 (46.87) 594 (55.67)

 Female 1,569 (50.13) 1,096 (53.13) 473 (44.33)

Race/ethnicity, n (%) <0.001

 Mexican American 478 (15.27) 220 (10.66) 258 (24.18)

 Non-Hispanic White 1,376 (43.96) 901 (43.67) 475 (44.52)

 Non-Hispanic Black 569 (18.18) 443 (21.47) 126 (11.81)

 Other 707 (22.59) 499 (24.20) 208 (19.49)

Educational level, n (%) <0.001

 Less than high school 752 (24.03) 422 (20.46) 330 (30.93)

 High school or equivalent 685 (21.88) 436 (21.13) 249 (23.34)

 College or above 1,693 (54.09) 1,205 (58.41) 488 (45.73)

Marital status, n (%) <0.001

 Marry/Living with partner 1917 (61.25) 1,233 (59.77) 684 (64.10)

 Widowed/Divorced/Separated 648 (20.70) 407 (19.73) 241 (22.59)

 Never 565 (18.05) 423 (20.50) 142 (13.31)

PIR, n (%) 0.217

 <1 682 (21.79) 436 (21.13) 246 (23.06)

 ≥1 2,448 (78.21) 1,627 (78.87) 821 (76.94)

Cotinine (ng/mL), median (IQR) 0.038 (0.011–3.09) 0.037 (0.011–4.63) 0.039 (0.011–2.27) 0.868

Physical activity, n (%) <0.001

 Sedentary 777 (24.82) 460 (22.30) 317 (29.71)

 Insufficient 373 (11.92) 237 (11.49) 136 (12.75)

 Moderate 352 (11.25) 231 (11.20) 121 (11.34)

 High 1,628 (52.01) 1,135 (55.01) 493 (46.20)

Survey cycle, n (%) 0.060

 2007–2008 618 (19.74) 399 (19.34) 219 (20.52)

 2009–2010 685 (21.88) 428 (20.75) 257 (24.09)

 2011–2012 603 (19.27) 413 (20.02) 190 (17.81)

 2013–2014 651 (20.80) 450 (21.81) 201 (18.84)

2015–2016 573 (18.31) 373 (18.08) 200 (18.74)

IQR, interquartile range; PIR, poverty income ratio. p values were based on the Chi-square test (categorical variables) or the Wilcoxon rank sum test (continuous variables).
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(Supplementary Figure S1). 2-NAP (Pfor-overall < 0.01), 2-FLU (Pfor-

overall = 0.043), 1-PHE (Pfor-overall = 0.002) and 1-PYR (Pfor-overall = 0.008) 
were significantly associated with MASLD. No nonlinear dose–
response relationship was found.

Association of PAHs mixture exposure and 
MASLD

BKMR was performed to estimate the possible combined effect 
of the PAH metabolites mixture. The completely adjusted model 
exhibited a positive trend between mixed PAH metabolites and 
MASLD compared to the 50th percentiles (Figure 3). According to 
the posterior inclusion probability (PIP) of each PAH metabolite 
(Supplementary Table S4), 2-NAP and 3-FLU contributed the most 
to MASLD risk (PIP = 1), followed by 1-PHE (PIP = 0.9752). 
Additionally, by fixing the other exposure at its 25th, 50th or 75th 
percentile, we analyzed the individual effect of each exposure on the 
occurrence of MASLD (Supplementary Figure S2). Our results 
showed that 2-NAP, 2-FLU and 1-PHE were positively associated 
with increased risk of MASLD, and 3-FLU was inversely associated, 
when other metabolites were fixed at the 25th, 50th and 75th 
percentiles. Then, univariate exposure-response functions were 
assessed at fixed median concentrations of other PAHs 
(Supplementary Figure S3). Positive correlations were observed 
between 2-NAP, 2-FLU, 1-PHE, and the risk of MASLD, while 3-FLU 
showed the opposite relationship.

After adjusting for the covariate, a positive and significant 
association was observed between the WQS index for the six PAHs 
and MASLD [OR (95% CI): 1.25 (1.06, 1.49)] (Supplementary Table S5). 
2-NAP and 1-PHE were identified as major PAHs, with weights of 
78.24 and 13.28%, respectively (Figure 4). The WQS regression in the 
negative direction showed no significant association between PAHs 
mixture and MASLD [0.86 (0.75, 1.00)].

Sensitivity analysis

Supplementary Tables S6–S8 indicated that even after considering 
HEI-2015 and occupational exposure as covariates, the association 
between PAHs and MASLD risk remains consistent (p < 0.05).

Discussion

This study revealed that 2-NAP, 2-FLU, 1-PHE, and 1-PYR may 
be associated with an increased the risk of MASLD in American adults 
from the NHANES 2007–2016 dataset. The associations were 
significant those aged 20 to 59 years and in females. The RCS results 
showed that no nonlinear dose–response relationship was found. 
Moreover, the BKMR model revealed a significant and positive 
association between the PAH mixture and MASLD risk, with 2-NAP 
and 3-FLU identified as the main contributors. The WQS model 
indicated the PAHs mixture was positively associated with the risk of 
MASLD, primarily driven by 2-NAP and 1-PHE.

Although the exact mechanism of the link between PAHs 
exposure and MASLD is uncertain, there are several possible 
explanations. The liver is the primary organ responsible for 
metabolizing PAHs and contains high levels of CYP. The AhR is a 
ubiquitously expressed ligand-activated transcription factor with 
multiple physiological functions (33). Activation of the AhR by PAHs 
regulates the expression of CYP, including CYP1A1, CYP1A2 and 
CYP1B1 (16), with CYP1A1 serving as a typical marker of AhR 
activation (34). Overexpression of CYP1A1 can disrupt the estrogen 
signaling pathway and diminish the ability of 17β-estradiol to protect 
against hepatic steatosis, which is marked by the buildup of TG (17), 
a pathological feature of MASLD (35). Then, CYP1A1 is a key enzyme 
of oxidative stress, and its overexpression can cause oxidative stress by 
affecting reactive oxygen species (ROS) and superoxide dismutase 
(SOD) levels (18). An animal study also showed that markers of 
antioxidants such as glutathione-S-transferase, SOD and catalase were 
reduced in African catfish exposed to benzo[b]fluoranthene (36). 
Oxidative stress is known to play an important role in the pathogenesis 
of MASLD (37). Moreover, AhR is involved in the modulation of 
tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8) 
expression (19). TNF-α interferes with insulin signaling promoting 
insulin resistance (20). Increased ROS levels are also an important 
trigger for insulin resistance (38). Insulin resistance may contribute 
significantly to the development of MASLD and its induced 
abnormalities in lipid metabolism can lead to increased production of 
proinflammatory cytokines, such as TNF-α, IL-1b, and IL-6, as well as 
less adiponectin, thereby inducing systemic insulin resistance (39). 
Low-grade chronic inflammation and systemic insulin resistance are 
crucial for mediating hepatic and most extrahepatic complications of 
MASLD (7).

Beside activation of AhR and CYP1A1, recent studies have shown 
that several PAHs, including fluoranthene, phenanthrene, and pyrene, 
interact with human and/or mouse constitutive androstane receptor 
(CAR), inducing its some target gene, such as CYP2B1, CYP2B2, 
CYP2B6, CYP2B10 (40, 41). CAR, highly expressed in the liver, 
belongs to the nuclear receptor superfamily. Animal experiments 
revealed that administration of pyrene or phenanthrene led to 
increased relative liver weight, hepatocellular hypertrophy, and higher 

FIGURE 2

Spearman correlation coefficients among six PAH metabolites 
(National Health and Nutrition Examination Survey, United States, 
2007–2016). All results for PAH metabolites were ln-transformed. 
*p < 0.05; **p < 0.01; ***p < 0.001.
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serum ALT levels in wild-type mice, but these effects were absent in 
CAR-null mice (40, 41). Additionally, hepatic total glutathione (GSH) 
levels were lower in wild-type mice compared to CAR-null mice, 
indicating that GSH reduction may contribute to hepatotoxicity 
caused by pyrene or phenanthrene. In addition, another study in mice 

found that CAR is crucial in the liver inflammatory triggered by 
pyrene, marked by increased levels of serum amyloid A proteins and 
IL-17-producing helper T cells (42).

The evidence concerning the link between PAH exposure and the 
development of MASLD in the general population is inconclusive. 

TABLE 2 Relative risks (95% confidence intervals) for the associations between PAHs and MASLD (National Health and Nutrition Examination Survey, 
United States, 2007–2016).

Variables Model 1 Model 2 Model 3

RR (95% CI) RR (95% CI) RR (95% CI)

1-NAP Continuous 1.02 (0.92, 1.12) 1.07 (0.97, 1.18) 0.99 (0.94, 1.05)

Q1 Ref Ref Ref

Q2 0.98 (0.78, 1.23) 0.91 (0.72, 1.16) 0.91 (0.71, 1.15)

Q3 1.01 (0.80, 1.27) 0.91 (0.72, 1.15) 0.92 (0.73, 1.16)

Q4 0.93 (0.74, 1.17) 0.83 (0.66, 1.05) 0.84 (0.65, 1.08)

p-trend 0.590 0.140 0.205

2-NAP Continuous 1.14 (1.03, 1.25)* 1.12 (1.02, 1.23)* 1.18 (1.08, 1.28)**

Q1 Ref Ref Ref

Q2 1.32 (1.02, 1.71)* 1.36 (1.06, 1.74)* 1.35 (1.06, 1.73)*

Q3 1.57 (1.26, 1.97)*** 1.67 (1.34, 2.07)*** 1.67 (1.35, 2.07)***

Q4 1.48 (1.13, 1.94)** 1.56 (1.20, 2.04)*** 1.62 (1.23, 2.15)***

p-trend 0.001 <0.001 <0.001

3-FLU Continuous 1.02 (0.94, 1.11) 1.03 (0.95, 1.11) 0.97 (0.89, 1.05)

Q1 Ref Ref Ref

Q2 0.87 (0.73, 1.05) 0.87 (0.73, 1.03) 0.86 (0.72, 1.03)

Q3 0.93 (0.73, 1.18) 0.95 (0.77, 1.17) 0.97 (0.78, 1.21)

Q4 0.85 (0.67, 1.08) 0.87 (0.69, 1.10) 0.90 (0.68, 1.19)

p-trend 0.301 0.443 0.677

2-FLU Continuous 0.95 (0.88, 1.02) 0.96 (0.90, 1.03) 1.06 (0.96, 1.17)

Q1 Ref Ref Ref

Q2 1.05 (0.84, 1.31) 1.07 (0.87, 1.32) 1.06 (0.86, 1.31)

Q3 1.29 (1.01, 1.66)* 1.29 (1.03, 1.60)* 1.36 (1.08, 1.70)**

Q4 1.16 (0.88, 1.51) 1.21 (0.93, 1.58) 1.30 (0.96, 1.78)

p-trend 0.318 0.155 0.073

1-PHE Continuous 1.13 (1.04, 1.22)** 1.15 (1.07, 1.24)*** 1.14 (1.04, 1.25)***

Q1 Ref Ref Ref

Q2 0.94 (0.74, 1.18) 0.93 (0.73, 1.17) 0.93 (0.74, 1.18)

Q3 1.25 (0.99, 1.58) 1.22 (0.97, 1.53) 1.25 (1.00, 1.58)

Q4 1.32 (1.01, 1.74)* 1.29 (0.98, 1.70) 1.35 (1.03, 1.76)*

p-trend 0.015 0.021 0.009

1-PYR Continuous 1.01 (0.96, 1.06) 0.99 (0.93, 1.04) 1.09 (0.99, 1.21)

Q1 Ref Ref Ref

Q2 1.02 (0.83, 1.26) 1.09 (0.90, 1.33) 1.12 (0.93, 1.35)

Q3 1.19 (0.96, 1.48) 1.33 (1.08, 1.64)** 1.37 (1.12, 1.69)**

Q4 1.10 (0.84, 1.45) 1.26 (0.96, 1.66) 1.33 (1.01, 1.76)*

p-trend 0.403 0.066 0.025

Poisson regression models were applied. All results for PAH metabolites were ln-transformed. Model 1: only adjusted for creatinine. Model 2: based on model 1 and adjusted for age, sex, race, 
educational level, marital status, PIR, and NHANES cycle. Model 3: based on model 2 and adjusted for cotinine and physical activity. Q1 to Q4 refer to the 1st through 4th quartiles of PAH 
metabolites. Ref, reference. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 3

Combined effects of the PAHs mixture on MASLD risk estimated by BKMR (National Health and Nutrition Examination Survey, United States, 2007–
2016). All results for PAH metabolites were ln-transformed. Covariates included creatinine age, sex, race, educational level, marital status, PIR, NHANES 
cycle, cotinine, and physical activity.

FIGURE 4

The WQS index weights of each of the six PAHs associated with MASLD (National Health and Nutrition Examination Survey, United States, 2007–2016). 
All results for PAH metabolites were ln-transformed. Covariates included creatinine age, sex, race, educational level, marital status, PIR, NHANES cycle, 
cotinine, and physical activity.
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Previous studies can provide some clues that PAHs exposure may 
cause NAFLD. A study from KoNEHS revealed that 
2-hydroxyfluorene levels contributed the most to significantly 
increasing the prevalence of NAFLD using the BKMR model (25). 
Two studies utilizing NHANES data also identified a notable 
correlation between PAH mixtures and NAFLD risk (26, 43). These 
are consistent with our findings on MASLD. In addition, exposure to 
PAHs is linked to abnormal liver function indices. Previous studies 
suggested that 2-NAP and 2-FLU were linked to the increase in ALT, 
AST, and GGT (23). Serum bilirubin, also one of the liver blood test 
indicators, has antioxidant and cytoprotective effects, and its level is 
inversely correlated with NAFLD (44). A study of American adults 
found negative associations between 2-NAP and 1-PYR and total 
bilirubin (45). This study found that 3-FLU may be associated with 
MASLD. In the BKMR model, 3-FLU exhibited a negative association 
with MASLD risk, which is consistent with the direction of 
association observed in subgroup analyses, and was one of the 
primary contributors in mixed exposure to pollutants. The single-
pollutant regression showed a negative correlation between 3-FLU 
and MASLD, but without statistical significance. Compared to single-
pollutant models, BKMR overcomes the disadvantages of traditional 
methods that may be limited by multicollinearity and model selection 
errors. BKMR allows for simultaneous variable selection and effect 
estimation, capturing nonlinear and non-additive effects among 
co-exposures, and thus better capturing the combined effect of 
mixtures and individual effect of single chemical in the mixture, such 
as the relationship between 3-FLU and MASLD (30, 46). Although 
the specific mechanism is unclear, previous studies have found that 
3-FLU was negatively correlated with other adverse outcomes. Studies 
found significant negative associations between 3-FLU and NAFLD 
and MAFLD, which researchers propose is consistent with previous 
findings on synergistic or antagonistic effects existed in PAHs (26, 
47). Research on PAHs and osteoporosis showed that 2-FLU was 
associated with an increased prevalence of osteoporosis, whereas 
3-FLU was associated with a decreased prevalence of osteoporosis 
(48). Another study among U.S. adults found an inverse association 
between 3-FLU exposure and cervical cancer prevalence, and 
speculated that this association may be related to the methylation 
levels of the AhR repressor gene (49, 50). Further research is needed 
to better understand the underlying mechanisms involved in 
these associations.

The definition of NAFLD mainly focuses on excluding other 
factors responsible for hepatic steatosis. While MASLD also includes 
patients with obesity, insulin resistance, vascular dysfunction, or 
dyslipidemia (51). Chronic exposure to low-molecular-weight PAHs, 
like 2-NAP, results in lipid buildup in adipocytes and triggers 
inflammation, demonstrating an obesogenic potential (52). A 
systematic review with meta-analysis found that naphthalene, 
phenanthrene, and total OH-PAHs metabolites were significantly 
positively correlated with the risk of obesity (53). A study on Xenopus 
tropicalis reported hepatotoxicity caused by impairment of lipid and 
cholesterol metabolism in individuals exposed to benzo[a]pyrene 
(B[a]p) (54). A study in China showed that the sum concentrations of 
hydroxyphenanthrene were positively associated with an average 
increase of serum concentrations of total cholesterol or low-density 
lipoprotein-cholesterol over 6 years (55). Moreover, phenanthrene can 
interfere with adipocytokine levels through epigenetic modification, 

which in turn affects glucose metabolism, leading to insulin resistance 
(56). In a study of a nationally representative sample of U.S. adults, 
PAHs exposure was found to be associated with increased insulin 
resistance, impaired β cell function, and an increased prevalence of 
metabolic syndrome (21). A study involving Korean women found 
that PAHs may contribute to the pathogenesis of insulin resistance 
through methylation mediated inhibition of the IRS2 gene (22). 
Additionally, a study performed both in vivo and in vitro proved that 
chronic exposure to PAHs can induce endothelial dysfunction in rats 
and primary human umbilical vein endothelial cells, resulting in 
cardiometabolic disease (57). A recent systematic review found a 
positive association between PAHs and CVD (57). A study using 
NHANES data revealed that joint exposure to PAHs showed positive 
association with CVD and all-cause mortality (58). Thus, PAHs 
exposure may contribute to the development of MASLD. However, 
strong evidence is still needed to further prove the relationship 
between PAHs and MASLD.

Furthermore, the subgroup analysis results suggest that there are 
sex differences in the association between exposure to PAHs and 
MASLD. A European flounder experiment proposed that after 
exposure to (B[a]p), female flounder hepatocytes exhibited slower 
biotransformation and lower capacity for non-enzymatic antioxidant 
defense and detoxification of toxic aldehydes than males, which may 
indicate that females are more sensitive to environmental toxicants 
and carcinogens (59). There are also differences between different age 
groups. Young and middle-aged people have chronic exposure to 
elevated levels of PAHs because of their occupations (60), such as coke 
oven workers (61) and firefighters (62). In addition, they may be more 
likely to be exposed to tobacco. And tobacco users had higher PAH 
urinary biomarker levels compared to non-users (63). Moreover, 
Estrogen has a potential protective effect in alleviating the onset and 
progression of MASLD (64). The current median age of menopause is 
52 years in the United States, ranging from 45 to 55 years (65). In the 
age group of 40–59, compared to younger groups, women may 
experience menopause, with a significant decrease in estrogen levels, 
thereby increasing the risk of MASLD.

Strengths and limitations

This study exhibits several notable advantages. This is an inaugural 
investigation into the relationship between PAHs exposure and MASLD 
in a nationally representative sample. Then the large and nationally 
representative nature of the sample in this study boosts its statistical 
power, allowing for robust detection of associations. Additionally, the 
effect of PAHs on MASLD was verified using a variety of methods, and 
the consistency of results across these methods lends further support to 
the conclusions drawn. The limitations of our study should be recognized. 
Firstly, it is not possible to confirm a causal relationship between PAHs 
and MASLD, given the cross-sectional nature of the study. To further 
confirm our findings, it would be imperative to conduct cohort designs 
and animal studies. Secondly, urine PAHs samples were collected and 
measured from participants at a single time point, so continuous exposure 
and intra-individual differences may not be reflected. Moreover, despite 
the proven utility and ethicality of this method in numerous 
epidemiological studies, the current gold standard for diagnosing fatty 
liver remains still invasive liver biopsy. Additionally, while viral hepatitis 

https://doi.org/10.3389/fpubh.2025.1540357
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al. 10.3389/fpubh.2025.1540357

Frontiers in Public Health 10 frontiersin.org

(HBV/HCV) and significant alcohol use were excluded according to 
MASLD criteria, NHANES lacks data to systematically rule out other 
competing etiologies of hepatic steatosis (e.g., drug-induced liver injury, 
autoimmune hepatitis, or hereditary hemochromatosis) as strictly 
required by the Delphi consensus, which indicates that some cases 
classified as MASLD may have coexisting or alternative underlying causes. 
Future studies incorporating specialized laboratory tests and medication 
histories could help refine the diagnostic accuracy. Lastly, despite 
controlling for many confounding factors, residual unknown confounding 
factors may still exist, which could influence our results. Our study 
belongs to exploratory research, the purpose of which is to preliminarily 
explore the relationship between PAHs and MASLD, so we  did not 
perform adjustment for the level of significance.

Conclusion

The results of our study suggested that individual or combined 
exposure to PAHs may be  associated with an increased risk of 
MASLD in American adults. These associations were not identical 
between males and females, and there were also differences across 
age groups. Exploring the independent and/or combined effects of 
environmental factors on MASLD is crucial for disease prevention. 
Protecting key populations and reducing occupational exposures 
can be effective in preventing the harms of PAHs. However, further 
longitudinal studies and biological mechanism studies are needed 
to establish causality.
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