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Introduction: Since the emergence of COVID-19 in 2019, SARS-CoV-2 has persisted 
in mutating, giving rise to multiple variants of concern that have triggered several 
pandemics globally. The evolutionary trajectory of the virus is shaped by a combination 
of stochastic factors and non-pharmaceutical interventions (NPIs). Investigating the 
direction of virus evolution and its underlying determinants is crucial for forecasting 
epidemic trends and formulating scientific responses to emerging infectious diseases.

Methods: To delve into the intricate relationship between NPIs and the virus’s 
transmissibility, virulence, and immune evasion capabilities, as well as to explore the 
sociological mechanisms driving virus evolution, we developed a genetic algorithm 
grounded in a population dynamics model. This model simulates the processes of 
virus mutation and epidemic dissemination, enabling us to analyze the correlation 
between intervention strategies and the evolutionary path of the virus.

Results: Our study reveals that, under the influence of NPIs, dominant strains 
capable of widespread transmission within the population exhibit substantially 
elevated immune evasion capabilities and heightened infectivity. Notably, the 
evolution of virulence did not display a discernible trend, aligning with the 
observed epidemic characteristics of COVID-19. It was found that the stricter 
the implementation of NPIs, the more favorable the conditions for rapidly 
and thoroughly containing virus transmission and mutation. Conversely, the 
relaxation of these measures may pose a risk of recurring epidemics fueled by 
continuous viral mutations.

Discussion: Presently, the potential emergence and widespread transmission of 
SARS-CoV-2 variants with increased virulence cannot be discounted. Therefore, it 
is imperative to continuously monitor the dynamic shifts in the epidemic landscape 
and the antigenic variations of new variants. Simultaneously, it is necessary to devise 
and prepare prevention and control strategies to effectively manage outbreaks 
caused by highly pathogenic variants.
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1 Introduction

SARS-CoV-2 continues to evolve. Since the onset of the 
COVID-19 pandemic, the World Health Organization (WHO) has 
identified multiple variants of concern (VOCs), based on their 
potential for increased transmission, replacement of existing strains, 
causing new infection waves, and necessitating adjustments in public 
health responses (1). Coronaviruses exhibit high recombination rates, 
insertions and deletions, and point mutations, although the rates are 
lower than for other RNA viruses due to the proofreading, leading to 
a plethora of variants during replication (2). Most variants have 
minimal impact on the virus’s characteristics. Nonetheless, some can 
significantly alter infectivity, disease severity, immune escape 
capabilities, the efficacy of treatments, diagnostics, and the 
effectiveness of public health and social measures (3). As of December 
11, 2021, the WHO has recognized five VOCs since the pandemic’s 
start: Alpha, Beta, Gamma, Delta, and Omicron (4).

NPIs have proven to be effective tools in mitigating the spread of 
pandemics and have played a pivotal role in the management of the 
COVID-19 outbreak (5). In March 2020, the emergence of the wildtype 
strain triggered the initial wave of the epidemic in England. As the virus 
rapidly disseminated throughout the population, leading to a substantial 
surge in hospitalizations and mortalities, the government implemented 
NPIs to promote social distancing, with the aim of curtailing the rise in 
severe cases and alleviating the burden on the healthcare system (6). 
These measures were lifted after effectively reducing hospitalizations 
and mortalities, and social distancing returned to normal. However, the 
advent of the Alpha variant precipitated a second wave of infections in 
England from September 2020 to April 2021, during which the 
government twice reinstated NPIs to control virus transmission (6). 
From December 2020 onwards, the rollout of vaccination programs in 
the UK bolstered population immunity, thereby limiting the 
dissemination of both the Alpha and Delta variants. Consequently, in 
the summer of 2021, NPIs were gradually lifted in accordance with the 
national policy outlined in the Roadmap out of lockdown (7, 8). 
Nevertheless, in response to the rapid spread of the highly transmissible 
and immune-evasive Omicron variant, the UK introduced Plan B in 
December 2021 to contain the exponential rise in cases (9). The UK’s 
pandemic response underscores how novel strains can evade the 
population’s immune memory established against previous strains, 
becoming dominant and fueling new transmission chains, thereby 
compelling governments to reimplement public health measures to 
counteract successive waves of the epidemic in a recurring cycle.

The epidemic prevention model employed in the UK exhibits a 
significant level of representativeness on a global scale, characterized 
by the cyclic appearance of virus variants and the corresponding 
implementation of targeted prevention measures. This intriguing 

phenomenon has sparked our curiosity, prompting us to delve into its 
underlying mechanisms and endeavor to elucidate the intricate 
relationship between human behavior and viral evolution. 
Observations have shown that VOCs of SARS-CoV-2 have led to 
multiple reinfections within the population (10, 11), with the Omicron 
variant demonstrating heightened infectivity and immune evasion 
capabilities (12–14), while the severity of illness appears to be reduced 
(15). However, the extent to which these phenomena are influenced 
by NPIs remains scientifically unsubstantiated. To tackle these 
questions, we developed a genetic algorithm and utilized computer 
simulations to mimic the entire trajectory of virus mutation, epidemic 
dissemination, and NPI implementation. This approach allowed us to 
conduct an in-depth analysis of the correlation between fluctuations 
in social distancing and the direction of viral evolution. We anticipate 
that this research will provide a robust theoretical foundation for 
exploring the mechanisms by which NPIs influence viral evolution 
and aid in predicting the evolutionary path of SARS-CoV-2 and 
potential future unknown infectious diseases.

The academic community has launched multiple scientific 
investigations to explore the trajectory of viral evolution. For 
instance, Sunagawa J employed longitudinal viral load data to 
demonstrate that isolation can exert a selective pressure, favoring 
viruses with an earlier and higher peak viral load but a shorter 
duration, in the evolutionary pathway of SARS-CoV-2 (16). Woo 
HJ presented a quantitative model to simulate the evolution of 
simian immunodeficiency virus under the pressure exerted by the 
cytotoxic T-lymphocyte immune response, thereby delineating the 
evolutionary direction of the virus under immune selection (17). 
Han WK developed a machine learning-driven antigen evolution 
prediction model, which, from a molecular biology perspective, 
provided evidence that the predicted SARS-CoV-2 variants exhibit 
heightened immune evasion capabilities (18). These studies, 
originating from diverse disciplines, delve into the biological and 
sociological mechanisms underlying viral evolution, laying a 
robust scientific foundation for a comprehensive understanding 
of the factors that shape viral evolution. However, there remains 
a notable gap in the availability of an infectious disease dynamics 
model that integrates population, individual, and viral dynamics 
to simulate the entire process of virus mutation and epidemic 
spread under the influence of NPIs, and to elucidate the 
mechanism by which these measures exert natural selection on 
viral variants.

We have developed a dynamic model that centers on 
individuals, utilizing the concept of genetic algorithms to simulate 
the intricate and reciprocally influential patterns of virus mutation, 
transmission, and the implementation of NPIs in real-world 
scenarios. By monitoring the progression of epidemics and the 
trends in strain evolution, and by analyzing the underlying 
mechanisms through which epidemic intervention measures 
influence strain evolution, our model aims to provide a theoretical 
foundation for predicting the evolutionary trajectories of SARS-
CoV-2, influenza, and other respiratory viruses characterized by 
high mutation rates.

Abbreviations: NPIs, non-pharmaceutical interventions; WHO, World Health 

Organization; VOCs, variants of concern; R0, basic reproduction number; R(t), 

effective reproduction number; PRCCs, Partial Rank Correlation Coefficients.
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2 Materials and methods

The study revealed that, among the 6,068 NPIs implemented 
during March–April 2020, when the majority of European countries 
and US states experienced their initial waves of infections, the most 
effective measures encompassed the cancelation of small gatherings, 
closure of educational institutions, imposition of border restrictions, 
enhancement of personal protective equipment availability, and 
restrictions on individual movements (5). These interventions can 
be collectively characterized as strategies aimed at minimizing virus 
exposure opportunities by promoting social distancing or reducing 
overall social activity levels. In our model, we converted the efficacy 
of NPIs implementation into variations in social activity levels, 
denoted as β (t), ranging from 0 to 1. Here, 0 signifies a complete halt 
of interpersonal contact and social activities due to interventions, and 
1 represents the normal level of social activity in the absence of any 
interventions. This parameter was subsequently used to adjust the 
effective reproduction number (Rt), thereby influencing the rate of 
virus transmission. Additionally, we employed SARS-CoV-2 as a case 
study for epidemic simulation, whereby certain model parameters 
were extracted from COVID-19 data, while others, not readily 
available from existing literature or surveys, were estimated based on 
previous research and epidemiological practice.

2.1 The premises of the model

To clarify our research theme, we simplified the model structure 
and established the following premises:

 (1) The epidemic unfolds within a closed town with a fixed 
population of 20,000, disregarding births, natural deaths, 
and migration.

 (2) Given that different age groups exhibit varying rates of severe 
illness upon SARS-CoV-2 infection (15), we categorized the 
population based on the age structure prevalent in China.

 (3) During viral replication, the genome encoding the spike 
protein has a certain probability of undergoing recombination 
and errors, representing the mutation rate (q). This rate 
signifies the likelihood of variants emerging when the virus is 
transmitted from an infector to second-generation infectees. 
Changes in the spike protein structure can randomly alter the 
virus’s infectivity, virulence, and immune evasion capabilities. 
Consequently, we  stipulate that the antigenic properties of 
mutant strains must differ from their parent strain by at least a 
factor of p in these three dimensions.

 (4) The population is stratified according to infection status into 
susceptible (S), exposed (E) (during the incubation period), 
infectious (I), hospitalized (H), deceased (D), and recovered 
(R) individuals. Additionally, recognizing that a small portion 
of the population possesses innate immunity (19), individuals 
who cannot be infected by any strain (M) were included. The 
transition relationships among these groups are illustrated in 
Figure 1a. I can only infect S and R. Effective contact between 
I and S results in S becoming infected, while the probability of 
R becoming reinfected upon contact with I depends on the 
genetic distance between the strains they were previously 
infected with. A greater genetic distance, indicating larger 

antigenic differences, correlates with a higher probability of R 
being reinfected. We  define the relationship between the 
infection probability (pinf) and genetic distance (d) using 
Equation 1 (function depicted in Figure 2a).

 ( )1 exp d= λinfp ‐ ‐
 (1)

Where λ is the immune escape index.

 (5) The infectivity, virulence, and immune evasion capabilities of 
the virus are primarily governed by the structure of the spike 
protein on its surface (20). Genetic distance serves as a metric 
to quantify the number of differences in the genome sequences 
encoding this spike protein. This distance is assessed by 
computing the distance between the branches of the 
evolutionary tree to which each strain belongs (Figure 3a).

 (6) The virulence of the virus is gauged by the hospitalization rate 
(rh). The implementation of NPIs depends on the 
hospitalization rate of newly diagnosed patients within the last 
5 days, which is calculated as the number of new hospital 
admissions divided by the total number of newly infected 
individuals. When this rate surpasses a predetermined upper 
threshold (ωup), both the government and the public are prone 
to enhance social distancing, resulting in a diminution of social 
activity levels. Conversely, when the hospitalization rate 
declines to a lower threshold (ωdow), social distancing 
measures are eased, leading to an elevation in social activity 
levels. Given the impossibility of completely eliminating 
human contact, social activity levels will not plummet to zero 
but will tend to stabilize at a minimum value, denoted as βmin. 
The variables β1(t) and β2(t) embody the functions describing 
the decrease and increase in social activity levels, respectively, 
as illustrated in Equation 2. The graphical representations of 
these functions are provided in Figures 2b,c. Definitions and 
values for all parameters incorporated in the model are 
furnished in Table 1.
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2.2 The construction process of the model

The construction process of the model is detailed as follows: Based 
on the aforementioned assumptions, we  leveraged the MATLAB 
language to develop a program implementing a genetic algorithm. By 
iteratively executing this program, the evolutionary trajectory of the 
virus was simulated. The specific methodology employed for 
constructing the model is outlined below.

 (1) Initially, the program is initialized, which includes setting up 
variables, parameters, age groups, IDs for the innately immune 
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population, and the antigenicity of the initial virus strain. 
Additionally, certain epidemiological characteristics of the 
index case need to be defined, such as his ID, the strain number 
of the infection, the number of infections (here it is set to 1), 
age, time of infection, onset time, admission time, discharge 
time, and current infection status (including infected, 
recovered, dead), etc. These data are stored row-wise in a data 
frame, designated as the information data frame. Based on the 
value range provided in Table 1, the basic reproduction number 
(R0) for the index case is randomly generated. Using R0 as the 
mean, a Poisson-distributed random number is generated to 
represent the number of second-generation infectees 

originating from the index case. Then, n time points are 
randomly selected from within the infectious period according 
to a uniform distribution, serving as the infection times for 
these infectees. Subsequently, the source ID and the infection 
time of each infectee are stored in a data frame, designated as 
the time data frame, where each column represents a 
transmission relationship between an infector and an infectee. 
The program code for this is found in Appendix I, lines: 1–125.

 (2) After completing the initialization, simulate the ongoing spread 
of the virus through time iteration. First, select the earliest 
infection time in the time data frame, extract the corresponding 
column and record the ID of the infectious source, then remove 

FIGURE 1

Model schematic and flowchart. (a) The transformation relationship of populations in different infection statuses, where S, E, I, H, R, D, and M represent 
susceptible, exposed (latent infection), infectious (mild and pre-hospitalized severe cases), hospitalized, recovered, deceased individuals, and those 
with innate immunity, respectively. Solid lines indicate definitive transitions, while dashed lines represent probabilistic transitions. (b) The flowchart for 
the model’s design, where D and E represent the information data frame and the time data frame, respectively.
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this column from the data frame. Subsequently, update the 
infection status of all infected individuals at that time in the 
information data frame. The population that the infectious 
source can effectively contact includes: S, E, I, R, and 
M. Randomly select one of these individuals as the contact. 
Infection can only occur if the contact is S or R. Before 
determining the newly infected individual, it is necessary to 
assess whether a mutation occurs during transmission based 
on the mutation rate. If a mutation occurs, first name the new 
virus strain and then randomly set its infectivity, virulence, and 
immune escape capability.

If the randomly selected contact is S, the probability of infection 
is 1. If the contact is R, since R has previously been infected with 
several virus strains and has developed specific antibodies against each 
of these strains, the new virus strain can only cause infection by 
evading recognition by all antibodies. The infection probability, qinf, is 
calculated by measuring the genetic distance between the new virus 
strain and the ith previously infecting strain of R, and then applying 
Equation 1 to obtain the infection probability for that particular strain. 
Finally, the infection probabilities for all previously infecting strains 
of R are multiplied together, i.e., 

1 2 n
inf inf infp p p , to obtain qinf.  

A Bernoulli random number is then generated based on qinf, where 0 
indicates no infection and 1 indicates infection. If infection occurs, the 
epidemiological characteristics of the secondary infected individual 
need to be determined, following the details outlined in Step (1), and 
this information is appended as a new row to the information data 
frame. The corresponding program code can be found in Appendix I, 
lines 127–330.

 (3) After identifying the secondary infected individuals, calculate 
the social activity level β(t) at time t. First, calculate the new 
hospitalization rate over the past 5 days. When the new 
hospitalization rate exceeds ωup, it indicates that the current 
virus epidemic poses a serious threat to public health, 
prompting the government to implement NPIs to increase 
social distancing. These measures will lead to a decrease in 
social activity level and slow down the spread of the virus. 
When the new hospitalization rate drops to ωdow, it signifies 
that the epidemic’s threat has diminished. Considering 
economic and other factors, the government will lift the 
restrictions on social distancing, leading to an increase in 
social activity level. However, this increases the risk of the 
virus resuming transmission among the population and 

FIGURE 2

Infection rates in recovered individuals and the dynamics of social activity levels: decreases and recovery functions. (a) The functional relationship 
between the probability of reinfection in recovered individuals and genetic distance. (b,c) Represent the functions of social activity levels decreasing 
β1(t) and increasing β2(t) from different levels, respectively.

FIGURE 3

Genetic distance, phylogenetic tree, and transmission chains. (a) The genetic distance in the phylogenetic tree between offspring A and B. The purple 
path indicates the genetic distance between the two progeny strains, revealing that their genomes, coding for the spike protein, have five different 
mutation sites. (b) The phylogenetic tree reflecting the process of virus evolution. Each strain is represented by a dot, with varying colors indicating the 
number of infections. Each mutation in the virus adds a branch for a new progeny. (c) The transmission chains of the epidemic. Each dot represents an 
infected individual, and each line represents a transmission relationship. The color of the dot indicates the number of times the individual was infected.
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potentially causing a resurgence of the epidemic. The code for 
this part of the program can be found in Appendix I, lines 
332–379.

 (4) Once β(t) is determined, we proceed to calculate the number 
and timing of secondary infectees transmitted by each 
infectors at time t. Firstly, we identify all infectors who are in 
the infectious period at time t. Then, for each infectious 
individual, we calculate the R(t) based on the strain they are 
infected with. R(t) is positively correlated with R0, the 
proportion of active individuals in the population, and β(t). 
After obtaining R(t), we randomly generate the number and 
infection times of the next generation of infectees according 
to a Poisson distribution with R(t) as the mean. The infectious 
source IDs and corresponding infection times are stored in the 
time data frame in columns. This completes one iteration of 
time. After tens of thousands of iterations, the loop terminates 
when no secondary infections are generated or the termination 
time is reached, marking the end of one epidemic simulation. 
The code for this part of the program is found in Appendix I, 
lines 381–442. The design framework of the model is shown 
in Figure 1b.

Even though we did not use differential equations to construct the 
model, to clearly express the quantitative relationships between 
different population groups, we employ a set of equations as follows:
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In Equation 3

 ( ) ( )θ
= + + + +
= + +/

N S E I R M
t N N H D

In Equation 3, N and θ(t) represent the total number of people 
active in society at time t and their proportion of the total 

TABLE 1 Model parameters.

Description Distribution characteristics Numerical values Sources

Total population 20,000 constant assumed

The population proportions for the age 

groups 0–24, 25–44, 45–64, and 

65 + years, respectively

0.276, 0.284, 0.292, 0.148 constant (36)

The hospitalization rates, rh, for various 

age groups

0.0033, 0.0145, 0.0331, 0.0789 constant (15)

The basic reproduction number R0 2–5 uniform distribution assumed

immune escape index λ 0.6–1.6 uniform distribution assumed

The proportion of the population 

possessing innate immunity pimm

0.1 constant assumed

The incubation period (days) μ = 3.1 σ = 2.6 normal distribution (37)

The rate of strain mutation q 0.001, 0.002, 0.003 constant assumed

genetic variability p 0.1 constant assumed

mortality rate of inpatients δ 0.0467 constant (15)

the rate of decline in social activity γdow 0.2 constant assumed

the rate of recovery in social activity γup 0.3 constant assumed

The lowest point of decrease in social 

activity βmin

0.1, 0.2, 0.3 constant assumed

The threshold at which an increase in the 

hospitalization rate triggers a decline in 

social activity ωup

0.05 constant assumed

The threshold at which a decline in the 

hospitalization rate triggers an increase in 

social activity ωdow

0.04 constant assumed

The duration from symptom onset to 

hospitalization in non-admitted patients.

2–7 days uniform distribution (38)

The duration from symptom onset to 

hospitalization in admitted patients.

4–12 days uniform distribution (39)
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population, respectively. β(t) indicates the social activity level at 
time t, with the calculation method detailed in Equation 2. δi refers 
to the effective contact rate of individuals infected with the i-th 
strain (i.e., the number of effective contacts a source of infection 
makes per unit of time at the beginning of an outbreak). 1/φ 
represents the incubation period. 

i
infq  indicates the probability of a 

recovered individual being infected by strain i, pm is the proportion 
of patients with mild symptoms, 1/μm and 1/μh, respectively, 
represent the infectious period of mild (from onset to recovery) and 
severe cases (from onset to hospitalization), and 1/h and σ denote 
the hospitalization period for severe cases and the recovery rate, 
respectively.

2.3 Sensitivity analysis

Given the theoretical nature of this epidemiological study, where 
predefined conditions may not directly correspond with reality, fitting 
the model to actual survey data presents challenges. To validate the 
scientific and robust nature of the research method, the study utilized 
the PRCCs and Latin Hypercube Sampling method for sensitivity 
analysis. This widely applied algorithm calculates correlations between 
a set of parameters and model outputs, excluding the linear effects of 
the targeted parameter (21). The parameter space was segmented into 
equal intervals, with one sample randomly chosen from each. These 
samples were then integrated into the model to determine outputs at 
various time points, resulting in a series of standard coefficients that 
illustrate the correlation between each parameter and the model 
output (21, 22). Further details on sensitivity analysis are available in 

Appendix II. All methodological analyses were conducted using 
MATLAB R2019a software (MathWorks, Natick, Massachusetts, USA).

3 Results

3.1 Phylogenetic tree and transmission 
chains

The simulation of a full-scale epidemic outbreak yielded a 
phylogenetic tree illustrating the evolution of the virus. As depicted in 
Figure  3b, this tree encompasses 810 strains spanning seven 
generations, with the descendants of the original strain being the most 
numerous, totaling 139. Out of all the strains, six were implicated in 
infections affecting over 10,000 individuals accounting for less than 
1%, and 17 strains led to more than 1,000 infections, collectively 
accounting for approximately 2% of the total. Strains that infected 
fewer than 100 individuals constituted 97% of the total, with those 
infecting fewer than 10 individuals comprising 92%. The tree visually 
demonstrates that strains causing larger outbreaks tend to produce 
more progeny; however, among these progenies, only a very small 
proportion have the potential to cause a pandemic, while the majority 
do not continue to replicate and disseminate significantly.

Figure 3c presents the transmission chain of the epidemic. Due to 
the large number of infections, it is not possible to clearly distinguish 
the transmission relationships between the initial infectors and the 
subsequent infectees. However, the distribution of the number of 
infections can be  discerned by color, with a higher proportion of 
individuals having experienced 5 to 8 infections.

FIGURE 4

Distribution characteristics and influencing factors of variant spread scale. (a) Distribution characteristics of variant spread scale. The scatter plot shows 
the distribution of the number of variants causing different scales of infection, while the bar chart represents the proportion of infections caused by 
variants of different scales to the total number of infections. (b–e) Show the median and interquartile range for the R0, immune escape index, 
hospitalization rate, and emergence time of strains with different infection scales, along with their statistical test results. NS, *, **, *** represent the 
results of statistical tests as not significant, p < 0.05, p < 0.01, and p < 0.001, respectively.
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3.2 Influence of antigenic characteristics 
on the spread of strains

Based on the phylogenetic tree, we  can conduct a more 
quantitative and in-depth analysis of the influence of a strain’s 
antigenic properties on its dissemination. Figure 4a reveals that 
the proportions of strains causing infections in more than 10,000, 
1,000 to 10,000, 100 to 1,000, and fewer than 100 individuals are 
0.7, 1.5, 2.0, and 96%, respectively. In contrast, their corresponding 
proportions in terms of the total number of infections are 51, 43, 
4.0, and 2.0%. This disparity indicates that a minuscule fraction 
of strains has the potential to trigger large-scale epidemics, 
whereas the majority of strains are unable to sustain 
significant transmission.

In Figures  4b–e, we  conducted a comparative analysis of the 
statistical differences in the basic reproduction number (R0), immune 
escape index, hospitalization rate (serving as a proxy for virulence), 
and emergence time across four distinct groups of strains, categorized 
by their infection scales. The statistical results revealed that the 
disparities in the immune escape index were the most pronounced, 
with R0 exhibiting the second most significant differences. Notably, 
no statistical differences were observed in hospitalization rates or 
emergence times among the groups. These findings imply that the 
capability to evade immune responses emerges as the most pivotal 
antigenic trait determining a variant’s ability to sustain reproduction 
and facilitate widespread transmission, with infectivity playing a 
secondary role. Furthermore, the hospitalization rate does not appear 
to be  a driving force in virus evolution, nor does it exhibit any 
directional changes throughout this process. Additionally, the absence 
of statistical differences in the emergence times of the four variant 
groups suggests that their antigenic alterations did not occur in a 
temporal sequence.

3.3 Epidemiological distribution 
characteristics of an epidemic

Figure  5a illustrates the temporal pattern of the number of 
infections attributable to major variant strains, juxtaposed with the 
trend in social activity levels. Upon examination of this figure, four 
distinct periodic outbreaks of the epidemic are evident. The first 
outbreak was characterized by the dominance of a single prevalent 
strain; however, subsequent outbreaks exhibited a more diverse array 
of prevalent strains, comprising a dominant strain along with several 
minor ones. Certain strains rapidly ascended to dominance upon their 
emergence, whereas others required a prolonged period of low-level 
transmission before becoming predominant. Concurrently, the 
temporal distribution of social activity levels mirrored the periodic 
fluctuations observed in the strains. It was found that outbreaks led to 
a decline in social activity, which subsequently returned to normal 
levels following the containment of the outbreak, only to be followed 
by a resurgence of the epidemic that once again reduced social activity.

Figure  5b presents the temporal distribution of infection 
counts, revealing four epidemic cycles that are analogous to those 
observed in Figure 5a. The majority of the infections exhibited at 
least two distinct epidemic cycles, whereas some, such as the first, 
second, and eighth infections, demonstrated only one significant 
outbreak period. Conversely, others, like the fourth infection, 

experienced three outbreak periods. This figure notably indicates 
that later epidemic cycles have accumulated a higher number 
of infections.

Figure 5c illustrates the current temporal distribution of various 
population groups. It depicts a rapid decline in the number of 
susceptible individuals following the first major outbreak, along with 
pronounced periodic variations in the counts of recovered individuals 
and those in the infectious period. Notably, these variations exhibit 
inverse trends.

Figure 5d demonstrates that the newly determined population 
sizes of the four groups exhibit consistent periodic fluctuations, with 
variations in peak times attributable to delays in infection, onset of 
symptoms, hospitalization, and recovery.

Figure  5e presents the composition ratio of the number of 
infections by different infection counts. It’s observed that infections 
occurring less than 4 times or more than 9 times constitute a smaller 
proportion, while those infected 5 to 8 times account for a higher 
percentage, reaching 90%. The results shown in Figures 5a–e were 
obtained at the lowest social activity level, βmin = 0.3.

Figure 5f displays the temporal distribution of the number of 
infections caused by each strain when βmin = 0.2, showing that a lower 
βmin and stricter NPIs correspondingly reduce the number of variant 
strains, the cumulative number of infections, and the duration of 
the epidemic.

3.4 The impact of strain mutation rate and 
minimum social activity level on epidemic 
spread

The strain mutation rate (q) and the minimum social activity level 
βmin, which measures the strictness of NPIs, represent the natural and 
societal factors affecting virus evolution and epidemic spread, 
respectively. Their impacts on the scale of the epidemic are illustrated 
in Figures 6, 7. From every row in Figures 6, 7, it’s clear that, holding 
q constant, a smaller βmin, meaning stricter NPIs, significantly reduces 
the number of infections, the number of epidemic cycles, and the 
duration of the epidemic. Observing each column, at βmin = 0.1, q has 
no significant impact on epidemic spread, indicating that the epidemic 
concludes after just one cycle; however, at βmin = 0.2 and 0.3, an 
increase in q slightly raises the number of infections and extends the 
epidemic duration. These results demonstrate that compared to the 
virus mutation rate, the strictness of NPIs is a more crucial factor in 
determining the scale of an epidemic.

3.5 Sensitivity analysis

In this investigation, sensitivity analyses were conducted on the 
model, utilizing eight main parameters along with a continuous time 
series for the total number of infected individuals. We sampled N = 50 
instances from a uniform distribution within each parameter’s 
plausible range. The analysis employed Partial Rank Correlation 
Coefficients (PRCCs) for these parameters, which vary between-1 and 
1. PRCC values approaching 1 or-1 signify a strong positive or 
negative influence of the parameter on the output, respectively. 
Conversely, a PRCC value nearing 0 suggests a minimal impact of the 
parameter on the model’s output (refer to Figure 8).
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4 Discussion

4.1 Comparison of study conclusions with 
prior empirical research

Several virological and immunological studies have reported 
moderate escape of SARS-CoV-2 Alpha, Beta, Gamma, and Delta 
variants from vaccine-derived antibodies and convalescent sera in lab 
experiments (23–26). However, the Omicron ‘complex,’ including 
sublineages BA.1 to BA.5, can infect both vaccinated and previously 

infected individuals (27). Research indicates that recurrent Omicron 
outbreaks suggest antibody evasion is becoming a primary 
evolutionary trait, surpassing enhanced infectivity (27). Additionally, 
the R0, an infectivity indicator, has increased from 2.6 for the wildtype 
to 4.2 for Alpha, 7.2 for Delta, and 8.4 for Omicron (6), indicating 
increased transmissibility of SARS-CoV-2 VOCs, which exhibit 
enhanced immune evasion and infectivity.

Moreover, epidemiological studies have confirmed that the 
infection fatality ratios are 1.2, 3.0, 4.71, 0.4, 2.1, and 0.7% for the 
wildtype, Alpha, Beta, Gamma, Delta, and Omicron variants, 

FIGURE 5

Epidemiological distribution characteristics of an epidemic from day 0 to day 450. (a) The temporal distribution of the number of new infections 
caused by different strains alongside the social activity level β(t). The number of infections is measured by the left vertical axis, while social activity level 
is measured by the right vertical axis. (b) The temporal distribution of new infections, categorized by the number of times infected. (c) The temporal 
distribution of the current number of susceptible individuals, unhospitalized patients (including mild cases and severe cases before hospitalization), 
hospitalized patients, and recovered individuals. (d) The temporal distribution of new infections, unhospitalized patients, hospitalized patients, and 
recovered individuals. (e) The composition ratio of infections, differentiated by the times of infections. (a–e) are all based on the premise that βmin = 0.3. 
(f) At βmin = 0.2, the temporal distribution of the number of new infections caused by different strains.
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FIGURE 6

Temporal distribution of new infections and social activity level’s median and interquartile range with varying virus mutation rates and minimum social 
activity levels.

FIGURE 7

Temporal distribution of cumulative infections and epidemic duration’s median and interquartile range with varying virus mutation rates and minimum 
social activity levels.
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respectively (6, 28, 29), reflecting considerable variability in their 
virulence without exhibiting a clear trend toward increased virulence. 
These scientific findings are congruent with the research conducted 
using our model, reinforcing the validity of our theoretical deductions 
through empirical evidence. This alignment underscores the scientific 
rigor and reliability of our research methodology and outcomes.

4.2 The role of other factors in NPIs

In addition to the hospitalization rate of infected individuals, 
indicators for assessing viral virulence also encompass the probability 

of death given infection and the probability of death given 
hospitalization for severe disease. To streamline analysis and 
exposition, this study posits that the hospitalization rate serves as the 
sole determinant for timing the implementation of NPIs. This 
simplifying assumption may introduce certain deviations between the 
model’s hypothetical scenarios and real – world circumstances.

Furthermore, apart from virulence, the virus transmissibility 
emerges as a pivotal factor influencing governmental interventions and 
individual protective behaviors. For instance, despite the Omicron 
variant exhibiting significantly reduced pathogenicity compared to its 
predecessors, its transmissibility has notably increased. Consequently, 
several countries adopt a cautious stance toward relaxing epidemic 

FIGURE 8

Sensitivity analysis of eight model parameters over continuous time. pimm denotes the proportion of the population possessing innate immunity, βmin 
denotes the lowest point of decrease in social activity, upper and lower bound denote ωup and ωdow, respectively, q denotes the rate of strain mutation, 
p denotes genetic variability, γup and γdow denote the rate of recovery and decline in social activity, respectively.
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control measures, apprehensive that a surge in patient numbers could 
impose an enormous strain on the healthcare system. Moreover, since 
2023, there has been a marked uptick in the incidence of respiratory 
infectious diseases in China (30). In response, the Chinese Center for 
Disease Control and Prevention has formulated an influenza 
vaccination strategy for the 2023–2024 influenza season (30). 
Additionally, the elevated incidence rates have spurred individuals to 
adopt more proactive self  – protection measures and moderately 
increase social distancing (31). These studies underscore that the virus’s 
transmission speed can also influence social distancing practices, 
thereby impacting the trajectory of viral evolution. Whether the 
quantification of virus transmission speed exerts a comparable influence 
on the direction of viral evolution as the hospitalization rate remains a 
subject that warrants further research and empirical validation.

4.3 The role of NPIs in virus evolution 
direction

The evolutionary trajectory of SARS-CoV-2 has garnered sustained 
interest in both academic and public domains in recent years. 
Understanding this trajectory is not only pivotal for predicting epidemic 
trends and formulating public health strategies, but also for establishing 
a theoretical foundation for the scientific management of emerging 
infectious diseases in the future. The evolution of the virus is influenced 
by a complex interaction of both natural and societal factors. In this 
study, we consider the virus mutation rate as a representative natural 
factor and NPIs as societal factors. A genetic algorithm was used to 
simulate the virus’s evolutionary process. The findings reveal that NPIs 
are the primary determinant influencing the direction of viral evolution, 
with the mutation rate playing a secondary yet significant role.

An elevation in the mutation rate gives rise to a greater diversity of 
variants. Subsequently, NPIs selectively favor strains with enhanced 
immune evasion and infectivity, markedly increasing the probability of 
widespread  infections within the population. Furthermore, the 
stringency of NPIs critically influences both the evolutionary path of the 
virus and the progression of the epidemic. Strict NPIs reduce human 
interactions, thereby impeding the virus’s capacity to spread. Conversely, 
more lenient NPIs lead to cyclical outbreaks due to the emergence of 
highly transmissible strains, resulting in a recurrent pattern of epidemic 
resurgence and the subsequent reimplementation of control measures.

4.4 The role of genetic distance in 
quantifying viral variation

As this research does not base itself on molecular biology, the 
analysis of the direction of virus evolution and the mechanisms of 
immune evasion is not approached from the perspectives of genomics 
and protein structures, or immunology. The ability of a variant to 
infect, replicate within, and disseminate among hosts is influenced by 
its genetic distance from previously circulating variants, rendering the 
evolution of antigenic novelty a pivotal factor in determining a 
variant’s reproductive success and fitness (27). Based on this principle, 
we have devised a function that quantifies the probability of reinfection 
as a function of genetic distance, to assess whether variants can cause 
reinfection in individuals who have recovered.

In this context, genetic distance pertains to the count of mutations 
in the genome sequences encoding the spike protein between two 
strains. As the genetic distance between two strains increases, so does 
the number of their genomic mutations, leading to a more 
phylogenetically distant relationship. Consequently, the likelihood 
that a variant can evade antibodies from previous infections and 
reinfect the host escalates. The computation of genetic distance is 
grounded in the structure of the phylogenetic tree. Given that each 
mutation at a genetic locus signifies the emergence of a new variant, 
resulting in an additional branch on the phylogenetic tree, the genetic 
distance can be  ascertained by tallying the number of branches 
separating two strains within the phylogenetic tree (refer to Figure 3a). 
From this, the probability of reinfection can be determined.

4.5 The role of social distance in the spread 
of epidemics

In our analysis of the impact of NPIs on the epidemic, 
we categorized various measures as enhancements to social distancing, 
based on governmental practices in epidemic prevention and control. 
Specifically, the decision to implement NPIs was predicated on the 
hospitalization rate of new infections. While the enforcement of NPIs 
can indeed reduce social activities to some extent, achieving a 
complete absence of interpersonal contact is exceedingly challenging 
due to the considerable social management costs and economic 
repercussions involved. This reality imposes a limit on the degree to 
which social distancing can be increased, namely, the reduction of 
social activity to its minimum feasible level. This limit is indicative of 
the stringency of NPIs implementation, which exhibits marked 
variations across different countries and regions.

For instance, following the outbreak of COVID-19 in Wuhan in 
December 2019, the Chinese government enforced a series of stringent 
NPIs that markedly curtailed people’s movements, thereby reducing the 
effective reproduction number to nearly zero (32, 33). These measures 
remained in place until April of the subsequent year, when the outbreak 
was effectively contained without any significant rebound for an 
extended period. In contrast, some countries opted for a more moderate 
approach, intensifying (or easing) containment measures in response to 
rising (or falling) hospitalization rates. Meanwhile, some developing 
countries struggled to promptly implement effective epidemic 
prevention measures owing to inadequate testing capabilities. Given that 
the majority of countries adopted moderate epidemic control measures, 
we incorporated this approach into our model and devised a social 
activity function to mirror changes in social distancing. Specifically, 
individuals increase their social distancing (and decrease their social 
activity) when the hospitalization rate exceeds an upper threshold, and 
they decrease their social distancing (and increase their social activity) 
when the hospitalization rate falls below a lower threshold.

4.6 Relationship between intervention 
strategies and epidemic trends

The research reveals that the cyclical outbreaks of the epidemic are 
instigated by the persistent emergence of variants with heightened 
transmissibility, coupled with the limited scope of changes in social 
distancing behaviors. When social distancing is increased, the 
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resistance to virus transmission intensifies, leading to a reduction in 
the speed of epidemic spread and maintaining a low level of 
prevalence. However, upon relaxation of these measures due to 
improvements in the epidemic situation, the variants rapidly accelerate 
their spread, thereby initiating a new outbreak cycle. The findings 
indicate that in the event of a novel infectious disease emergence, the 
implementation of stringent epidemic prevention measures in the 
short term enhances the probability of complete disease eradication, 
albeit at the expense of sacrificing immediate economic objectives and 
incurring elevated social management costs. Conversely, opting for 
moderate prevention measures may entail bearing the ongoing social 
costs and health risks associated with the cyclical recurrence of 
epidemic outbreaks.

4.7 Limitations of the study

Firstly, computational constraints limited our model’s population 
size, as individual-based models require more memory than 
differential equation models. Secondly, NPIs were implemented 
based only on hospitalization rates, neglecting other indicators, and 
their effects were uniformly attributed to increased social distancing, 
potentially reducing model accuracy. Thirdly, functions for 
estimating reinfection rates and social activity fluctuations were not 
calibrated with survey data, requiring further validation. Fourthly, 
the model’s mutation rate was adjusted beyond real-world 
observations to highlight outbreak cyclicity (34). Fifthly, the model 
is a theoretical exploration of virus evolution under human 
intervention, not grounded in actual COVID-19 data, potentially 
impacting its realism. Lastly, virulence evolution’s predictability is 
complex, influenced by factors like within-host competition, 
vaccination, and immune interactions (35), which were not 
considered in this study.

In summary, using SARS-CoV-2 as a case study, our research 
employs computer simulations to present a holistic view of 
epidemic dissemination, viral mutation, and the enforcement of 
control measures. It explores the underlying logic governing the 
interplay between viral mutations and NPIs, analyzes the 
trajectories of viral evolution, and provides actionable 
recommendations for prevention and control strategies. Our 
findings reveal that strains capable of widespread transmission 
demonstrate markedly enhanced immune evasion capabilities and 
elevated infectivity relative to other strains. This antigenic 
evolution transpires under the selective pressure exerted by NPIs; 
however, the virulence and emergence timing of these strains 
exhibit no discernible correlation with NPIs. In the event of an 
outbreak, the stricter the implementation of NPIs, the more 
effectively the epidemic’s spread and viral mutation can 
be contained; conversely, lax measures may give rise to cyclical 
outbreaks owing to the continuous emergence of new variants. 
Although the reduced virulence of the Omicron variant and 
increased population immunity have significantly diminished the 
threat posed by SARS-CoV-2, it remains imperative to 
continuously monitor antigenic changes in variants to preempt the 
emergence and outbreak of variants with heightened virulence 
and transmissibility. The conclusions derived from this research 
hold relevance not only for SARS-CoV-2 but also for influenza 

and potential future pathogens characterized by high 
mutation rates.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary material.

Author contributions

ZG: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Resources, Software, Supervision, 
Validation, Visualization, Writing – original draft, Writing – review & 
editing. YC: Data curation, Software, Writing – review & editing. HL: 
Writing – review & editing, Validation, Visualization. GX: Resources, 
Supervision, Writing – review & editing. DY: Writing – review & 
editing, Visualization. ZZ: Writing – review & editing, Visualization. 
YY: Funding acquisition, Project administration, Writing – review & 
editing. ZY: Funding acquisition, Project administration, Writing – 
review & editing. HZ: Funding acquisition, Project administration, 
Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.1542759/
full#supplementary-material

https://doi.org/10.3389/fpubh.2025.1542759
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1542759/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1542759/full#supplementary-material


Guo et al. 10.3389/fpubh.2025.1542759

Frontiers in Public Health 14 frontiersin.org

APPENDIX I

The framework of quantitatively analyzing the relationship between non-
pharmaceutical interventions and the direction of virus evolution using a 
dynamic model. (DOI:10.17632/r7ft6ggy78.1).

APPENDIX II
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