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Introduction: Widespread implementation of pneumococcal conjugate 
vaccines (PCVs)—namely the 7-valent PCV (PCV7), 10-valent pneumococcal 
non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-
CV), and 13-valent PCV (PCV13)—in infant national immunization programs has 
reduced pneumococcal diseases in children, including invasive pneumococcal 
disease (IPD), acute otitis media (AOM), and community-acquired pneumonia 
(CAP). However, as the use of PCV impacts pneumococcal epidemiology, 
identifying the serotypes associated with remaining disease is crucial to guide 
future vaccination strategies for this population.

Methods: We systematically searched the literature for observational studies 
(2006–2020) on pneumococcal serotype distribution in IPD, AOM, and CAP 
among ≤5-year-old children post-PCV introduction. Serotype-specific pooled 
percentage averages were calculated by post-PCV period (post-PCV7 or pooled 
post-PHiD-CV/PCV13), or by PCV product (PHiD-CV or PCV13) to determine 
the contribution of each serotype to a certain clinical manifestation.

Results: Our analysis of 86 studies (47 on IPD, 30 on AOM, and 9 on CAP) shows 
continued reporting of several vaccine serotypes in all clinical manifestations 
post-PHiD-CV/PCV13, particularly serotypes 19A, 3, and 1. In PCV13 settings, 
serotype 19A reporting was reduced but still prevalent compared to PHiD-CV 
settings. Predominant non-PCV13 serotypes varied by clinical manifestation.

Conclusion: Post-PCV implementation, pneumococcal epidemiology in 
children is intricate. The persistence of some vaccine serotypes, variations 
across clinical manifestations, rising antimicrobial resistance, and other factors 
highlight the need for new vaccine technologies providing enhanced and 
broader protection to children.
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1 Introduction

Streptococcus pneumoniae (Spn) is a major bacterial cause of a 
wide range of infections, which can be  broadly grouped into 
invasive pneumococcal diseases (IPD), including meningitis and 
septicemia, and non-invasive diseases, such as acute otitis media 
(AOM) and community-acquired pneumonia (CAP) (1–5). 
Non-invasive forms of these infections may become invasive (e.g., 
when CAP is accompanied by bacteremia) (6, 7). Young children 
(≤5 years of age), older adults (≥65 years of age), and those with 
underlying medical conditions are at increased risk of 
pneumococcal infections (1, 6, 8, 9).

Although all of the at least 100 identified Spn serotypes are 
theoretically capable of causing disease (10), only a subset is 
responsible for most pneumococcal infections. The prevalence and 
distribution of (disease-causing) serotypes vary by age, geographical 
location, clinical manifestation, and antibiotic use (8, 11–17). 
Nonetheless, the major driver of changes in pneumococcal 
epidemiology over time has been the global implementation of 
pneumococcal conjugate vaccines (PCVs) which has led to serotype 
replacement (18). This occurs as serotypes included in the PCV 
decline following vaccination, allowing non-vaccine serotypes to 
expand—a process that typically becomes evident around 4 years 
after vaccine introduction (19). The 7-valent PCV (PCV7; Prevenar/
Prevnar, Pfizer Inc.) (which contains serotypes 4, 6B, 9 V, 14, 18C, 
19F, and 23F) was the first approved PCV and was included in many 
infant national immunization programs (NIPs) between 2006 and 
2008 (20). The pneumococcal non-typeable Haemophilus influenzae 
protein D conjugate vaccine (PHiD-CV, Synflorix, GSK) and 
13-valent PCV (PCV13, Prevenar 13/Prevnar 13, Pfizer Inc.) replaced 
PCV7  in NIPs since 2009 and provided coverage for additional 
serotypes (PHiD-CV contains all PCV7 serotypes + 1, 5, and 7F; 
PCV13 contains all PHiD-CV serotypes + 3, 6A, and 19A) (11). 
Starting from 2015, the World Health Organization (WHO) 
estimated PCV coverage in 1-year-old children in high-income 
countries to be ≥80% (21). In low-and middle-income countries, 
PCV coverage has been lower, with estimates of 28 to 60% in 2015, 
slowly increasing in subsequent years (21).

Despite the considerable reduction in disease burden by infant 
vaccination with PHiD-CV and PCV13 (22–27), Spn remains a major 
cause of morbidity and mortality in children (28). Monitoring the 
evolution of pneumococcal epidemiology to evaluate the (long-term) 
effectiveness of vaccines and vaccination strategies is critical. Spn 
serotype distribution is best characterized for IPD, as it is a reportable 
disease, and serotyping is routinely conducted as part of many IPD 
surveillance programs (11). However, IPD-focused surveillance 
strategies may not reflect the true prevalence of pneumococcal 
serotypes. CAP (mainly in adults) and AOM (in children) represent 
the highest proportion of the overall pneumococcal disease burden (8, 
29), but data on serotypes causing these manifestations are scarcer. 
This is because their diagnosis is often based on clinical presentation 
without routine collection of biological specimens, as obtaining 
samples for etiological diagnosis can be  challenging and the 
conventional diagnostic tools for CAP exhibit limited sensitivity 
(11, 30–33).

The objective of this systematic literature review (SLR) was to 
summarize the global evidence from published observational studies 

on the serotype distribution in both invasive and non-invasive 
pneumococcal disease among children ≤5 years of age after the 
implementation of PHiD-CV and PCV13, compared to the post-
PCV7 era. With the recent introduction of the 15-valent (PCV15, 
Vaxneuvance, Merck Sharp & Dohme LLC, a subsidiary of Merck & 
Co., Inc. [MSD]) and 20-valent (PCV20, Prevenar 20/Prevnar 20, 
Pfizer Inc.) PCVs in infant NIPs, whose epidemiological impact is still 
to be  determined, along with ongoing pneumococcal vaccine 
development, we aimed to better understand the impact of PHiD-CV 
and PCV13—both widely implemented for many years—on the 
pneumococcal epidemiology. Specifically, we  focused on the 
contribution of individual serotypes to remaining IPD, CAP, and 
AOM in children.

2 Methods

This analysis is part of a larger SLR that aimed to assess the 
effect of widespread PHiD-CV/PCV13 usage in infants on the 
serotype distribution in remaining invasive and non-invasive 
pneumococcal disease in children aged ≤5 years and adults aged 
≥65 years. This manuscript presents the results in children. Results 
in older adults are summarized separately (34). The SLR was 
conducted in accordance with its protocol and with the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA) guidelines (35).

2.1 Systematic search strategy

PubMed and EMBASE were searched for articles published from 
1 January 2006 to 31 December 2020 on pneumococcal serotype 
distribution in IPD, CAP, or AOM after infant uptake of PCV7, 
PHiD-CV, or PCV13. The 2006 cutoff was chosen because several 
countries (including the United  States, Canada, Australia, the 
United Kingdom, France, Belgium, Germany, and Italy) had already 
universally introduced PCV7 by 2006. We used a 2020 cutoff to avoid 
the immediate and rebound effects of the coronavirus disease 2019 
(COVID-19) pandemic, an exceptional event that significantly 
disrupted surveillance systems, vaccination programs, medical care 
access, and disease trends for several years (36–39). Post-PHiD-CV/
PCV13 serotyping data were of primary interest; data collected after 
PCV7 implementation were included to assess changes in serotype 
distribution before and after PHiD-CV/PCV13 uptake. A broad search 
strategy was applied using combinations of search strings, consisting 
of terms for Spn serotypes, PCVs, and pneumococcal diseases 
(Supplementary methods).

2.2 Eligibility criteria and study selection

All eligibility criteria were determined upfront in the protocol and 
were applied at screening and the data extraction phase.

As many studies on IPD were expected, eligible IPD studies were 
first limited to SLRs/meta-analyses. Since only 2 SLRs were retrieved, 
both with several overlapping studies among their respective datasets 
(40, 41), eligibility was expanded, as predefined, to include the most 
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recent observational studies published between 2018 and 2020. Only 
studies reporting serotyping data of at least 30 isolates obtained from 
sterile sites were included (42).

For AOM and CAP, only observational studies were included. 
AOM was to be  defined by clinical diagnosis (the presence of 
inflammation of the middle ear, associated with effusion, accompanied 
by a rapid onset of symptoms, and signs of an ear infection) (43, 44). 
Only studies that reported serotyping data of at least 30 isolates from 
middle ear fluid samples were included.

CAP was to be  defined as pneumonia acquired outside of the 
hospital (45), and studies reporting serotyping data on samples obtained 
from either sterile sites (aligned with definition of invasive CAP) or 
non-sterile sites (non-invasive CAP) were included. Given the overall 
limited number of studies on this outcome in children aged ≤5 years, no 
distinction was made between non-invasive and invasive CAP, and the 
minimal number of reported serotyped isolates was set at 20 instead of 30.

Further details on inclusion/exclusion criteria and study selection 
workflow are provided in Supplementary methods, 
Supplementary Tables S1–S3.

2.3 Data extraction and analysis

The contribution of each serotype to a certain clinical 
manifestation was determined by calculating pooled percentage 
averages for each serotype using the following formula:

 

( )
( )

∗
  

100
    

sum number of samples per serotype
sum total number of samples serotyped

whereby the “sum” corresponds to the total number of samples 
across studies included in the corresponding analysis.

For each clinical manifestation, studies were categorized into 2 
vaccine periods—post-PCV7 or post-PHiD-CV/PCV13 (pooled)—
based on information provided in the publications. To increase 
robustness and address limitations in interpreting data from settings 
with low PCV uptake, the primary analysis for each clinical 
manifestation was restricted to data from countries where the PCV 
was implemented through infant NIPs; studies from countries with 
PCV introduction limited to private markets were excluded. A 
sensitivity analysis was conducted for each clinical manifestation on 
all identified studies, including those in countries that implemented 
PCVs in the private market only. Furthermore, subgroup analyses on 
all eligible studies were conducted based on the PCV product 
(PHiD-CV or PCV13) for each clinical manifestation.

Serotype-specific pooled percentage averages were reported only 
if data from at least 5 studies were available for that specific serotype, 
to ensure that serotype distribution was based on a sufficiently robust 
number of studies and to reduce the influence of isolated or potentially 
biased findings. This criterion was not applied for CAP-related 
analyses given the limited number of studies. Similarly, it was not 
applied to the subgroup analyses per PCV product.

All analyses were performed with R studio and were descriptive. No 
formal statistical testing was performed because of the methodological 
heterogeneity in design, sampling methods, and population selection of 
the included studies. The data extraction procedure and study 
categorization are detailed in Supplementary methods.

3 Results

3.1 Study selection and characteristics

After screening 3,822 publications, 126 studies were selected for 
data extraction, of which 109 were included in the final analysis. The 
main reason for study exclusion was the lack of sufficient details for 
further analysis. Among the selected studies, 86 covered serotype 
distribution data in children ≤5 years. Of these, 47 reported data on 
IPD (46–92), 30 on AOM (93–122), and 9 on CAP (123–131) (Figure 1). 
Of the 86 studies included, most were conducted in Europe (n = 42), 
followed by Asia (n = 21), South America (n = 7), North America 
(n = 6), Africa (n = 5), the Middle East (n = 4), and Australia (n = 1).

3.2 IPD

3.2.1 IPD study characteristics
Among the 47 IPD-related publications, 13 reported data 

following PCV7 implementation and 38 following PHiD-CV or 
PCV13 (Supplementary Table S4); 4 reported data following both 
PCV7 and PHiD-CV/PCV13. Overall, serotyping data from 15,511 
isolates from IPD cases were extracted from the 38 post-PHiD-CV/
PCV13 studies. Most of these (32/38 studies, 84%) were conducted in 
a setting where the PCV was implemented through an infant NIP, and 
where PCV7 had been used previously. Most of the included post-
PHiD-CV/PCV13 studies (32/38 studies, 84%) contained post-PCV13 
data (1–9 years post-introduction), and 8 (21%) contained post-
PHiD-CV data (2–6 years). Two studies were conducted in a setting 
where both PHiD-CV and PCV13 were implemented, each providing 
separable data per PCV product. In one study, data were 
indistinguishable due to the concurrent use of both PCV products and 
could thus not be used for the stratified analysis per PCV product. 
One post-PCV13 study presented inconsistent data that rendered it 
unsuitable for the stratified analysis per PCV product.

3.2.2 Serotype distribution in children with IPD 
post-PHiD-CV/PCV13 uptake

Post-PHiD-CV/PCV13 implementation through infant NIPs 
(primary analysis, 32 studies), the top 10 serotypes responsible for 
causing IPD were 12F (pooled percentage average of 8.9%), 24F (8.6%), 
19A (6.9%), 6A (6.0%), 33F (5.5%), 1 (5.4%), 10A (5.0%), 3 (4.9%), 
15A (4.6%), and 22F (4.4%) (Figure 2A, Supplementary Table S5). The 
sensitivity analysis, including 6 additional studies where the PCV was 
introduced to the private market only (38 studies), showed a shift in 
the rankings of these serotypes. In this analysis, serotype 19A (9.9%) 
was the leading serotype, followed by 24F (8.4%), 12F (8.3%), 1 (6.5%), 
33F (5.2%), 3 (5.1%), 6A (4.9%), 10A (4.7%), 15A (4.5%), and 22F 
(4.2%) (Supplementary Figure S1). Overall, this suggests that vaccine 
implementation through NIPs, and consequently increasing vaccine 
uptake, provided additional impact on vaccine-type disease, 
particularly on serotype 19A. Nevertheless, post-PHiD-CV/PCV13, 
serotypes 19A, 6A, and 3, included in PCV13, and serotype 1, included 
in both PHiD-CV and PCV13, still contributed frequently to 
remaining IPD (Figure 2A, Supplementary Figure S1).

In PHiD-CV settings, serotype 19A was prominently reported 
(27.6%), followed by serotypes 6A (7.6%), 3 (3.9%), and 1 (1.0%) 
(Figure  2B). In PCV13 settings, serotype 19A still contributed to 
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disease, but at much lower frequency (8.1%) (Figure  2C), with 
differing contributions for serotypes 6A (4.7%), 3 (5.3%), and 1 (7.3%).

Post-PCV7 in NIP settings, 19A was identified as the leading serotype 
(24.7%), followed by serotype 24F (15.0%) (Supplementary Figure S2).

3.3 AOM

3.3.1 AOM study characteristics
Among the 30 included AOM-related publications, 22 reported 

serotype distribution data following the adoption of PCV7 and 8 
following PHiD-CV or PCV13 (Supplementary Table S4). Two studies 
reported data from both PCV periods. Overall, data from 731 
serotyped isolates from AOM cases were extracted from the 8 post-
PHiD-CV/PCV13 studies, which were all conducted in NIP setting. 

Of these, 5 studies (63%) were in a setting of PCV13 use (4–8 years 
post-introduction), 2 (25%) in a setting of PHiD-CV use (6–7 years), 
and 1 in context of mixed PHiD-CV/PCV13 use (4 years). The post-
PHiD-CV studies were conducted in locations without previous PCV7 
use, while the PCV13 studies were in a location with previous 
PCV7 use.

3.3.2 Serotype distribution in children with AOM 
post-PHiD-CV/PCV13 uptake

Post-PHiD-CV/PCV13 implementation, 8 serotypes were reported: 
19F (11.9%), 3 (8.5%), 19A (6.9%), 23A (5.0%), 11A (4.8%), 35B (4.4%), 
23B (4.0%), and 21 (2.8%) (Figure 3A, Supplementary Table S6). This 
suggests that serotype 19F, included in both PHiD-CV and PCV13, as 
well as serotypes 3 and 19A, included in PCV13, contributed frequently 
to remaining AOM.

In PHiD-CV settings, the contribution of serotypes 19F, 3, and 19A 
was 16.1, 4.7, and 5.8%, respectively (Figure 3B). In PCV13 settings, their 
contribution was 5.9, 14.8, and 4.5%, respectively (Figure 3C).

Post-PCV7, serotype 19A clearly dominated rankings (30.5%), 
followed by serotypes 3 (9.2%) and 19F (7.7%) (Supplementary Figure S3).

3.4 CAP

3.4.1 CAP study characteristics
Nine CAP-related studies were identified, of which 6 were 

performed following the adoption of PCV7 and 3 following PHiD-CV 
or PCV13 (Supplementary Table S4). Most CAP studies identified Spn 
from blood cultures, confirming bacteremic CAP cases. Overall, data 
from 235 serotyped isolates from CAP cases were extracted post-
PHiD-CV/PCV13, all from studies in NIP context. Of the 3 post-
PHiD-CV/PCV13 studies, 1 (33%) contained data in PHiD-CV 
setting (5 years of use), and 2 (67%) in PCV13 setting (6–7 years). The 
post-PHiD-CV study was conducted in a location without previous 
PCV7 use; the PCV13 studies were conducted in a location with 
previous PCV7 use.

3.4.2 Serotype distribution in children with CAP 
post-PHiD-CV/PCV13 uptake

Post-PHiD-CV/PCV13 adoption, serotypes 19A (18.2%) and 1 
(16.6%) were the most frequently reported serotypes in CAP cases. 
These were followed by serotypes 7F (6.2%), 6A (5.1%), 35B (5.1%), 
16F (4.7%), 22F (4.6%), 23B (4.6%), 8 (4.3%), and 11A (4.3%) 
(Figure 4, Supplementary Table S7).

Serotype 19A was the main serotype in the PHiD-CV setting 
(28.2%) (Supplementary Figure S4), while serotype 1 was predominant 
in PCV13 settings (24.2%) (Supplementary Figure S5).

Post-PCV7, serotypes 1 (21.0%) and 19A (19.7%) were 
predominantly identified (Supplementary Figure S6).

4 Discussion

Our SLR indicates that despite widespread PCV implementation, 
some vaccine serotypes were still frequently reported. Particularly 
serotype 19A, which dominated rankings across all clinical 
manifestations post-PCV7, was still commonly identified, although its 
pooled percentage average appeared reduced in PCV13 settings. 

FIGURE 1

PRISMA flow chart of the systematic literature search. #SLRs on IPD, 
records on AOM that exclusively reported serotypes from 
nasopharyngeal samples, and records with insufficient reporting 
details, were excluded from the data analysis. More information can 
be found in the methods section. *Some of the records included in 
this review also contain data on adults ≥65 years (n = 11), but these 
datapoints were not included in the analysis on children ≤5 years. 
**Records containing only data on adults ≥65 years were excluded 
for the purpose of this publication. n, number of records; SLR, 
systematic literature review; IPD, invasive pneumococcal disease; 
CAP, community-acquired pneumonia; AOM, acute otitis media.
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FIGURE 2

Serotype distribution in invasive pneumococcal disease among children ≤5 years of age (A) post-PHiD-CV/PCV13 implementation through infant 
national immunization programs (n = 32), (B) post-PHiD-CV (n = 7), and (C) post-PCV13 (n = 31) uptake in infants (either through infant national 
immunization programs or private markets). The top 20 serotypes are shown. Serotypes are represented by colors corresponding to the lowest valency 
PCV product in which they are included. In the PCV legend, the additional serotypes included in the product are relative to the next lower valency 
product. Pooled percentage averages were calculated for each serotype individually, thus the sum of all serotypes may exceed 100%. For panel A, 
serotype-specific pooled percentage averages were calculated only if 5 or more studies reported on the respective serotype. For panel B and C, the 
pooled percentage averages were calculated irrespective of the number of studies reporting on it. For panel B, although the legend includes all PCVs, 
no PHiD-CV-specific serotypes were identified in the top-20 serotypes. IPD, invasive pneumococcal disease; n, number of studies that were included 
in the analysis; NIP, national immunization program; PCV, pneumococcal conjugate vaccine; PCV7, 7-valent PCV; PCV13, 13-valent PCV; PHiD-CV, 
pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine.
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FIGURE 3

Serotype distribution in acute otitis media among children 
≤5 years of age (A) post-PHiD-CV/PCV13 implementation 
through infant national immunization programs (n = 8), (B) post-
PHiD-CV (n = 2), and (C) post-PCV13 (n = 5) uptake in infants 
(either through infant national immunization programs or private 
markets). The top 20 serotypes are shown. Serotypes are 
represented by colors corresponding to the lowest valency PCV 
product in which they are included. In the PCV legend, the 
additional serotypes included in the product are relative to the 
next lower valency product. Pooled percentage averages were 
calculated for each serotype individually, thus the sum of all 
serotypes may exceed 100%. For panel A, serotype-specific 
pooled percentage averages were calculated only if 5 or more 
studies reported on the respective serotype. For panel B and C, 
the pooled percentage averages were calculated irrespective of 
the number of studies reporting on it. AOM, acute otitis media; n, 
number of studies that were included in the analysis; NIP, 
national immunization program; PCV, pneumococcal conjugate 
vaccine; PCV7, 7-valent PCV; PCV13, 13-valent PCV; PHiD-CV, 
pneumococcal non-typeable Haemophilus influenzae protein D 
conjugate vaccine.

Serotype 3 continued to be regularly detected in IPD and AOM cases 
post-PHiD-CV/PCV13, across both PHiD-CV and PCV13 settings. 
Serotype 1 was another highly common vaccine serotype detected in 
IPD and CAP cases in the post-PCV7 era, that persisted post-
PHiD-CV/PCV13 adoption (mostly in PCV13 settings); in contrast, 
this serotype contributed minimally to AOM in either of the 2 PCV 
periods. In AOM, serotype 19F, which was already included in PCV7, 
remained prevalent post-PHiD-CV/PCV13 implementation, though 
mostly in PHiD-CV settings without previous PCV7 use.

Our study also indicated an increase in several non-PCV13 
serotypes post-PHiD-CV/PCV13 introduction compared to the post-
PCV7 era. In IPD, serotypes 12F and 24F were frequently reported. 
Common non-PCV13 serotypes detected in AOM and CAP were 
11A, 35B, and 23B.

This SLR presents a comprehensive summary that may extend 
beyond the pivotal PCV Review of Impact Evidence (PRIME) SLR on 
IPD conducted by the WHO in 2017 (132). Our review covers a 
broader scope of serotype-specific data across the 3 major clinical 
manifestations of pneumococcal disease—namely IPD, AOM, and 
CAP. While the PRIME report, based on published impact and 
effectiveness data up to 2017, underscored the impact of PCV13 on 
serotype 19-mediated IPD, it noted insufficient evidence to evaluate 
the impact on serotypes 3 and 6A. By extending our analyses up to 
2020, we potentially captured more recent insights on these serotypes, 
and on those not covered in the earlier PRIME analysis.

Parallels of our IPD data were also noted with the ongoing, global 
Pneumococcal Serotype Replacement and Distribution Estimation 
(PSERENADE) project, (22, 133) a significant IPD study that used 
“raw” surveillance data potentially less influenced by serotype 
reporting bias (22, 133). Similar to our observations, these recent data 
collected between 2015 and 2018 show that serotypes 19A and 3 were 
the leading serotypes, with serotype 19A mainly detected in PHiD-CV 
settings and serotype 3  in both PHiD-CV and PCV13 settings. 
Serotype 6C was among the leading serotypes at PHiD-CV sites in the 
PSERENADE study, but scarcely reported in both PHiD-CV and 
PCV13 settings in our IPD analysis. In contrast to our analysis, 
serotypes 6A and 1 were contributing minimally to IPD in the 
PSERENADE study, which may be due to differences in geographical 
diversity or maturity of the PCV programs. Our IPD findings also 
align with other SLRs/meta-analyses that showed that serotypes 19A 
and 3 were the main IPD serotypes post-PHiD-CV/PCV13 (41, 134–
137). Furthermore, several of the most prominent non-PCV13 
serotypes reported by the PSERENADE project (22, 133) and another 
SLR on individual serotypes (41)—in particular 10A, 12F, 22F, 24F, 
and 33F—were also highly ranked in our IPD analysis.

AOM and CAP represent the largest burden of pneumococcal 
disease, but serotype distribution data in these manifestations are 
scarce. Our AOM analysis confirmed the observation of a recent 
AOM-focused SLR that 19F, 3, and 19A were the predominant PCV13 
serotypes associated with AOM post-PHiD-CV/PCV13 
implementation (138).

While our CAP analysis should be interpreted with caution due 
to the low number of included studies, PCV13 serotypes 1 and 19A 
still seemed to dominate rankings in the post-PHiD-CV/PCV13 
period, similar to the post-PCV7 period. Serotype 3, commonly 
reported post-PCV7  in CAP cases, was nearly not reported post-
PHiD-CV/PCV13. Given that our search strategy for CAP studies 
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mostly retrieved publications on invasive cases, our CAP data might 
be  largely representative of this smaller CAP population (139). 
Importantly, the CAP and IPD results might be partially overlapping, 
since 12–16% of IPD patients aged <2 years are estimated to have 
invasive CAP (140).

The persistence of disease caused by particular vaccine serotypes 
is probably multifactorial. One factor may be the variation in PCV 
effectiveness for different serotypes, e.g., PCV13 effectiveness against 
serotype 3 has not been consistently demonstrated (134, 141) and 
PHiD-CV has not been effective at controlling 19A-mediated disease 
(11, 142). Although our analysis excluded studies involving 
immunocompromised children and those with other comorbidities, 
which are well-known risk factors for vaccine failure (143–145), the 
remaining vaccine-type disease may be  partially attributed to 
unreported underlying comorbidities or other individual risk factors 
(146–149). Lastly, studies have suggested that vaccine and 
antimicrobial pressure can both induce clonal changes and capsular 
switching, leading to the genetic transformation of virulent vaccine 
serotypes into variants that escape vaccine-mediated immunity, 
thereby being able to occupy the ecological niche (150–156).

PCV15 and PCV20 were recently approved for use in children and 
adults in different countries. Also the first pneumococcal vaccine 
specifically designed for adults, a 21-valent PCV (PCV21, Capvaxive, 

Merck Sharp & Dohme LLC, a subsidiary of Merck & Co, Inc., [MSD]), 
has been recently introduced (157). In addition to these, some regionally 
used PCVs are contributing to the expanding pneumococcal vaccine 
landscape, though their broader impact remains more limited (158, 
159). Considering that the full impact of a PCV is only evident after 
about 4 years, provided high immunization rates are achieved, it is too 
soon to evaluate changes in pneumococcal epidemiology following the 
introduction of these new PCVs (19). In addition, since PCV15 and 
PCV20 were licensed based on immunological non-inferiority 
compared to PCV13, their potential benefit on disease remains to 
be  determined (157, 160–164). Current pneumococcal vaccine 
technologies have also been shown to exert carrier-induced immune 
suppression—a phenomenon in which the antibody response to the 
carrier protein compromises the response to the serotype 
polysaccharide—which increases as the number of glycoconjugates 
(valencies) included in PCVs increases (165). This may explain why 
phase 3 trials evaluating 3- and 4-dose infant vaccination series of 
PCV20 showed that immune responses to some serotypes did not meet 
some pre-specified statistical non-inferiority criteria compared to 
PCV13 (162, 163). Our results also highlight differences in 
pneumococcal epidemiology across the different clinical manifestations. 
Current PCVs do not cover the full spectrum of pneumococcal diseases, 
potentially leaving gaps in protection. Additional factors amplifying 

FIGURE 4

Serotype distribution in community-acquired pneumonia among children ≤5 years of age post-PHiD-CV/-PCV13 implementation through infant 
national immunization programs (n = 3). The top 20 serotypes are shown. Serotypes are represented by colors corresponding to the lowest valency 
PCV product in which they are included. In the PCV legend, the additional serotypes included in the product are relative to the next lower valency 
product. Pooled percentage averages were calculated for each serotype individually, thus the sum of all serotypes may exceed 100%. Serotype-specific 
pooled percentage averages were calculated irrespective of the number of studies reporting on it. Given the limited number of studies on CAP, results 
from the subgroup analyses per PCV product need to be interpreted with caution and are included in the Supplementary results. CAP, community-
acquired pneumonia; n, number of studies that were included in the analysis; PCV, pneumococcal conjugate vaccine; PCV7, 7-valent PCV; PHiD-CV, 
pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine; PCV13, 13-valent PCV.
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serotype diversity, such as geographical location and the age of the 
at-risk population (41, 135), make it challenging for current vaccines to 
provide complete protection. Therefore, novel pneumococcal 
vaccination strategies and technologies are needed that can provide 
enhanced and broader protection.

Our review has several limitations. As the search on studies was 
limited to those published up to 2020, the collected data might not 
reflect the most up-to-date pneumococcal epidemiology. Nevertheless, 
this time restriction was chosen to avoid introducing effects of the 
COVID-19 pandemic, as the social preventive measures that were 
applied led to an intermittent global decrease in Spn transmission and 
subsequent rebound effect (16). Several studies evaluating serotype 
distribution in IPD cases after relaxation of the preventive measures 
indicated a generally similar serotype distribution as before the 
pandemic. IPD was mainly caused by non-PCV13 serotypes, but several 
vaccine serotypes (including 3 and 19A) were still prominent (166–170).

It was not feasible to accurately account for the heterogeneity 
inherent to observational studies. Overall, the study heterogeneity did 
not allow us to perform a meta-analysis. Instead, serotype-specific 
pooled percentage averages were calculated for this descriptive analysis, 
which considered for each serotype the sizes of the studies reporting on 
the respective serotype. This approach accounts for the varying 
availability of data for each serotype across studies, which allows for an 
estimation that reflects the prevalence of each serotype within the subset 
of studies reporting on it. However, it is a less robust approach compared 
to meta-analysis, and it does not allow for confirmatory statistical 
analyses or conclusive outcomes. Additionally, it may disproportionally 
bias the serotype distribution to certain serotypes with higher reporting 
rates. For our main post-PHiD-CV/PCV13 analyses, we focused only 
on serotypes that were reported by at least 5 studies, to reduce the impact 
of isolated or potentially biased findings. Nevertheless, this may have 
resulted in the omission of an important emerging serotype reported in 
a small number of studies. In addition, our analyses are largely driven by 
studies in high-income countries, which mostly have high-quality 
surveillance systems in place. As serotype circulation, vaccination 
programs and uptake, and pneumococcal disease burden differ in 
developing countries, this may limit the generalizability of our findings 
(21, 171). Lastly, the availability of studies conducted in PHiD-CV 
settings was limited and unbalanced in comparison to those conducted 
in PCV13 settings. Therefore, our analyses remained descriptive, and the 
outcomes and comparisons should be interpreted with caution.

In conclusion, while the overall incidence of pneumococcal 
disease has consistently declined with the introduction of PHiD-CV 
and PCV13, the serotype distribution responsible for remaining 
disease has changed, with non-PCV13 serotypes becoming 
predominant. Several vaccine serotypes—in particular serotypes 19A, 
1, and 3—are still responsible for a substantial proportion of remaining 
invasive and non-invasive pneumococcal disease. Continued 
monitoring of serotype evolution therefore remains critical to appraise 
optimal vaccination strategies for the prevention of pneumococcal 
disease, including new vaccine technologies that could provide 
broader and improved protection in children.
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