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Background: Disease presentation and progression can vary greatly in 
heterogeneous diseases, such as COVID-19, with variability in patient outcomes, 
even within the hospital setting. This variability underscores the need for tailored 
treatment approaches based on distinct clinical subgroups.

Objectives: This study aimed to identify COVID-19 patient subgroups with 
unique clinical characteristics using real-world data (RWD) from electronic 
health records (EHRs) to inform individualized treatment plans.

Materials and methods: A Factor Analysis of Mixed Data (FAMD)-based 
agglomerative hierarchical clustering approach was employed to analyze 
the real-world data, enabling the identification of distinct patient subgroups. 
Statistical tests evaluated cluster differences, and machine learning models 
classified the identified subgroups.

Results: Three clusters of COVID-19  in patients with unique clinical 
characteristics were identified. The analysis revealed significant differences 
in hospital stay durations and survival rates among the clusters, with more 
severe clinical features correlating with worse prognoses and machine learning 
classifiers achieving high accuracy in subgroup identification.

Conclusion: By leveraging RWD and advanced clustering techniques, the 
study provides insights into the heterogeneity of COVID-19 presentations. The 
findings support the development of classification models that can inform more 
individualized and effective treatment plans, improving patient outcomes in the 
future.
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Introduction

Over the past 4 years, more than seven million confirmed deaths 
have been directly attributed to COVID-19 (1). However, not all 
patients who are diagnosed with this infection are the same. 
COVID-19 is a disease with heterogenous clinical course, with some 
patients remaining asymptomatic while others require hospitalization 
(2, 3). Even within the hospital, there is significant variability--some 
patients require oxygen support or mechanical ventilation, whereas 
others do not. Understanding underlying disease presentation and 
connecting it with disease prognosis and severity is crucial for 
improving patient outcomes (4, 5). Equally important is examining 
how clusters of COVID-19 patients with similar characteristics and 
prognoses (hereafter referred to as “subtypes”) were treated during 
their hospitalization (6). Early on in the global pandemic, little 
information was available to guide treatment. When approved 
therapies were lacking, clinicians often resorted to using existing 
drugs approved for other indications (i.e., off-label use) based on 
clinical experience, which led to the utilization of a wide variety of 
available treatments for this disease. Evaluating real-world data 
(RWD) on such off-label use can provide clinical evidence that can 
support bedside decision-making and may help identify potentially 
useful treatments.

Analyzing treatment patterns can provide insights into the 
management of the disease throughout the pandemic, especially as 
evidence into the effectiveness of off-label therapies was being 
generated. This approach not only sheds light on COVID-19 but also 
can inform the identification and treatment of subtypes within other 
critical care diseases. By identifying whether patient subtypes of given 
diseases exist and recognizing commonalities and differences in their 
treatment, healthcare providers can tailor interventions more 
effectively (7).

Real-world data (RWD) sources, such as the electronic health 
record (EHR), are a promising source of information that can 
significantly enhance research (e.g., drug repurposing, patient 
phenotyping guidance, and disease progression) when utilized in an 
observational manner (8). However, disparate EHR systems are not 
constructed for harmonization and standardization between 
healthcare systems, making observational research at a multi-
institutional scale incredibly difficult. Groups like the Observational 
Health Data Sciences and Informatics (OHDSI) community have 
developed publicly available tools for automating data extraction, 
harmonization, standardization, and quality validation to support the 
Observational Medical Outcomes Partnership (OMOP) Common 
Data Model (CDM). However, this is a task that can be resource-
intensive, especially for smaller health systems. To alleviate the burden 
of this task, the Critical Path Institute, along with the US Food and 
Drug Administration (FDA), collaborated with multiple partners 
(including the Society of Critical Care Medicine, the Infectious 
Diseases Data Observatory, Johns Hopkins University, Mayo Clinic, 
and Emory University) to facilitate the generation of an OHDSI stack 
of these publicly available tools meant to automate RWD extraction 
and harmonization, boosting real-world evidence generation in 
COVID-19 and beyond (9).

The objective of this study was to evaluate the utility of the 
OHDSI stack by building upon previous research where subtypes 
of COVID-19 patients were identified through a Factor Analysis 
of Mixed Data (FAMD)-based clustering analysis on 1,413 

COVID-19 inpatients from a single institution (10). However, our 
study incorporates a broader dataset, allowing for a more 
comprehensive understanding of patient subtypes. By overlaying 
treatment patterns on top of clustering of patient subtypes, we aim 
to provide a nuanced view of how COVID-19 was managed and 
to draw parallels that could benefit the treatment of other diseases 
in critical care settings. This work demonstrates the OHDSI stack’s 
potential in providing real-world data (RWD) to support and 
guide decision-making in the treatment and resource allocation 
of emerging and existing diseases which lack adequately 
approved therapy.

Methods

Participants

This study analyzed index hospitalizations for acute COVID-19 
treated at eight US healthcare institutions from March 2020 to March 
2024. At each institution, an extract, transform, and load (ETL) 
process was employed to collate and standardize the data into the 
OMOP CDM (9), including laboratory measures and vital signs, 
administered drugs, exposures to devices (e.g., oxygen support), 
performed procedures, and comorbidities. This standardized approach 
ensured uniformity and comparability of the data collected from 
various sources. The inclusion criteria for the study were inpatients 
admitted for COVID-19 who were at least 18 years of age and had 
complete demographic information (including age, sex, and race/
ethnicity). Similar to the process developed by Leese et al. (11) to 
validate inpatients in an acute care setting, a threshold of 50 
“resources” (i.e., records in the measurement, drug exposure, device 
exposure, observation, procedure, and visit table within the OMOP 
CDM) was used to confirm a patient’s admission into an inpatient 
setting. All measures in this study were captured in the first 2 days of 
hospitalization. This included laboratory measures and vital signs that 
were previously proven to have power in predicting outcomes in 
COVID-19, such as markers of liver injury (e.g., aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), and total 
bilirubin) (12, 13), kidney function (14), blood measures such as 
lymphocytes, basophils, and eosinophils (15–17), serum creatinine 
(18), heart rate (19), and respiratory rate (20) with greater than 90% 
data completeness, ensuring the robustness of the analysis. Conversely, 
any laboratory measures and vital signs with more than 10% missing 
data were excluded from the study, including c-reactive protein (CRP), 
lactate dehydrogenase (LDH), and d-dimer. The values of the included 
laboratory measures were examined, and any values outside of clinical 
plausibility were removed (21).

Pinpointing important attributes in 
COVID-19

As a prior step to clustering, a least absolute shrinkage and 
selection operator (LASSO) regression model was utilized on the 
included predictors to examine their informative ability, with 28-day 
all-cause mortality as the outcome of interest. In LASSO regression, a 
predictor variable’s regression coefficient is constrained such that 
those with either redundancy with other variables or with the least 
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influence on the outcome are shrunk to zero, excluding them from the 
model. The cohort was split randomly into a training and “holdout” 
testing set. The excluded variables were assessed, and the model was 
validated through evaluating performance through metrics including 
precision, recall, and F1-score.

Clustering analysis for identification of 
COVID-19 patient subtypes

The study employed Factorial Analysis of Mixed Data (FAMD) 
(22) followed by hierarchical clustering to identify distinct 
COVID-19 patient subtypes using the predictors that were 
maintained following factor selection through LASSO regression. 
This method ensures that the dimensionality of the data is 
decreased, given that although a factor selection method was 
applied, multicollinearity may still exist in the data, especially 
between different forms of the same measures. The optimal number 
of clusters was determined using the NbClust package (23). To 
assess the differences in prognosis among the identified COVID-19 
clusters, we  examined the length of hospital stay and mortality 
rates. Survival curves were generated to provide a visual 
representation of the prognosis differences between the clusters.

Statistical analysis

The normality of the data was tested using the Shapiro–Wilk test, 
while homogeneity of variances was assessed with Bartlett’s test. 
Differences among clusters were analyzed using ANOVA for normally 
distributed data and the Kruskal-Wallis test for non-normally 
distributed data. For categorical data, the Chi-Squared test was 
employed. Statistical significance was set at a p-value of less than 0.05. 
Box plots were created using the ggplot2 R package1.

Construction of classifiers

To classify the COVID-19 patient subtypes identified through 
clustering, three machine learning models were constructed. 
Specifically, a support vector machine (SVM), Random Forest, and 
XGBoost model were trained. Predictor variables included the factors 
that were utilized for clustering, with the response variable being the 
FAMD-based clustering results. Two random sites were used as a 

1 https://cran.r-project.org/web/packages/ggplot2/index.html

FIGURE 1

Flow chart showing the selection of patients, starting from the initial cohort to the final cohort.
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TABLE 1 Summary of the data contributed by the partner institutions in 
this study, including demographic characteristics, laboratory findings, 
comorbidities, oxygen support levels (characterized into “no oxygen,” 
“oxygen support, not including mechanical ventilation,” and “invasive 
mechanical ventilation”), and outcomes, including length of 
hospitalization and 28-day all-cause mortality.

Factors N = 53,229

Demographics

Sex

  Male 27,919 (52.4)

  Female 25,310 (47.6)

Age 66 (52–77)

Race and ethnicity

  White 34,301 (64.4)

  African American 8,262 (15.5)

  Hispanic 2,103 (3.9)

  Other 8,563 (16.1)

Laboratory measurements

Alanine aminotransferase (ALT) level (U/L)

  Maximum 30 (19–51)

  Minimum 25 (16–40)

  Median 27 (18–45)

  Mean 27.5 (18–45.7)

Aspartate aminotransferase (AST) level (U/L)

  Maximum 38 (25–61)

  Minimum 29 (20–44)

  Median 33 (23–52)

  Mean 33.5 (23–53)

Serum creatinine (mg/dL)

  Maximum 1.05 (0.81–1.52)

  Minimum 0.85 (0.66–1.17)

  Median 0.9 (0.73–1.32)

  Mean 0.94 (0.74–1.34)

Leukocyte count (× 109/L)

  Maximum 8.2 (6–11.6)

  Minimum 5.72 (4.1–8)

  Median 6.85 (5–9.5)

  Mean 6.96 (5.13–9.67)

Lymphocyte count (× 109/L)

  Maximum 1.16 (0.8–1.69)

  Minimum 0.8 (0.5–1.2)

  Median 0.99 (0.67–1.4)

  Mean 0.99 (0.67–1.4)

Monocyte count (× 109/L)

  Maximum 0.6 (0.4–0.9)

  Minimum 0.4 (0.22–0.6)

  Median 0.5 (0.35–0.75)

  Mean 0.52 (0.12–0.92)

Eosinophil count (× 109/L)

  Maximum 0 (0–0.073)

  Minimum 0 (0–0.01)

  Median 0 (0–0.05)

  Mean 0 (0–0.06)

(Continued)

TABLE 1 (Continued)

Factors N = 53,229

Basophil count (× 109/L)

  Maximum 0.01 (0–0.19)

  Minimum 0 (0–0.01)

  Median 0 (0–0.03)

  Mean 0.01 (0–0.06)

Hematocrit (%)

  Maximum 40 (35.5–43.8)

  Minimum 36.1 (31.5–40)

  Median 37.8 (33.3–41.6)

  Mean 38 (33.5–41.7)

Hemoglobin (g/L)

  Maximum 13.1 (11.5–14.5)

  Minimum 11.8 (10.1–13.2)

  Median 12.4 (10.7–13.7)

  Mean 12.4 (10.8–13.8)

Platelet Count (× 109/L)

  Maximum 228 (174–298)

  Minimum 190 (144–248)

  Median 206 (157–268)

  Mean 208.3 (159–270.67)

Oxygen Saturation (SpO2) (%)

  Maximum 100 (98–100)

  Minimum 90 (86–93)

  Median 96 (94–95.79)

  Mean 95.5 (94.1–97)

Body Mass Index (BMI) 29 (24.5–34.7)

Body temperature (F)

  Maximum 99.5 (98.78–100.8)

  Minimum 97.3 (96.8–97.6)

  Median 98.1 (97.8–98.5)

  Mean 98.2 (97.8–98.6)

Respiratory rate

  Maximum 25 (21–31)

  Minimum 16 (14–16)

  Median 18 (18–20)

  Mean 19 (17.8–21.1)

Total Bilirubin

  Maximum 0.6 (0.4–8)

  Minimum 0.4 (0.3–0.6)

  Median 0.5 (0.35–0.7)

  Mean 0.5 (0.15–0.85)

Heart rate

  Maximum 103 (92–117)

  Minimum 64 (57–72)

  Median 81 (72–90.5)

  Mean 81.7 (73.1–91)

(Continued)
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holdout testing set, while the remaining five sites were utilized for 
training the three classification models. For each model, 
hyperparameters were tuned using 10-fold cross validation within the 
training set to optimize performance. For the SVM, the cost (c) and 
kernel width (sigma) parameters were tuned; for the Random Forest 
model, the number of trees (ntree) and number of variables tried at 
each split (mtry) were adjusted; and for XGBoost, learning rate (eta), 
maximum tree depth (max_depth), and number of boosting rounds 
(nrounds) were optimized. The performance of these models is 
presented using the metrics of precision, recall, and F1-score. All 
analyses were performed with R software (4.3.3).

Results

Patient population studied

Of the 124,684 patients obtained from the eight healthcare 
institutions, a number of patients were excluded from the analysis: 
32,256 were excluded through the inclusion and exclusion criteria; 
21,950 were excluded through the full removal of a single healthcare 
institution due to missing predictors of interest, and 17,249 were 
removed through complete case analysis, an approach that involves 
excluding all observations (cases) that have any missing data in the 
variables of interest, which left a final cohort of 53,229 COVID-19 
inpatients (Figure 1).

The characteristics of the patients included in this study, including 
the aforementioned laboratory measures, demographics, 
comorbidities, the level of administered oxygen support (categorized 

into three levels, including “no oxygen,” “oxygen support, not 
including mechanical ventilation,” and “invasive mechanical 
ventilation,” and outcomes of interest) (i.e., length of hospitalization 
and 28-day all-cause mortality) are displayed (Table  1). The 
comorbidities of interest in this study included HIV, chronic lung 
disease, cardiovascular disease, chronic kidney disease, and diabetes.

Factor selection

The cohort from the seven remaining sites were split into five sites 
randomly selected for training and the remaining two for a “holdout” 
testing set. As a result of implementing a LASSO regression model on 
the original input variables, multiple variables were eliminated from 
the model. Variables that were eliminated include mean ALT, median 
AST, mean leukocyte count, both median and mean serum creatinine, 
maximum lymphocyte count, mean monocyte count, mean 
hematocrits, maximum and mean platelet count, both median and 
mean total bilirubin, and mean eGFR. The resulting model obtained 
a precision of 0.98, a recall of 0.87, and an F1-score of 0.92, indicating 
that the retained variables maintained a strong predictive performance.

Clustering analysis

As described previously, FAMD was applied to the original data 
matrix consisting of the factors retained after factor selection through the 
LASSO regression was implemented. This consisted of 67 total factors, 
including demographics (e.g., age, sex, race, and BMI), 5 comorbidities, 
57 laboratory measures and vital signs, and the level of oxygen support. 
As a result of FAMD, the top 20 dimensions were retained for further 
analysis, as they accounted for more than 80% of the total variance. Next, 
an unsupervised hierarchical cluster analysis was conducted using a 
matrix of the top 20-dimensional values from the 53,229 patients.

Agglomerative hierarchical clustering was then performed on the 
FAMD data matrix using the FactoMineR R package.2 In order to 
determine the optimal number of clusters to use as a result of the 
agglomerative hierarchical clustering, the NbClust R package was 
used. This resulted in five of the algorithms from the package “voting” 
for 2 clusters as the optimal number, while seven voted for 3 clusters, 
three voted for 4 clusters, four voted for 5 clusters, one voted for 6 
clusters, and one voted for 8 clusters. Based on the examination of 
differences in laboratory tests, comorbidities, and prognoses among 
the three clusters, it was determined that this clustering configuration 
was the most effective. Consequently, the 53,229 patients were divided 
into three clusters for the subsequent analysis.

Details of the clusters: demographics, 
comorbidities, laboratory tests and vitals, 
oxygen support, and treatment 
characteristics

A total of 20,433 patients were included in Cluster 1, while Cluster 
2 was the largest cohort of patients, including 32,416 patients, and 
Cluster 3 was significantly smaller than the previous two clusters, with 

2 https://cran.r-project.org/package=FactoMineR

TABLE 1 (Continued)

Factors N = 53,229

Estimated glomerular filtration rate (eGFR)

  Maximum 82.54 (54.3–76.9)

  Minimum 65.0 (39.4–88.4)

  Median 75.05 (46.99–95.09)

  Mean 74.32 (47.3–94.1)

Comorbidity

  Cardiovascular disease 14,933 (28.1)

  Chronic kidney disease 15,078 (28.3)

  Chronic lung disease 15,858 (29.7)

  Diabetes 21,756 (40.9)

  HIV 388 (0.73)

Level of oxygen support

  No oxygen support 33,902 (63.6)

  Oxygen Support, not including 

invasive mechanical ventilation 16,833 (31.6)

  Mechanical ventilation 2,494 (4.7)

Outcomes

Hospital length of stay 6 (3–11)

Mortality

  Alive 49,292 (92.6)

  Deceased 3,937 (7.4)

Categorical variables presented as N (%), and continuous variables presented as Median 
(IQR).
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TABLE 2 Distributions and frequencies of the demographic and prognostic characteristics, comorbidities, the level of oxygen support administered, 
and COVID-19 relevant medications administered within the three clusters discovered in clustering analysis [continuous variables presented as Median 
(IQR), and categorical variables presented as N (%)].

Characteristics Cluster 1 (N = 20,433) Cluster 2 (N = 32,416) Cluster 3 (N = 380)

Demographics

Age 68 (54–79) 64 (52–76) 61 (47–73)

Sex

  Male 9,428 (46.1) 18,260 (56.3) 231 (60.8)

  Female 11,005 (53.9) 14,156 (43.7) 149 (39.2)

Race/Ethnicity

  White 12,727 (62.2) 21,333 (65.8) 241 (63.4)

  Black 3,403 (16.7) 4,787 (14.8) 72 (18.9)

  Hispanic 249 (1.2) 1,837 (5.7) 17 (4.5)

  Other 4,054 (19.9) 4,459 (13.7) 50 (13.2)

Prognostic characteristics

Hospitalization days (length of stay) 6 (3–11) 5 (3–10) 7 (4–14)

Outcome

  Alive 18,941 (92.7) 30,162 (93) 289 (76.1)

  Deceased 1,592 (7.3) 2,254 (7) 91 (23.9)

Comorbidity

  HIV 382 (1.8) 0 (0) 6 (1.6)

  Chronic lung disease 7184 (35.2) 8556 (26.4) 118 (31.1)

  Cardiovascular disease 8047 (39.4) 6744 (20.8) 142 (37.4)

  Diabetes 9470 (46.3) 12168 (37.5) 118 (31.1)

  Chronic kidney disease 8223 (40.2) 6702 (20.7) 153 (40.3)

Oxygen support level

  No Oxygen 14,570 (71.3) 19,126 (59) 206 (54.2)

  Oxygen Only 4,861 (23.8) 11,884 (36.7) 88 (23.2)

  Ventilation 1,002 (4.9) 1,406 (4.3) 86 (22.6)

COVID-19-specific treatment

  Azithromycin 469 (2.3) 613 (1.9) 5 (1.3)

  Anakinra 2 (< 1) 0 (0) 0 (0)

  Baricitinib 2 (<1) 0 (0) 1 (<1)

  Colchicine 65 (< 1) 48 (<1) 1 (<1)

  Dexamethasone 2359 (11.5) 2743 (8.5) 73 (19.2)

  Doxycycline 237 (1.2) 265 (<1) 1 (<1)

  Hydroxychloroquine 195 (< 1) 330 (1) 1 (<1)

  Methylprednisolone 366 (1.8) 330 (1) 12 (3.2)

  Remdesivir 1719 (8.4) 2024 (6.24) 13 (3.4)

  Tocilizumab 0 (0) 4 (<1) 0 (0)

  Two drugs 5108 (24.9) 13220 (40.8) 81 (21.3)

  Three drugs 1624 (7.9) 4753 (14.7) 24 (6.3)

  Four drugs 243 (1.2) 861 (2.7) 5 (1.3)

  Five drugs 16 (<1) 84 (<1) 0 (0)

  Six drugs 1 (<1) 8 (<1) 0 (0)

a total of 380 patients. The frequencies of each of the demographic 
characteristics, along with the included comorbidities, the frequency 
of administration of various levels of oxygen support, and frequency 
of treatment patterns are displayed (Table  2). The distribution of 
laboratory tests and vital signs is provided in Supplementary Table S1. 
Most laboratory findings and vital signs were distinctly different 
between the clusters, and the differences in these blood chemistry tests 

(Figure 2), routine blood tests (Figure 3), and vital signs and oxygen 
saturation levels (Figure  4) are also shown. The similarities and 
differences between comorbidities, oxygen support levels, and 
treatment patterns are also shown in radar charts (Figure 5).

Cluster 1 was characterized by a relatively moderate COVID 
patient population with a higher maximum and mean basophil count, 
along with a lower respiratory rate compared to the other two clusters. 
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These patients also were not administered oxygen at a higher rate than 
the other clusters (71.3%) and correspondingly had a lower rate of 
administration of oxygen not including mechanical ventilation 
(23.8%) and mechanical ventilation (4.9%). In terms of comorbidities, 
the patient population in this cluster had the highest frequency of HIV 
(1.8%), while also exhibiting a higher rate of chronic lung disease 
(35.2%), cardiovascular disease (39.4%), and diabetes (46.3%) 
compared to the other two clusters, while exhibiting a similar 

prevalence of chronic kidney disease to Cluster 3 (40.2%). Based on 
various clinical characteristics, however, such as respiratory rate, 
SpO2, and blood measures such as platelets and monocytes, along 
with the prevalence of patients who did not require oxygenation, this 
group would be considered the more “mild COVID” patient group. 
This group had a higher hospitalization length compared to Cluster 2, 
though this could potentially be attributed to the older age of the 
population. The treatment patterns in this cluster were unique, with 

FIGURE 2

Distributions of blood chemistry tests within the three clusters. Statistical significance was measured through the Kruskal-Wallis tests with Dunn’s post-
test, including a p-value adjustment by the Benjamini-Hochberg procedure. •p = 0.1, *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 3

Distributions of routine blood tests within the three clusters. Statistical significance was measured through the Kruskal-Wallis tests with Dunn’s post-
test, including a p-value adjustment by the Benjamini-Hochberg procedure. •p = 0.1, *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4

Distributions of vital signs and oxygen saturation measures within the three clusters. Statistical significance was measured through the Kruskal-Wallis 
tests with Dunn’s post-test, including a p-value adjustment by the Benjamini-Hochberg procedure. •p = 0.1, *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 5

Frequencies of (A) relevant comorbidities, (B) level of administered oxygen support, (C) administration of single treatments, and (D) administration of 
combinations of treatments.
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FIGURE 6

Difference in the length of stay in the inpatient setting between the three clusters. •p = 0.1, *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 7

Kaplan–Meier survival curves of the three clusters discovered through clustering analysis. The curves include 95% confidence intervals.
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FIGURE 8

Resulting confusion matrix from Support Vector Machine (SVM) 
classifier built to classify patients between the three discovered 
clusters of COVID-19 patients.

FIGURE 10

Resulting confusion matrix from the XGBoost classifier built to 
classify patients between the three discovered clusters of COVID-19 
patients.

FIGURE 9

Resulting confusion matrix from Random Forest (RF) classifier built to 
classify patients between the three discovered clusters of COVID-19 
patients.

this group receiving the highest frequency of medications like 
azithromycin, colchicine, doxycycline, and remdesivir.

Comparatively, Cluster 2 was the largest in terms of patient 
population, and was characterized by higher hematocrit and 
hemoglobin levels, lower median SpO2, and higher eGFR. Patients in 
this cluster were treated with the highest combination of COVID-19 
related drugs, reflecting the severity of their conditions. Interestingly, 
this group did not include any HIV patients, (0%), while also having 
the lowest rate of chronic lung disease (26.4%), cardiovascular disease 
(20.8%), and chronic kidney disease (20.7%). The patients in this 
group also had the highest rate of oxygen administration (not 
including mechanical ventilation) (36.6%) compared to the other two 
clusters, and the lowest prevalence of mechanically ventilated patients 
(4.3%) and patients who were not administered oxygen (59.0%). 
Based on the survival analysis, this cluster can be  considered the 
“moderate COVID” patient group. With respect to treatment patterns, 
this group received the highest frequency combinations of treatments, 
ranging from two to six COVID-19-related drugs.

Finally, Cluster 3, the cluster with a noticeably small patient 
population, exhibited elevated ALT, AST, and leukocyte counts, along 
with higher maximum monocyte count, lower platelet levels, and 
higher total bilirubin. This cluster also had more extreme respiratory 
and heart rates, along with lower eGFR. With respect to comorbidities, 
this group had a moderate rate of HIV (1.6%), the lowest rate of 
diabetes (31.1%), moderate rates of chronic lung disease (31.1%) and 
cardiovascular disease (37.4%), and a similar prevalence of chronic 
kidney disease compared to Cluster 1 (40.3%). This group also had the 
highest rate of ventilated patients (22.6%), and correspondingly, the 
lowest level of patients who were not administered oxygen (54.2%), 
and a comparable prevalence of administered oxygen (not including 
mechanical ventilation) compared to Cluster 1 (23.2%). Based on the 
survival analysis, along with the aforementioned clinical 
characteristics, this cluster can be  considered the “severe” patient 
group. In terms of treatment patterns, this group received the highest 
frequency of dexamethasone compared to the other two clusters. This 
aligns with clinical evidence showing that dexamethasone was 
particularly effective in patients who were administered oxygen 
support in the form of mechanical ventilation.

Prognostic assessment and survival 
analysis of resulting clusters

The outcomes of the patients were first compared by examining 
the length of hospitalization among the three clusters (Figure  6), 
followed by the frequency of mortality. There was a statistically 
significant difference among all three clusters in the length of 
hospitalization. The frequency (percentage) of mortality within each 
of the three clusters were 1,592 (5.0%), 2,254 (6.9%), and 91 (23.9%), 
respectively, and this was statistically significant between the three 
clusters as well.

Kaplan–Meier survival analysis of the three clusters was then 
performed (Figure  7), with the log-rank test being utilized as a 
statistical test between the three clusters.

Cluster classification model comparison

As mentioned previously, three separate classification models, 
including an SVM, Random Forest, and XGBoost model, were trained 
to classify between the three previously recognized clusters. The 
models were then applied to the holdout test dataset, and the resulting 
confusion matrices for each of the models (Figures 8-10) are displayed.

The performance of them models were assessed using precision, 
recall, and F1-score (Figure 11).

Discussions

The patients admitted into the inpatient setting with 
COVID-19 in our study were categorized through FAMD-based 
agglomerative clustering into three distinct clusters, each with 
unique clinical characteristics. The major distinguishing factor of 
the patient population that clearly exhibited the more “severe” 
prognosis was the elevation of liver function measures (e.g., ALT, 
AST, and total bilirubin), along with the high frequency of 
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ventilator administration and steroid usage (specifically 
dexamethasone). Another key observation is the correlation 
between oxygen requirements and the overall severity of the 
disease across the different clusters. This finding is particularly 
notable, as it aligns with the expected clinical progression of severe 
COVID-19 cases, where increase oxygen demand typically signifies 
greater disease burden. Cluster 2  in particular exhibited higher 
mortality rates and greater oxygen usage compared to Cluster 1 
(Table 2), and interestingly, despite the increased severity, patients 
in Cluster 2 had lower steroid usage. This discrepancy may reflect 
treatment practices during the early stages of the pandemic, when 
there was considerable hesitancy among physicians to administer 
steroids due to limited evidence of their efficacy. It would 
be  valuable to further investigate the timing of these cases, as 
variations in COVID-19 severity over time and evolving treatment 
protocols could have influenced these outcomes. Understanding 
the temporal context could provide deeper insights into the 
observed differences in disease severity and treatment approaches 
across clusters.

Interestingly, measures that did not differ between the three 
clusters included both median and mean lymphocyte counts, along 
with median temperature. The analysis revealed that age distribution 
across the clusters was unexpected, with the oldest patients being 
in the less severe group. However, measures like platelets being 
lower in the “severe” cluster (Cluster 3), along with higher 
respiratory rate, higher liver function tests (AST, ALT, and total 
bilirubin), and lower eosinophil count aligned with previous 
clinical knowledge.

Three classifier models were constructed, all demonstrating 
strong performance. There was little difference in the performance 
metrics presented for the SVM, Random Forest, and XGBoost 
model, suggesting that this method could be applied as a reliable 
prognostic tool in clinical settings regardless of the classification 
methodology deployed. However, there were limitations to this 
study, including the exclusion of important lab measures such as 
LDH, CRP, and D-dimer, which have been shown to be critical in 

indicating severe illness but were only measured in severely ill 
patients across the seven participating healthcare institutions. In 
addition, although multiple measures of oxygenation were included, 
such as the level of oxygen saturation along with the level of 
administered oxygen support, other related meaningful indexes of 
oxygen (e.g., P/F and S/F ratios) were not included in the study due 
to missingness of within-day timing among many of the healthcare 
institutions. Also, it is important to note that this study focused on 
a population that was specifically in the inpatient setting, with data 
collected from the EHR relative to the inpatient visit in question, so 
the timing of diagnosis compared to the timing of admission within 
an individual patient’s disease course was unknown. Finally, there 
are a number of implications of the “shift and truncation” 
de-identification method utilized in each of the various institutions 
included in this study, including the lack of ability to look at granular 
temporal trends in the data, such as the effects of different variants 
of the virus, along with changes in policy of care. It is also important 
to note that, while there are many findings that align with previous 
clinical knowledge, it is not easy to follow the detailed clinical 
features of each cluster because of the sheer number of lab findings 
being analyzed.

When considering the implications of the study findings, it is 
evident that the true innovation of this work lies not simply in 
categorizing patients into clusters, but in the potential these clusters 
hold for identifying subgroups in which specific therapies may 
demonstrate greater effectiveness. Uncovering the most commonly 
used treatments in each subgroup (Figure 5) represents only a starting 
point – an initial descriptive layer that sets the stage for deeper, more 
meaningful analyses. By revealing latent structure within the patient 
population, the clustering approach provides a foundational 
framework for precision therapeutics. This framework can 
be extended through advanced methodologies, such as clinical trial 
emulation, to evaluate the relative efficacy of treatments within these 
distinct subgroups. Thus, the value of clustering is not confined to 
classification, but rather to the clinical insights it enables, offering a 
pathway toward more targeted and effective interventions.

FIGURE 11

Comparison between the performances of the three classification models trained on the FAMD-based clustering data.
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Conclusion

The pressure that many diseases put on critical care settings is 
often insurmountable, especially in pandemic settings where 
treatments have yet to be approved (e.g., at the beginning of the 
COVID-19 pandemic). This is especially true for diseases that are 
highly heterogenous, with disease presentation and progression 
varying greatly within a population, even within the hospital 
setting. Therefore, understanding the underlying disease patterns, 
including prognosis and severity, is crucial for improving patient 
outcomes. Open-source tools such as the OHDSI stack discussed 
in this study are crucial in advancing RWE generation through 
RWD collection and harmonization. In this study, COVID-19 
patients were divided into three clusters with distinct clinical 
characteristics, prognoses, and treatment patterns using FAMD-
based agglomerative clustering analysis, revealing a novel 
perspective on the relationship between clinical characteristics and 
outcomes. Additionally, multiple classification models were 
constructed based on these clustered patients, adding to the utility 
of a tool that can be used in clinical practice for COVID-19 and 
beyond in critical care settings.
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