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Introduction: Within military settings, soldiers are arranged to eat together in a self-
service manner for every meal. The process of food selection and consumption 
often leads to close contact amongst individuals, heightening the risk of respiratory 
infectious disease transmission. To comprehend the transmission dynamics during 
communal dining, we have conducted an in-depth epidemiological investigation.

Methods: The dining process was divided into two phases: lining up for food 
and dining at designated seats. Soldiers were randomly split into two queues 
and entered the food selection area from the same side. The movements of 
the soldiers dynamically altered both the queues and the contact duration and 
distance between susceptible individuals and infection sources. We utilized 
a random computer model using MATLAB software, with the individual as the 
unit of study, for simulating the food selection process. This model quantitatively 
analyzed the dynamic process of disease transmission within the queues due to 
the dispersion of small pathogen-carrying particles.

Results: Our findings indicate that close interactions between individuals during 
picking up food can result in the persistent transmission of airborne infectious 
diseases. Implementing measures such as discontinuing buffet-style meals, 
implementing staggered dining schedules, and mandating mask-wearing during 
food collection could help control disease transmission during an epidemic.

Discussion: This study demonstrates that the individual-based model can simulate 
the dynamic process of disease transmission through complex behavioral activities 
and is more suitable for conducting research on the dynamics of infectious 
diseases in small-scale populations. Since this is a simulation conducted in a 
virtual scenario, the results of the model still need to be verified through field 
investigations. Nevertheless, once robust outbreak investigation studies have 
yielded reliable model parameters, these parameters can be adapted to this and 
other similar situations to demonstrate the potential for transmission.
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1 Introduction

Several experiments have confirmed that respiratory infectious 
disease viruses, such as those causing influenza, measles, and novel 
coronavirus, can adhere to droplets and aerosols, spreading externally 
through actions like coughing and breathing. This consequently leads 
to the inhalation and subsequent infection of susceptible individuals 
who are in close contact (1–4). Typically, virus-laden droplets 
(diameter > 100 μm) can only disperse within a distance of less than 
1 meter and settle to the ground within a few seconds, whereas 
aerosols (diameter < 100 μm) can disperse over a distance of 1–2 
meters and remain suspended in the air for a longer period of time (5). 
If individuals are in constant motion and frequent contact, certain 
respiratory pathogens may persistently transmit and spread. 
According to various literature reports, public areas with high human 
traffic, such as schools, subway stations, airplanes, and hospitals, are 
accelerators for the rapid spread of respiratory infectious diseases, 
often leading to outbreak instances (6–10). In military settings, the 
concentrated living, training, and dining conditions can easily trigger 
outbreaks of infectious diseases such as influenza, adenovirus, and 
tuberculosis (10–12). This suggests that continuous close contact 
among people is a prerequisite for the prevalence of respiratory 
infectious diseases.

Restaurants serve as congregating points for individuals. 
According to military management regulations, soldiers are required 
to have buffet-style meals within predetermined timeframes. Soldiers 
pick up food in the order in which they arrive at the restaurant. 
During this process, individuals engage in close contact, increasing 
the chance of infection via inhalation of droplets or aerosols 
containing pathogens. Moreover, the dynamic variation in contact can 
result in expanded contact range, fostering optimal conditions for the 
transmission of respiratory infectious diseases. Based upon the 
author’s practical experience, mess halls are critical locales for the 
transmission of respiratory infectious diseases within military settings. 
Consequently, establishing a dynamic model of communal dining in 
the military and quantitatively analyzing the epidemiological 
distribution patterns bear significant importance in comprehending 
the disease transmission mechanism within these settings, thereby 
facilitating targeted epidemic prevention and control. Nonetheless, 
there is currently a dearth of research reports on this subject matter. 
Aimed at delving deeper into this issue, we sought to construct a 
dynamic model of infectious diseases, accurately replicating human 
behavior during communal meals. We  sought to explore the 
transmission dynamics of specific infectious diseases, analyze the 
diseases’ epidemiological distribution traits, and provide a theoretical 
epidemiological foundation for establishing targeted prevention and 
control measures.

The traditional differential equation model is built on the premise 
that the population mixes homogeneously and individuals have equal 
opportunities for contact, thus making it more suitable for macro-level 
analysis. However, as people continuously change their positions while 
queuing to collect food, the contact time, duration, and distance 
between each infectious source and close contacts are in a state of 
dynamic flux. Consequently, this process cannot be  described by 

differential equations and necessitates the design of a model from a 
micro-level perspective, with individuals as the unit of study. This 
involves using computer programming to simulate each person’s 
behavioral activities and disease progression. Practical instances have 
demonstrated that, compared to traditional models, this approach can 
simulate complex social activities more accurately. These activities 
range from subway network operations, apartment escalator 
movements, intercity transportation networks, to family gatherings 
during the Spring Festival (13–16). Within certain model constraints, 
we first randomly simulated specific behaviors of individuals, from 
lining up, picking up food, to dining and stored individual, temporal, 
and spatial information into corresponding data frames. Subsequently, 
based on this information, identify each infectious source along with 
all of their close contacts, and gather details regarding the time, 
duration, and distance of their interactions. Finally, comprehensively 
utilize this data to calculate the infection probability, determine 
whether the contacts have been infected, and, if so, ascertain their 
infection time. Because of the shifting positions in the queues, contact 
updates occurred continually, leading to consistent emergence of 
newly infected individuals and disease transmission within the 
population. As the count of susceptible individuals gradually 
decreased, the rate of disease transmission would slow and 
eventually cease.

This study presents an in-depth analysis of the epidemiological 
characteristics of infectious diseases among military personnel during 
group food collecting and dining routines. Summarizing, it possesses 
three key characteristics: (1) Representativeness of the study 
conclusion—the study’s perspective is grounded in practical reality. 
While it is applicable specifically to military contexts, it extends as well 
to other settings like schools, government bodies, and corporations 
where group buffet dining predominates. (2) Innovation in the study 
method—due to the dynamic fluctuations in relative positions and 
contact duration during food selecting, which exhibit both regularity 
and randomness, it is impracticable to use mathematical equations to 
characterize individual random behaviors. Consequently, we adopt a 
random computer modelling method with the individual as the unit 
of research. (3) Flexibility of the research method—the study ratifies 
that the flexible application of dynamic models in the form of 
computer programming and deductive reasoning can more accurately 
portray the relationship between human activities and disease 
transmission. It presents a potent research instrument for investigating 
theoretical epidemiology.

2 Materials and methods

2.1 Data sources

The study used COVID-19 as a representative of respiratory 
infectious diseases, and utilized its relative clinical data as parameters 
for model calculations. All parameters were sourced from existing 
literature. Additionally, some model parameters were assumptions 
proposed by the author based on work practice and modelling 
experience. Specific parameters can be found in Table 1.
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2.2 Prerequisites of the model

 (1) The dining venue was a military mess hall. All soldiers were 
organized to dine uniformly, excluding patients receiving 
medical treatment. The daily times for breakfast, lunch, and 
dinner were set for 7:30, 11:30, and 17:30, respectively. Each 
meal had 10 food stations (including staple food, side dishes, 
and fruits). All diners were randomly split into two queues for 
food serving based on their order of arrival at the food selection 
area, proceeding in the same direction. Individuals not yet at 
the food selection area queued to wait their turn. The queue 
arrangement is depicted in Figure 1a.

 (2) Each diner served themselves 4 to 8 dishes per meal, and 
the locations and durations spent on each dish (ranging 
from 3 to 8 s) were randomly distributed. Diners were not 
allowed to cross individuals ahead of them during the 
serving process. Upon serving all their dishes, individuals 
exited the queue. Each person was allowed only one 
opportunity to serve themselves food. The distance between 
two adjacent people in the same queue was 0.5 meters, and 
the distance between the two queues was 1 meter. The 
spatial distribution of the food serving area is represented 
in Figure 1a.

 (3) The diners were all from a military company, consisting of a 
total of 15 squads, with each squad comprising of 12 
individuals. There was a designated table for every four people 
for dining with fixed seats. The distance between adjacent or 
opposite diners was set at 0.8 meters. Each diner’s mealtime 
was randomly distributed within a 10–15 min window. All 
diners at the same table departed together after the last 
individual finished dining. As the distance between different 

dining tables was greater than 2 meters, disease transmission 
was prevented.

 (4) An infectious source can infect susceptible individuals within 
a distance of 2 meters. Referring to the form of the Wells-Riley 
equation (Equation 2) (5), we express the contact infection 
probability, q, as a function with the exposure index, λ, as a 
parameter and contact duration, t, and contact distance, d, 
as variables:

 ( )λ= − − 21 exp /q t d
 (1)

We integrated the three parameters from the Wells-Riley equation 
into a unique parameter, λ. q is inversely proportional to d2, indicating 
that as susceptible individuals progressively approach the infection 
source, the infection probability increases rapidly. This relationship 
can be observed in Figures 2a–c. When the distance from the infection 
source is within 1 meter, the likelihood of infection abruptly augments, 
which aligns with the spatial distribution properties of droplets 
(within 1 meter, the primary carriers of respiratory infectious disease 
pathogens) and aerosols (between 1–2 meters) (5).

 (5) Susceptible individuals (S) who become infected are classified 
into latent infected individuals, Eq (infected during food 
collection) and Ed (infected during dining), based on the 
location of infection. After the incubation period, these 
individuals progress to become infectious cases. A fraction of 
these cases (Ih), which exhibit severe symptoms, take leave for 
treatment or rest and are transferred to a healthcare facility (H). 
During the infectious period, from onset to treatment, Ih 

TABLE 1 Model parameters.

Description Distribution 
characteristics

Numerical 
values

Sources

Number of classes Constant 15 Assumed

Number of soldiers per class Constant 12 Assumed

Number of dishes Constant 10 Assumed

The distance between consecutive soldiers within the same queue Constant 0.5 m Assumed

The distance between two distinct queues Constant 1 m Assumed

The distance between two adjacent and opposite soldiers at the same table Constant 0.8 m Assumed

Meal times for breakfast, lunch, and dinner on each day Constant 7:30, 11:30, 17:30 Assumed

Collection duration for each meal item Uniform distribution 3–8 s Assumed

Dining duration Uniform distribution 10–15 min Assumed

Proportion of susceptible individuals Constant 0.9 Assumed

Exposure index (λ) Constants 0.01, 0.03, 0.05 Assumed

Incubation period Lognormal distribution
μ = 3.10 days

σ = 2.60 days
[20]

Infectious duration for mild cases (dm) Uniform distribution 6–7 days [21]

Rate of severe cases (ph) Constant 0.29 [22]

Days from onset to isolated treatment (dh) Lognormal distribution
μ = 3.58 days

σ = 2.22 days
[22]

Duration of isolated treatment for severe cases Uniform distribution 9–11 days [22]
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maintain normal ingestion behavior and remain infectious. 
However, they cease to be  transmissible while undergoing 
treatment. Upon recovery, they resume their regular work 
activities and continue visiting restaurants for meals. 
Meanwhile, another fraction, Im, with milder symptoms, 
manage to maintain their regular work and ingestion patterns 
throughout their recovery. Recovered individuals (R) possess 
immunity and will not be reinfected. To ensure the specificity 
of our study, we presume that disease transmission is exclusive 
to restaurant environments and is inhibited elsewhere. 
Figure  1b delineates the process entailing variation in the 
infection statuses of individuals.

2.3 Design framework of the model

This study employed a computer program encoded in MATLAB 
language, which did not incorporate differential equations. Hence, the 
program’s design framework is introduced purely in a logical sequence.

2.3.1 Basic setup
(1) Set the basic parameters of the model, such as the distance 

between adjacent individuals in the queue, the proportion of severe 
cases, the incubation period, and the number of large-scale 
iterations (see Appendix I, lines 22–46). (2) Initiate 50 repeated 
large-scale iterations, with each iteration representing the entire 
process of a disease transmission. The purpose of these iterations is 
to estimate the median and fluctuation range of the number of 

infected individuals through multiple repeated calculations. (3) 
Prior to each major cycle, IDs for all susceptible individuals and one 
index case are randomly assigned. The index case’s ID, incubation 
period, infection time, symptom onset time, severity status, and 
other pertinent details are then stored in the first row of an 
information data frame (with each row representing a newly 
infected individual and each column corresponding to the 
aforementioned details). (4) Subsequently, initiate a loop spanning 
from day 1 to day 30, with each day further divided into three 
sub-loops (simulating breakfast, lunch, and dinner, respectively). 
(5) Before the start of each sub-loop, determine the IDs of all 
individuals who will be dining at the restaurant. Take into account 
that individuals in the Ih group are receiving treatment and are 
therefore unable to dine. Randomly assign meal collection points 
and meal collection durations for each dining individual, and store 
this information in a location data frame. The program code for the 
above procedures is provided in Appendix I, lines 48–126.

2.3.2 Configuration of the food collection queue
(1) In the presence of an infection source and susceptible 

individuals, diners are randomly divided into two queues. Using the 
location data frame, the initial food pick-up positions for both queues 
are selected, documenting information such as the index of each 
individual picking-up and waiting in the collection zone, their current 
pick-up location, the time they pick-up at the position, and the 
succeeding pick-up location. (2) Ascertain the time when the position 
of the next individual collecting food changes and update the positions 
of all individuals waiting following the change. The specific procedures 
entail: a. Identifying the first person in the queue who has finished 

FIGURE 1

(a) Illustration depicting the locations of the two food-collection queues within the pick-up zone and the pathogen-infected area. (b) Diagram 
demonstrating the transition patterns of population infection status. S represents susceptible individuals; Ed and Eq denote latent and non-infectious 
infected individuals that emerge during food collection and dining, respectively; Im represents cases with mild symptoms during the infectious period; Ih 
denotes infectious patients with severe symptoms needing time off for treatment or rest; and R signifies recoveries.
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picking up their meal at a particular location and documenting this 
time as t. b. According to the location data frame and the position 
distribution of those present in the food collection area, their potential 
succeeding positions are determined. These positions include moving 
forward to the next pick-up site, exiting the queue, advancing as a 
waiting individual, or remaining stationary. If an individual moves 
forward or exits the queue, it is necessary to determine the position 
changes of each waiting individual from behind that person to the 
next person picking up food, and effectuate updates. c. After carrying 
out the above steps, if there is a vacant spot at position 10, it would 
be occupied by the next individual in queue. (3) Once the positions 
are updated, store time t, indexes of individuals picking up food and 
waiting, along with their corresponding positions into a state data 
frame. (4) Archive the information, including the time post-update at 
which individuals are picking up food at their respective positions, 
along with their subsequent food pick-up locations, etc. Terminate the 
aforementioned operations once all individuals have finished 
collecting their food. Refer to the corresponding program code in 
Appendix I, lines 128–388.

2.3.3 Disease transmission during food collection
Based on the state data frame, we are able to calculate the contact 

duration and average distances between each infection source and all 
close contacts in the queues, and determine the disease transmission 
relationship amongst them. (1) When a certain infection source or 
other individuals in their queue alter their positions, find the indexes, 
contact duration, and distances of all close contacts with the infection 
source in the queue according to the state data frame. (2) When the 
infection source or anyone in the alternate queue changes their position, 
identify the indexes, contact duration, and distances of all close contacts 
of the infection source in that other queue. (3) It’s essential to filter this 
information and consolidate the indexes, cumulative contact duration, 
and average distances of all susceptible close contacts of the infection 
source. (4) Utilizing Equation 1, derive the probability of each close-
contact individual contracting the infection. Subsequently, generate a 
random number following the Bernoulli distribution to establish if they 
have been infected (1 for infected, 0 for not infected). Then, append the 
information of all infected individuals to the information data frame. 
Refer to the corresponding program code in Appendix I, lines 390–511.

FIGURES 2

(a–c) The functional relationship between the contact infection probability q, and the factors of contact duration t and distance d. (d–f) This refers to 
the time distribution of individuals who are picking up food, waiting for food pickup, and those who have completed food pickup, respectively, in the 
two queues. (g–i) The time distribution of Rt during the epidemic period.
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2.3.4 Disease transmission during dining
(1) Find dining tables where the infection source and 

susceptible individuals currently both exist, and determine their 
indexes and seats. (2) Calculate the probability of susceptible 
individuals infected by each infection source at the same dining 
table, and generate a random number based on the Bernoulli 
distribution to determine whether they were infected. (3) Store 
the infection information of infected individuals into the 
information data frame. See the above program code in Appendix I 
lines 554–645.

The program execution continued until day 30. Using the 
information data frame, the time distribution of susceptible and 
infected individuals within this simulation was calculated. Upon 
the completion of 50 primary loops, the median and range of 
fluctuation of individual count could be derived. The program’s 
design framework is depicted in Figure 3.

Even though this study did not incorporate any form of 
differential equation, to more clearly showcase the pattern of 
population changes amongst those in different infection statuses, 
a system of equations was employed to convey the quantitative 
relationship amongst them.
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Wherein  dS  stands for −− 1d dS S , Xi denotes the susceptibility of 

the i-th infectious source’s close contacts, with 1 representing 
susceptible and 0 representing non-susceptible. Qi indicates whether 
a susceptible individual is infected (1) or not (0) after contact with the 
i-th infectious source. ∑ 1 1

1

d d
ik ik

line
Q X  represents the number of close 

contacts in the same queue as the i-th infectious source who were 
infected by the k-th meal (including breakfast, lunch, and dinner) on 
the d-th day caused by the infectious source, ∑ d d

bik bik
b
Q X  represents the 

number of close contacts at the same table as the i-th infectious source 
who were infected due to the k-th meal (on the d-th day) served by 
the infectious source. δ1/  represents the incubation period, φ1/  
represents the duration of infectiousness for Ih, ϕ1/  denotes the 
duration of infectiousness for Im, ph denotes the rate of severe cases, 
and η1/  represents the treatment duration for Ih.

2.4 Sensitivity analyses

To narrow down the focus of the study, we  retained only the 
principal components of people’s behavioral activities, resulting in an 
idealized model. In actuality, the outbreak of infectious diseases forms 
a complex system, which makes obtaining matching epidemic data for 
fitting an arduous task. To evaluate the reliability and rationale of the 

model, we adopted an alternative approach–conducting a sensitivity 
analysis on six significant parameters within the model: the exposure 
index (λ), the rate of severe cases (ph), infectious duration of Im (dm), 
infectious duration of Ih (dh), incubation period, and the proportion 
of susceptible individuals in the population (p).

We incorporated the Partial Rank Correlation Coefficients 
and Latin Hypercube Sampling (PRCC-LHS) method, a widely-
utilized algorithm in sensitivity analyses. This method computes 
correlations between a parameter set and model outputs upon the 
exclusion of the linear impacts of the target parameter (17). Each 
parameter interval was subdivided into N smaller and equal 
intervals, and a sample was arbitrarily selected from each segment. 
These selected parameter samples were subsequently integrated 
into the model to compute the outputs at each time point (17, 18). 
A series of standard coefficients reflecting the correlation between 
each parameter and the model output were established. For more 
detailed information, please refer to Appendix II.

All computations were executed using MATLAB R2019a 
software (MathWorks, Natick, Massachusetts, United States).

3 Results

3.1 Time distribution of infection 
probability, queue length, and effective 
reproduction number

The second row of Figure  2 illustrates the temporal 
distribution of individuals within the two food collection queues. 
Figure 2d delineates the fluctuations in the count of individuals 
picking up food (excluding those waiting). It is observable that the 
count of individuals collecting food rapidly escalates within the 
initial minute, then remains at around 10–11, and steeply declines 
post the 6-min mark until food collection ceases at the 7-min 
mark. Figure 2e depicts the course of the number of individuals 
waiting (including those at and behind the food pick-up area). 
The initial count of individuals waiting was nearly the total of 180, 
however, as the food collection progressed, people continuously 
completed their pick-ups and exited the queue, which led to a 
rapid decline in the count of waiting individuals. Figure 2f displays 
the trend of the cumulative count of individuals who have 
completed food collection. It is observably intuitive that the 
temporal distribution of waiting individuals and those who have 
finished food collection forms an inclined straight line, with 
minimal fluctuations. The effective reproduction number, Rt, 
represents the number of secondary infections caused by an 
infector who becomes infectious at time t throughout their entire 
infectious period. This metric can reflect the current transmission 
rate of the epidemic. Figures 2g–i illustrate the temporal variation 
of Rt over the period of 0–30 days. It can be observed that the 
smaller the value of λ, the smaller the initial value of Rt, leading 
to a more stable disease transmission rate and a longer epidemic 
period; conversely, a larger initial value of Rt corresponds to a 
faster decline in the disease transmission rate and a shorter 
epidemic period. From these figures, it is clear that a larger value 
of λ is associated with a higher probability of infection and a faster 
speed of epidemic transmission.
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3.2 Temporal distribution characteristics of 
the population when the exposure index 
varies

We plotted the time distribution of newly infected individuals, 
new infectors, and newly treated patients. The first row of Figure 4 
shows the time distribution of new and cumulative infected 
individuals generated during picking up food and dining. To more 
clearly reflect the impact of queuing for food on disease transmission, 
the second row of Figure 4 shows the time distribution of infected 
individuals generated during queuing for food. It can be seen that on 
day 30, the proportion of infected individuals while queuing for food 
to the whole infected individuals increased from 79.6% when λ = 0.01 
to 93.9% when λ = 0.05, indicating that queuing for food is the main 
factor in disease transmission, moreover, an increase in λ will lead to 
an increase in the total number of infected individuals. The third row 
of the figure shows the time distribution of infectors (including Im and 
Ih). The fourth row shows the time distribution of newly treated 
patients. It can be seen from the figure that as the contact index λ 
increases gradually, the growth rate of these four groups of people also 
increases accordingly. The time when the number of newly increased 
people reaches the peak advances, and the number of people at the 

time of the peak also increases accordingly. The specific values are 
shown in Table 2.

Figure 5 presents the temporal distribution of the current numbers 
of susceptible (S), exposed (E), infectious (including Im and Ih) 
individuals, and patients under treatment (H). We can observe that as 
λ increases, the rate of decline in the number of S accelerates until all 
susceptible individuals are infected. The trends for the latter three 
compartments are largely similar, meaning that as λ increases, the 
growth rates of infected individuals and cases accelerate, the time to 
peak occurrence advances, and the peak values increase. Specific 
numerical values are provided in Table 3.

3.3 Sensitivity analyses

In this study, we carried out sensitivity analyses on the model, 
utilizing six parameters and a continuous time-series regarding the 
overall cumulative number of infected individuals. A total of N = 50 
samples were considered, procured from a uniform distribution across 
each parameter’s plausible range. The Partial Rank Correlation 
Coefficients (PRCCs) of these parameters exhibit a range from −1 to 1. 
PRCCs nearing −1 or 1 signal that the corresponding parameter exerts 
a significantly negative or positive impact on the output. Conversely, a 

FIGURE 3

The fundamental structure of the model’s program design during each primary cycle. Every day comprises three meals: breakfast, lunch, and dinner. To 
prevent repetition, we only present the plan for one meal here. For detailed procedures, please refer to Appendix I.
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value approximating 0 directs towards a lesser degree of output result 
influence from the respective parameter (as shown in Figure 6).

Among these parameters, (1) the proportion of susceptible 
individuals p demonstrates a consistent maximum positive correlation 
with the number of infected individuals, indicating that the larger the 
value of p, the greater the number of infected individuals. The 
correlation coefficient incrementally rises and maintains proximity to 
1 throughout the time. This phenomena can be explained by the fact 
that the number of infected individuals gradually escalates in the initial 
stages of the epidemic. At a specific time, t0, the infected count reaches 

its apex, equivalent to the total count of all susceptible individuals, and 
ceases to elevate further. This limit is directly contingent upon the value 
of p. Therefore, the correlation between p and the count of infected 
individuals gradually strengthens before t0 and persists with a strong 
positive interdependence, approaching 1, post t0. (2) The correlation of 
the exposure index λ exhibits a trend of initially increasing and then 
gradually decreasing. This is because, before time t0, an increase in λ 
leads to a higher probability of infection and a greater number of 
infected individuals. However, subsequent to t0, even if λ increases, the 
count of infected individuals has already attained its upper limit, 

FIGURE 4

Temporal distribution of the number of infected individuals and cases when the exposure index varies. Rows 1–4, respectively, display the temporal 
distributions of the number of infections occurring during food pickup and dining, the number of infections occurring specifically during food pickup, 
the number of cases, and the number of hospitalized patients. The solid blue line represents the median number of new infections or cases, measured 
by the left vertical axis; the dashed line represents the median cumulative number of infections or cases, measured by the right vertical axis; the blue 
shaded area indicates the 25–75% fluctuation interval after 50 simulations.
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prohibiting further escalation. Consequently, this circumstance leads 
to a diminishing positive correlation. (3) The infectious periods of mild 
cases dm and severe cases dh show a weak positive correlation with the 
number of infected individuals. This indicates that although an 
extension of the infectious period can increase the number of 
secondary infections, this effect is weaker compared to that of p and λ. 
(4) The correlation coefficient for the rate of severe cases ph, remains 
consistently close to 0, indicating that this parameter has a limited 
impact on the number of infected individuals. This reflects that the 
number of infections caused by mild cases and severe cases is similar. 
(5) The correlation coefficient of the incubation period is negative, and 
first descends and then ascends, indicating that the longer the 
incubation period, the slower the increase speed of infected individuals 
in the early stage of disease transmission. In the later stage, as the 
cumulative number of infected individuals approaches the upper limit, 
the negative correlation will gradually weaken.

4 Discussion

4.1 Innovation of the study

The innovation of this study is primarily manifested in the following 
two aspects: (1) Distinct research perspective. The transmission of 
infectious diseases while queuing for food represents a prevalent yet 
often overlooked human behavior. Using this as a starting point, 
we explore the transmission mechanism of diseases during the processes 
of queuing for food and dining, simulating the epidemic process of 
infectious diseases in everyday life scenarios. This constitutes an 
interesting and closely real-life-related research topic, further enriching 
the scope of theoretical epidemiology. (2) Innovative research method. 
Although we have previously developed several computer models to 
infer the epidemic progression of infectious diseases within populations, 
numerous challenges persist when implementing this method in 
research endeavors. This is evidenced by the following factors: First, the 
time and distance of contact between individuals during the food 
pick-up process are dynamically changing. These factors are vital for 
model establishment, but it is somewhat challenging to accurately 

determine them. Second, prior research regarding the determination of 
infection probability based on the time and distance of contact between 
susceptible individuals and the infection source is scarcely reported. 
Thus, there is a necessity to explore the establishment of a novel 
quantitative relationship. Practical experience has demonstrated that 
computer models possess significant flexibility and practicality. When 
designed appropriately, they can effectively resolve complex issues.

4.2 Variations in the number of individuals 
in the food pick-up queue

Simulating the dynamic food pick-up process presents a 
significant challenge for the model. To incorporate the time and 
location factors during the pick-up activity, we utilize a state data 
frame to record the information. Individuals in the food pick-up 
queue are segregated into those who are in the phase of picking up 
food and those who are waiting. The first column of the data frame 
logs the moment of position change for a food-picking individual. 
Position shifts among food-picking individuals may trigger 
accompanying changes among those in the waiting category. These 
waiting individuals, following their position changes, may either reach 
new food pick-up points or persist in waiting at newly adjusted spots, 
calling for further analysis and discernment. Once we calculate the 
fresh positions of food-picking individuals and potential new locations 
that the waiting ones may reach, we store the positional information 
in columns 2–11 of the data frame. Consequently, each row in the data 
frame chronicles a moment of position change for a food-picking 
person, as well as the subsequent positions of food-picking and 
waiting individuals after the queue readjusts. Upon the archiving of 
relevant information of all food-picking individuals, all close contacts 
of a single infection source in the identical queue and their contact 
timings can be discovered through referencing the time and position 
logs in the data frame.

Figure 2d shows a stable number of individuals involved in food 
pickup, reflecting a dynamic balance between those leaving the queue 
after pickup and those entering the area to start pickup. Such a 
phenomenon may be attributed to our implemented constraints on 

TABLE 2 Temporal distribution of new and accumulative infected individuals, infectors, and patients under treatment.

Epidemic-
related
Statistics

λ = 0.01 λ = 0.03 λ = 0.05

Peak number 
of people

Peak time 
(days)

Peak number 
of people

Peak time 
(days)

Peak number 
of people

Peak time 
(days)

New E 9.5 (5–11.5) 20 23 (16.5–25.5) 11 27.5 (23.5–30) 8

Accumulative E 147 (131–152) 30 160.5 (158–164) 18 163 (160–164.5) 12

New E in queues 7.5 (2–11.5) 17 22.5 (15.5–24.5) 9 27.5 (23.5–29.5) 8

Accumulative E in 

queues
117 (130.5–138.5) 30 152 (150–153.5) 18 153 (155.5–157.5) 12

New infectors 8 (7–11) 23 20 (16–24) 13 23.5 (19.5–25) 10

Accumulative infectors 140.5 (106.5–147.5) 30 160.5 (158–164) 21 163 (160–164.5) 15

New patients under 

treatment
2.5 (1.5–7) 27 5 (4–6.5) 18 6 (3–7.5) 15

Accumulative patients 

under treatment
32.5 (19.5–37.5) 30 47 (44–51) 24 49.5 (44–53) 22

The number of people at the peak is presented as a median value, with a fluctuation range of 25–75%, based on 50 simulations. E represents infected individuals. Infectors include Im and Ih.
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FIGURE 5

The time distribution of the current number of susceptible, latent infected, infectious and hospitalized individuals.

TABLE 3 The temporal distribution of the current number of groups in different infection states.

Epidemic-
related
Statistics

λ = 0.01 λ = 0.03 λ = 0.05

Peak number 
of people

Peak time 
(days)

Peak number 
of people

Peak time 
(days)

Peak number 
of people

Peak time 
(days)

Susceptible individuals 

(at the 7th day)
170.5 (166.5–172) 0 135 (125–149) 0 90 (78–108) 0

Latent infected 

individuals
29 (26–31) 20 61.5 (55–64.5) 12 79 (68.5–82) 9.5

Infectors 54 (44.5–54.5) 23 98 (90–104.5) 15 112 (110–115.5) 13

Patients under 

treatment
25.5 (18.5–27) 30 39 (33–42.5) 22 41.4 (36–45) 18
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individual food pickup durations and quantities, averting queuing 
congestion instigated by an excessively prolonged food collection 
duration. Concurrently, hasty food collection did not enhance 
individual mobility or increase the number of food collectors. It 
required approximately seven minutes to retrieve food for 180 
individuals from two different queues; a duration that closely mirrors 
common scenarios and validates our reasonable food retrieval 
timing parameters.

4.3 Formulation of the infection probability 
equation

Simulating the spread of disease requires calculating the 
probability of infection for close contacts, and then using this 
probability as a parameter to generate a Bernoulli random number (1 
or 0) to determine whether each contact is infected or not. Accurately 
elucidating the correlation between infection probability, contact 
duration, and distance is an integral facet of model formulation. A 
review of existing literature reveals a conspicuous gap in this field, 
with the Wells-Riley infection model representing one of the few 
pertinent research findings (as shown in Equation 2) (19).

 ( )= − −1 exp /P Iqpt Q  (2)

In this context, P represents the probability of infection, I signifies 
the number of infection sources, q represents the generation rate of 
droplets and aerosols (the number of particles produced per hour), p 
is the pulmonary ventilation rate of a susceptible individual (cubic 
meters per second), t encapsulates exposure time (hours), and Q 
stands for the room ventilation rate (cubic meters per second). 
However, the essential parameters q, p, and Q within the equation 
pose inherent challenges in terms of measurement and prediction, and 
the variable for distance d is not included. As a result, there was a 
compelling need to revise the equation to align it with the research 

objectives. Based on practical experience and previous research 
results, we integrated the d variable into the equation, consolidated the 
parameters into a lambda λ, predicted its potential range and 
ultimately validated the robustness of the equation via a graphical 
representation. By evaluating Figures 2a–c and the primary results of 
the model, the formulation of Equation 1 is confirmed to 
be fundamentally sound.

4.4 Time distribution of infected individuals

From the first two rows of Figure 4, it can be observed that 
the majority of infections occur during the process of queuing for 
food (including waiting and picking-up food), likely due to the 
increased exposure to the infection source, with one infection 
source potentially affecting as many as 15 individuals in two 
queues. Dynamic contact further broadens the transmission 
scope within the population. In contrast, during dining, there are 
usually four people per table, seated fixedly with no inter-table 
disease transmission, thus limiting the contact scope. Fewer 
interactions with the infection source limits disease spread. This 
study implies that queues for food constitute a significant 
transmission risk during a respiratory disease outbreak. Actions 
to decrease queuing frequency, individual intake, and airborne 
pathogen density are recommended. Furthermore, the generally 
decreasing trend of Rt highlights that, as the number of 
susceptible individuals falls, so does the infection 
source’s transmissibility.

4.5 Limitations of the study

The limitations of the study are mainly reflected in four 
aspects. (1) For the convenience of research, we  abstract the 
process of collective dining into a simplified model, while 

FIGURE 6

Results of sensitivity analyses. λ denotes the exposure index, ph signifies the rate of severe cases, dm depicts the infectious period for mild cases (from 
the onset of illness to recovery), dh indicates the infectious period for severe cases (from onset to treatment), and p represents the ratio of susceptible 
individuals to the total population when t equals 0.
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simultaneously removing some secondary behavioral factors 
from this process, such as conversation, air circulation, and 
multiple trips to get food. However, this idealized situation does 
not exist in reality, which not only leads to a certain degree of 
deviation between the results of the model and the actual 
situation, but also makes it difficult to evaluate the scientificity 
and rationality of the model by fitting the actual survey data with 
the model results. (2) Some parameter values were set by the 
authors based on their daily work and research experience. 
Additionally, the infection probability equation was also derived 
by the authors based on literature review. These assumptions 
made through subjective judgment rather than on-site 
investigations or scientific experiments can affect the accuracy of 
the prediction results. Therefore, the model still requires more 
precise data support from subsequent on-site investigations and 
laboratory tests, and further improvements are needed. (3) In 
order to targetedly analyze the dynamic mechanism of diseases 
transmission by queuing for food, we intentionally avoided other 
occasions of diseases transmission in the military, such as rest in 
the dormitory, group learning, and outdoor training. This 
simplification is not in line with the actual situation. However, if 
too many factors are added to the model, it will interfere with the 
research topic and make the calculation results difficult to 
interpret. (4) Compared with differential equation models, 
computer models have higher design difficulty and longer 
program runtime. As human activities become more complex, the 
difficulty of programming often increases exponentially, and it 
can lead to a decrease in computational efficiency and an 
extension of runtime. Therefore, this model may not necessarily 
be  suitable for all research topics, and appropriate research 
methods should be selected based on the specific situation.

5 Conclusion

We have devised a computer model that uses an individual-
based framework to simulate the dining experience of military 
personnel in a restaurant setting, thereby examining the 
transmission mechanism of respiratory infectious diseases. This 
novel model transcends the constraints of conventional dynamic 
models by accurately representing shifts in the contact duration 
and distance between queuing individuals, thereby depicting the 
disease transmission process in relation to population activity 
dynamics. The implementation of this model speaks to the 
precision and pragmatism of the research approach, while also 
broadening the realm of infectious disease dynamic studies. Our 
research identifies group queuing for food among soldiers as a 
pivotal element in disease transmission. In the absence of 
preventative and control measures, the disease will persistently 
proliferate among the population until all susceptible individuals 
become infected. For effective epidemic control, measures should 
be implemented during the epidemic phase. These measures may 
include dining in staggered periods, enhanced ventilation, and 
mandatory mask use during food collection.
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