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Introduction: To explore and develop a backpropagation neural network-
based model for predicting and generating exercise prescriptions for improving 
cardiorespiratory fitness in older adults.

Methods: The model is based on data from 68 screened studies. In addition, 
the model was validated with 64 older adults aged 60–79 years. The root mean 
square error (RMSE), mean absolute error (MAE) and coefficient of determination 
(R2) were used to evaluate the fitting and prediction effects of the model, and 
the hit rate was used to evaluate the prediction accuracy of the model.

Results: The results showed that (1) The mean error ratios for predicting exercise 
intensity, time and period were 7% ± 12, −5% ± 9% and − 7% ± 14%, respectively, 
indicating that the estimates were in good agreement with the expected results. 
(2) Of the 61 subjects who completed the assigned program, cardiorespiratory 
fitness improved significantly compared with pre-exercise. Improvements 
ranged from 9.2–10% and 8.9–15.8% for female and male subjects. (3) In 
addition, 71 and 94% of subjects (43/61) showed cardiorespiratory improvement 
within plus or minus one standard deviation and plus or minus 1.96 times 
standard deviation.

Discussion: A neural network-based model for exercise prescription for 
cardiorespiratory fitness improvement in older adults is feasible and effective.
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1 Introduction

Cardiorespiratory fitness (CRF), a health-related component of physical fitness, refers to 
the ability of the circulatory and respiratory systems to supply oxygen to muscular systems 
during physical activity (1). Longitudinal studies have found that the decline of CRF over time 
range from 5 to 20% per decade from the age of 30 onwards (2), with older age groups 
demonstrating a steeper rate of decline (3, 4). CRF is associated with cardiovascular disease and 
all-cause mortality in both men and women (5). Furthermore, among older adults, satisfactory 
CRF is necessary for quality of life, functional preservation, and independence (2–6).

Among the methods to boost the CRF of older adults, exercise training based on a given 
exercise prescription is a proven strategy. Exercise prescription is a specific plan of fitness-
related activities devised for a particular purpose (such as maintaining CRF), typically 
developed by a fitness or a rehabilitation specialist. It mainly includes frequency, intensity, 
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type, and time of exercise (FITT), but also includes volume (V), and 
progress (P) (7–9).

The World Health Organization (WHO) recommends that 
older adults engage in at least 150–300 min of moderate-intensity 
aerobic physical exercise or at least 75–150 min of vigorous aerobic 
physical exercise per week; or an equivalent combination of 
moderate and vigorous exercise, for substantial CRF benefits (10). 
However, there is substantial heterogeneity in CRF response to a 
certain exercise prescription; some participants got a high 
improvement in CRF levels, some had no improvement with 
training (11, 12). In these studies, it may be limited by the high 
heterogeneity of dose parameters, participant characteristics, or 
both (13). The American College of Sports Medicine (ACSM) 
standpoint to ensure improved CRF in older adults recommends 
at least 30 min of moderate-intensity exercise at least 5 days per 
week or at least 20 min of high-intensity exercise at least 3 days per 
week. Additionally, previous studies have adopted a variety of 
methods to formulate an individualized CRF exercise prescription 
for older adults (14). For example, physicians or other healthcare 
providers may assess an older adult’s baseline and then formulate 
exercise prescriptions based on physician’s clinical experience or 
clinical guidelines. However, exercise prescriptions that are 
directly based on their work experience may not be applicable to 
all older adults, because each person’s age, sex, and physical 
condition are different, which may result in failure to achieve 
desired improvements (15). Therefore, to improve CRF in older 
adults, individualized exercise prescriptions should be formulated 
with consideration of factors such as age, sex, and 
physical condition.

To build an accurate and personalized predictive model for exercise 
prescription, comprehensive baseline data are essential for capturing 
individual variability. Neural Networks (NN), particularly the Back-
Propagation Neural Network (BPNN), have emerged as powerful tools 
in health intervention studies due to their ability to approximate 
complex nonlinear relationships, resist noise interference, and adapt to 
heterogeneous systems (16–19). Recent advances in BPNN applications 
span fault detection (20) and medical diagnostics (17), demonstrating 
its versatility in handling noisy, high-dimensional data. Building on 
these foundations, our study extends BPNN to geriatric exercise 
prescription, addressing aging-specific physiological complexities. For 
instance, Beltrame et  al. utilized NNs to predict exercise energy 
expenditure with high precision (21), while Frade et al. conclude that 
the CRF can be predicted by wearable technologies associated with NNs 
(22). However, existing studies predominantly focus on younger 
populations or single-parameter optimization, lacking dynamic 
modeling for multidimensional aging-related features. To address this 
gap, we hypothesize that a BPNN-based framework can dynamically 
integrate geriatric physiological complexity and generate individualized 
CRF-enhancing exercise prescriptions.

Our study employed a mixed-methods approach, combining 
data from a systematic literature review to develop the model and 
experimental data to validate it. This dual-source strategy 
leverages historical intervention patterns and real-world 
heterogeneity, balancing clinical feasibility with personalized 
adaptability. The model aims to optimize exercise prescription for 
older adults, promoting their physical health and functional 
independence. The research methodology of this study is depicted 
in Figure 1.

2 Methods

2.1 Data collection

We collected and analyzed previous experimental research aimed 
at improving the CRF of older adults. Databases including PubMed, 
EBSCO, Web of Science and CNKI were searched for research 
published from 1989 to 2021 (last search in June 2021). A combination 
of keywords related to the three topics of this study—older adults, 
exercise intervention, and cardiorespiratory fitness—was used as 
search terms, as listed in Table 1.

Additional synonymous search terms were included, guided 
by the articles retrieved during the literature search. The inclusion 
criteria covered studies written in English or Chinese using a 
randomized controlled trial or a self-control trial experimental 
design with subjects aged 60 years or older. Studies needed to 
focus on exercise interventions for older adults, outcome 
indicators all need to measure Maximal Oxygen Uptake (VO2max), 
and studies with or without a control group were acceptable. 
Conference papers, poor quality papers, and studies of exercise 
combined with nutritional supplementation would be excluded. 
All steps of the process followed the recommendations of the 
PRISMA Flow Diagram (23), as presented in Figure  2. After 
screening, a total of 68 articles (involving 1,594 subjects) met the 
above inclusion criteria and were subjected to data processing 
(24–91). Characteristics of the literature of the included studies 
are presented in Supplementary Table S1. The quality of the 
included studies was evaluated using the Physiotherapy Evidence 
Database (PEDro) scale (92), with results detailed in 
Supplementary Table S2.

2.2 Data processing

2.2.1 Data encoding
Research by Luan et al. (15) identified age and sex as important 

factors influencing CRF. This evidence strongly supports our 
decision to include these variables in the model construction. In 
each research, we summarized the basic information include age, 
Body Mass Index (BMI), VO2max initial value (VO2max pre), 
improvement and sex, and exercise prescription elements of the 
research’s subjects, include exercise frequency, intensity, time 
and volume.

To prepare the available data as input and output for training the 
model, we encoded this basic information and exercise prescription 
elements to make them suitable for incorporation into the model 
program. Values for certain information are retained to one decimal 
place (e.g., age, BMI and VO2max pre). We calculate the VO2max 
improvement and keep two decimal places (VO2max final 
value = VO2max post).

When utilizing the trained BPNN, both input sets should 
be  encoded, but also the output data sets should be  encoded. 
Exercise prescription elements are established as our output sets. 
The encoding of the output dataset is the same as the input set. For 
the exercise intensity set, we  extract the average value of the 
exercise intensity range, convert it to a decimal and subtract 0.5 
[taking 50% Heart Rate Reserve (HRR) exercise intensity as 0], 
such as a study’s exercise intensity is 60% HRR, in our exercise 
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FIGURE 1

The research methodology.

TABLE 1 Keywords of exercise intervention on improving cardiopulmonary fitness in the older adults.

Search words Older adults Exercise intervention Cardiorespiratory fitness

Key words

Older adult Exercise Cardiovascular fitness

Geriatric Training Cardiopulmonary

Aging Physical activity Cardiorespiratory fitness

Aged Aerobic training VO2max

Combined training
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intensity set is 0.1. In the case of exercise time and volume set, 
we keep two decimal places.

2.2.2 Data augmentation
To increase the sample size reasonably, we  chose age, BMI, 

VO2max initial value as the parameters for data augmentation 
(mean ± standard deviation) based on the collected studies as these 
parameters showed greater variability in the dataset and were closely 
related to the study objectives. Additionally, sex and VO2max 
improvement were set as fixed valued because they are relatively stable 
and have less impact on model performance (93).

Data augmentation is performed through the Randn function on 
MATLAB (R2021a; MathWorks, Natick, MA, United States). These 
generated numbers have passed various statistical tests of randomness 
and independence, and their calculation can be repeated for testing or 
diagnostic purposes (94).

We simulated the basic information of each subject in each study, 
with each subject’s information generated in a 1*3 matrix format, 
we simulated 1,594 groups of sample data.

2.3 Back-propagation neural network 
model

2.3.1 Input and output layer setting
The number of neurons in the input unit has a direct impact on 

the prediction outcome. We  adopted a multi-input multi-output 
(MIMO) architecture:

Input parameters (5 dimensions): Age, Sex, BMI, VO2max initial 
value, and improvement.

Output parameters (4 dimensions): Exercise frequency (days/
week), intensity (%HRR), time (minutes), and volume (weeks).

Continuous variables (e.g., age, BMI) were standardized according 
to data coding method. Categorical variables (sex) were coded using 
One-Hot Encoded (0 = female, 1 = male) to avoid numerical bias in 
weight updates. To achieve a precise model, prior to training the 
BPNN, we  need to set the parameters of the neural network, the 
selection of neuron transfers functions, and neural network training 
algorithm and errors, etc. (93).

2.3.2 Model algorithm selection
The traditional BPNN suffers from slow convergence and local 

minima trapping. The Levenberg–Marquardt (LM) algorithm was 
implemented to enhance weight updates:

 ( ) 1T Tw J J I J eλ
−

∆ = +
 

(1)

in Equation 1 J is the Jacobian matrix of errors to weights, λ is the 
damping factor, and e is the error vector. LM dynamically adjusts λ:

Decrease λ when errors decline, approximating the Gauss-Newton 
method for faster convergence.

Increase λ when errors rise, reverting to gradient descent 
for stability.

Compared to standard gradient descent (manual learning rate 
tuning), LM leverages second-order derivative information for 
adaptive step size optimization, particularly effective for medium-
scale networks (<1,000 parameters) (95). Despite higher memory 
demands (storing J), matrix optimization in MATLAB Deep 
Learning Toolbox.

FIGURE 2

PRISMA flow-chart.
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2.3.3 Model layers selection
In BPNN model, the parameter setup is crucial, with the number 

of nodes in the hidden layer and neurons in the input set unit being 
key variables. It has been established that a BPNN with a single hidden 
layer and sufficient neurons can realize any nonlinear mapping (90). 
However, if the sample number is large, a network with one hidden 
layer fails to achieve an accurate function, and the calculation 
efficiency decreases significantly (96). To create an accurate model, it 
is necessary to determine the optimal number of hidden layers, with 
the number of neurons in each hidden layer given by Equation 2.

 1n n m a= + +  (2)

where n1 is the number of hidden neurons, n is the number of 
input units, m is the number of output units, a is a constant between 
[1,10] (97). According to the empirical formula, the neuron range was 
set to 4–14.

Grid search across 1–7 hidden layers revealed: Single hidden layer 
(12 neurons): RMSE = 1.62, faster training but prone to underfitting. 
Three hidden layers (12–10-8 neurons): RMSE = 1.44 with minimal 
validation error fluctuation. Deep layers enabled hierarchical feature 
extraction: baseline traits (age/BMI) in the first layer, nonlinear 
intensity thresholds in intermediate layers, and exercise prescription 
integration in the final layer. The BPNN processing is depicted in 
Figure 3.

2.4 Model training and validation

2.4.1 Model tuning and regularization strategies
To enhance model performance, a systematic hyperparameter 

tuning process was conducted. Key parameters included: (i) Learning 
Rate (η): Governs the step size during gradient descent. Tested values: 

{0.001,0.01,0.1}. (ii) Momentum Factor (β): Accelerates convergence 
by smoothing weight updates. Tested values: {0.5,0.7,0.9}. (iii)
L2-Regularization Coefficient (α): Penalizes large weights to prevent 
overfitting. Tested values: {0,0.001,0.01}. The optimal combination was 
determined via grid search, minimizing validation Root Mean 
Squared Error (RMSE).

To balance model complexity and generalizability, L2 
regularization was integrated into the loss function:

 

2

1

w
j

j
L MSE wα

=
= + ∑

 
(3)

where W is the total number of weights. Early stopping monitored 
validation loss, terminating training if no improvement occurred for 
10 consecutive epochs, effectively preventing overfitting (98).

The LM algorithm implemented dynamic damping factor 
adjustment (initial λ = 0.01) with finite-difference Jacobian 
approximation (Δ = 10−5) (95), synergized with the L2-regularized 
Mean Squared Error (MSE) loss in Equation (3) the default choice in 
MATLAB’s LM implementation (trainlm) for hardware-accelerated 
stability. This integrated design, validated by Luttmann et al. (99), 
inherently unifies adaptive step control and weight regularization 
through shared matrix optimization routines, demonstrating proven 
noise resilience in physiological signal regression. Combined with 
early stopping (10-epoch validation patience) (98), the framework 
establishes a robust defense against overfitting while maintaining 
computational efficiency.

2.4.2 Model training
This study needs to determine the appropriate division of the data 

set to train the model and test the model. The dataset was partitioned 
into: (i) Training set (80%): For weight updates. (ii) Validation set 

FIGURE 3

BPNN training and testing process.
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(10%): For hyperparameter tuning and early stopping. (iii) Test set 
(10%): For final performance evaluation.

Cross-validation, a statistical method, is commonly used in 
applied machine learning to compare and select a model for a given 
predictive modeling problem and usually produces skill estimates with 
lower bias than other methods.

To ensure robust performance estimation, a nested cross-
validation framework was employed: (i) Outer loop: 10 folds for train-
test splits. (ii) Inner Loop: 10folds for hyperparameter optimization 
within each training subset. For each outer fold: Model weights were 
reinitialized to avoid bias. Training Leveraged LM optimization with 
the selected hyperparameters. Predictions on the test fold were 
aggregated to compute global metrics. Final metrics were averaged 
across all folds. This approach reduced sampling bias and provided a 
conservative estimate of generalization error.

2.4.3 Model validation

2.4.3.1 Evaluation indicators
To assess the accuracy of the model, the following evaluation 

indicators were selected: (i) Mean Absolute Error (MAE), (ii) RMSE, 
(iii) R-squared (R2), (iv) MSE, (v) Correlation Coefficient (R) and (vi) 
Error Ratios.

The MAE and RMSE were calculated to provide a measure of the 
average magnitude of the errors in the predictions. A value closer to 0 
indicates higher accuracy of the model. The R2 was evaluated to assess 
the proportion of the variance in the dependent variable that is 
predictable from the independent variable(s). A value closer to 1 
indicates a better fit of the model to the data. The model’s performance 
is quantified by the MSE, which measures the average squared 
difference between the predicted and actual values—with a lower MSE 

indicating better performance—and by the R, which assesses the 
strength and direction of the linear relationship between the predicted 
and actual values, with r = 1 signifying a perfect positive linear 
relationship. The error ratios were calculated relative deviations (%) 
for prescription elements.

2.4.3.2 Experimental validation
In total, 64 older adults, aged 60–79, were recruited from a 

community center in an urban area of Beijing to validate the practical 
application of the model (Figure 4). These subjects often met for social 
activities at the center (although they did not engage in physical 
exercise), were undergoing regular health check-ups in primary 
healthcare, and were invited to participate in the research. The 
inclusion criteria were as follows: (i) aged 60–79, for both sexes; (ii) 
self-reliant; (iii) having adequate vision and hearing to participate in 
the intervention; and (iv) free from major physical and/or cognitive 
disease/disability that could affect participation. All subjects 
completed health risk screening and fully understood the purpose of 
the study, the trial process, and subject rights and responsibilities 
before their inclusion in the trial, and voluntarily signed an informed 
consent form. Participants engaged in a similar intervention during 
the same follow-up period were excluded. The research received 
approval from the Ethics Committee of Beijing Sport University 
(Ratification number: 2018018H), and all participants signed an 
informed consent form.

Supervised aerobic exercises were conducted at the Community 
Center’s Activity Plaza, using exercise equipment in the form of 
elastic bands, and participants performed aerobic exercise with elastic 
bands under the guidance of instructors. Exercise hours are during 
regular business hours, excluding legal holidays. Participants carried 
out their individualized program at designated times under the 

FIGURE 4

Flow through study.
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supervision of a staff-to-participant ratio of one to five. The staff 
included athletic trainers, as well as graduate and undergraduate 
students specializing in exercise science. Participants were also 
encouraged to exercise at home to reach their exercise targets. The 
degree of improvement in the model was set with reference to data 
from the literature used for modeling. Literature findings in the 
literature showed that after 12-weeks of exercise intervention, CRF 
improved by an average of 10% in older adults’ subjects (25, 26, 32, 
41, 53, 84), so the degree of improvement was set to 10% for all 
subjects in the model. This approach aimed to enhance the model’s 
realism and the accuracy and reliability of its prediction. The 
individualized exercise prescription (frequency, intensity, time and 
volume) for each subject to improve 10% CRF was obtained from the 
model by entering the subject’s basic information. Aerobics was 
chosen for the intervention, with exercise intensity gradually 
increasing to match the individual intensity as prescribed by the 
model. The Polar H10 heart rate monitoring system (ECG single-lead, 
sample rate 130 Hz, Polar, Finland) was used to record a person’s 
heart rate during exercise, allowing for adjustments to the exercise 
intensity. A 6-min walk test (6MWT) was performed before and after 
the intervention to evaluate improvements in CRF. Ultimately, 61 
subjects completed the study, resulting in a dropout rate of 4.7%. The 
basic characteristics of the subjects are presented in Table 2. The 
subjects’ estimated VO2peak (E-VO2peak) was based on the 6MWT 
results (100).

The following statistical methods were employed in this study: 
Linear regression analysis was used to evaluate the relationship 
between expected-E-VO₂peak and post-E-VO₂peak. A paired sample 
t-test was conducted to compare pre-E-VO₂peak and post-E-VO₂peak 
values. Additionally, the “hit rate” (predictive accuracy) was calculated 
to assess the model’s predictive goals and to reveal the direction and 
magnitude of model bias through Bland–Altman analysis (101).

3 Results

3.1 Model design

We selected 68 articles and 1,594 datasets as the dataset. 
We  divided the dataset into 10 segments, using eight of them 
(N = 1,275) for weight updates, one (N = 159) for hyperparameter 
tuning and early stopping and the remaining one (N = 159) for final 
performance evaluation. The structure of the model incorporated a 
five-dimensions input layer, three hidden layers with dimensions 
12–10-8, and a four-dimensions output layer (Figure 5). Table 3 shows 

the hyperparameter optimization results of the BPNN, and Table 4 
shows the results of cross-validation.

Confirms the predictive superiority of our model. By comparing 
the mean and best values of RMSE and MAE (1.4383 vs. 1.5206) and 
(1.2366 vs. 1.5394). The R2 values exceeded 0.99, further proves the 
model’s predictive accuracy. Comparison with previous studies. Dai 
et al. (102) developed a prediction model for student fitness assessment 
using BPNN. It collected 332 datasets and reported a MAE of 
approximately 2.649 and an RMSE of 3.032. Likewise, in another 
study, Lin et al. (103) focused on predicting the brain age of healthy 
older adults using an improved BPNN based on the LM algorithm. It 
collected data from 112 subjects and achieved an average MAE of 6.14 
and RMSE of 6.77 for brain age prediction. The above results imply 
that the present model can accurately predict the exercise intensity, 
time and volume.

The study results showed that the MSE of the predicted model was 
4.5416 in Figure 6A, with R values for the training set, validation set, test 
set, and total being 0.99659, 0.99408, 0.99326, and 0.99572, respectively 
in Figure 6B. This result is consistent with Xie et al.’s study (104), which 
proposed a BPNN-based approach for developing postgraduate 
students’ mental health status diagnostic model. Their model, trained on 
461 datasets, had an MSE of 13.1279 and R values of 0.98448, 0.97373, 
0.98128 and 0.98273 for the training, validation, test and total sets, 
respectively. This indicated that our BPNN model has higher accuracy 
in predicting exercise intensity, time, and volume. Figure 6A illustrates 
the training error diagram of the LM-BPNN, with the horizontal axis 
representing the training epoch and the vertical axis representing the 
MSE on the dataset. Figure 6B shows the regression fitting values R for 
the training, validation, testing and overall sets, respectively.

Following the training of the BPNN model was, we  tested its 
prediction ability Figures 7A–C illustrate the difference between the 
target output versus model predictions for the data used for model 
testing (N = 159). The average difference is 0.003 ± 0.099 for exercise 
intensity, −1.127 ± 6.094 for exercise time and 0.314 ± 1.750 for 
exercise volume. The predicted values closely matched the target 
output values, demonstrating impressive prediction accuracy.

Further error analysis using error ratios for elements revealed that 
Figure 8 systematically quantifies the three elements error ratios for the 
159 test samples, with the gray shaded band (−20 to 20%) delineating 
the acceptability threshold. Specifically, 86% of the intensity errors 
(red), 91% of the time errors (blue), and 84% of the volume errors 
(black) fall within this range. Quantitative results showed average error 
ratios of 7 ± 12, −5% ± 9% and − 7% ± 14% respectively, with most 
error ratios below 20% tolerance threshold. These results confirm the 
operational reliability of the model considering the errors inherent in 
the coding/augmenting process of exercise prescriptions.

3.2 Experimental validation results

The model-generated exercise prescriptions (Table  5), 
recommended twice-weekly sessions at 64% HRR, averaging 48 min 
(45–55 min) over 12 weeks. Post-intervention, significant 
improvements in E-VO2peak were measured again using the 6MWT, 
with females and males achieving 8.9 and 10.0% gains, respectively 
(p < 0.001; Figure 9). During the exercise intervention, all subjects 
showed well adaptability and tolerance with no serious side effects or 
sports injuries, proving the safety of the exercise intervention program.

TABLE 2 The basic characteristics of the subjects.

Characteristics Female (n = 32) Male (n = 29)

Age (years) 68.5 ± 4.2 69.2 ± 6.1

Height (cm) 156.5 ± 5.2 166.1 ± 6.0

Weight (kg) 60.4 ± 9.5 67.8 ± 8.3

BMI (kg/m2) 24.6 ± 3.4 24.5 ± 2.4

6MWT (m) 527.1 ± 70.8 531.5 ± 89.3

Pre-E-VO2peak (ml kg−1 min−1) 11.9 ± 2.2 12.2 ± 2.6

Improvement (%) 10 10
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Linear regression confirmed strong correlation between expected-
E-VO2peak and post-E-VO2peak improvements (R2 = 0.89 for females, 
R2 = 0.91 for males; p < 0.001), with non-zero slopes indicating robust 
predictive validity (Figures 10A,B).

Table 6 shows the “hit rate” of CRF improvement for 61 subjects 
within a range of one standard deviation and 1.96 times standard 
deviations (105, 106), with 70% (43/61) and 93% (57/61), indicating 
satisfactory CRF improvement across the board. To comprehensively 
assess model performance, we quantified the bias in predictions using 
a Bland–Altman plots (Figures  11A,B). The mean bias between 
expected and post-E-VO₂peak improvement was −0.128 mL/kg/min 
(95% LoA: −1.639 to 1.383) and 0.002 mL/kg/min (95% LoA: −1.614 
to 1.618) for females and males, respectively, indicating that there was 
no systematic over/underestimation. Notably, 96.9 and 93.1% of the 
data points fell within the LoA range, respectively, which is consistent 
with hit rates of 91% and 97 in the 1.96-SD range, reinforcing the 
model’s precision across heterogeneous populations. The validity of 
the model in different populations was demonstrated by hit rate and 
Bland–Altman plot analyses.

4 Discussion

The study aims to develop a personalized exercise prescription for 
improving CRF in older adults through a scientifically robust 

framework. Conventional exercise prescriptions often adopt a one-size-
fits-all approach, failing to account for the physiological heterogeneity 
inherent in older adults. To address this limitation, we employed a 
mixed-methods approach, integrating a systematic literature review 
with experimental validation to inform a BPNN model. This dual-
source strategy leverages historical intervention patterns and real-
world physiological variability, enabling the model to balance clinical 
feasibility with personalized adaptability. The proposed framework 
aims to optimize exercise prescriptions by dynamically aligning with 
individual functional baseline, ultimately enhancing CRF and 
supporting functional independence in older adults.

4.1 Accuracy of model predictive 
performance

Error metrics are crucial for assessing model performance. Our 
model demonstrated a more positive trend in terms of average RMSE 

FIGURE 5

The structure of BPNN.

TABLE 3 Hyperparameter optimization results of the BPNN.

Basic information network 
parameter

Parameter setting

Learning Rate (η) 0.01

Error Precision 10−7

Momentum Factor (β) 0.9

L2 Regularization Coefficient (α) 0.001

Display Interval 25

Maximum Number of Training Epochs 1,000

TABLE 4 Comparison of error indicators of each round of cross-
validation.

Round RMSE MAE R2

1 1.4190 1.6433 0.9946

2 1.3964 1.4312 0.9947

3 1.4777 1.6964 0.9941

4 1.6234 1.3363 0.9930

5 1.5250 1.4587 0.9938

6 1.3549 1.4226 0.9951

7 1.2620 1.2711 0.9957

8 1.5960 1.8182 0.9932

9 1.2366 1.5394 0.9959

10 1.4918 1.5887 0.9940

Mean 1.4383 1.5206 0.9944

Best 1.2366 1.5394 0.9959
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FIGURE 6

(A) Fitting regression diagram of LM-BPNN model. (B) Training error diagram of LM-BPNN.
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and MAE (1.4383 vs. 1.5206) and (1.2366 vs. 1.5394) respectively, with 
an R2 value of more than 0.99. Like Parab et al., who achieved high 
accuracy in predicting blood urea via BPNN (RMSE of 0.69 and 2.06), 
our model leverages nonlinear mapping for CRF optimization (17). 
However, unlike their static health metrics, our framework 
incorporates dynamic exercise adaptation. Liu et al.’s (107) proposed 
a BPNN-based propagation delay prediction model showed the RMSE 
and MAE of 6.2457 and 5.0817, respectively, under optimal 
parameters. In comparison, our model showed more positive trend in 
prediction accuracy. Additionally, when compared to previous studies 
(95, 102, 103), it indicates that our BPNN model has better accuracy 
in predicting performance.

Traditional linear models fail to address the complex relationships 
between individual factors (e.g., age, BMI) and exercise prescription 
elements due to inherent physiological heterogeneity in older adults. 
While prior studies, such as Beltrame et al. (21) demonstrated NN’s 
utility in predicting aerobic energy expenditure (R = 0.98) using limited 
inputs (e.g., heart rate, speed), their frameworks lacked multidimensional 
older adults features. Our BPNN model addresses this gap through three 
key innovations: (i) Dynamic parameter integration: Unlike static 
models focusing on single parameters, our architecture normalizes age, 
sex, BMI and the initial value of VO2max to capture nonlinear 
interactions. For example, older adults with higher BMI required lower 
exercise intensity—a relationship detectable only through multilayer 

FIGURE 7

(A) Output difference in exercise intensity. (B) Output difference in exercise time. (C) Output difference in exercise volume.
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nonlinear mapping. (ii) LM optimization: The LM algorithm’s adaptive 
damping factor (λ) balanced convergence speed and stability, achieving 
smaller errors and higher predictive performance than other NN 
algorithms and traditional multiple linear regression models (108), 
enabling efficient handling of medium-scale datasets (N = 1,594) without 
sacrificing precision. (iii) Data augmentation: By expanding age, BMI 
and VO2max via MATLAB’s Randn function, we mitigated overfitting 
while preserving physiological plausibility. These design choices 
collectively yielded superior performance (RMSE = 1.44 vs. 3.032 in Dai 
et al.; 6.77 in Lin et al.), with MSE = 4.5416 and near-perfect correlation 
coefficients (R > 0.99 across training, validation, and test sets). The 
results confirm the model’s ability to generate precise, individualized 
prescriptions for intensity, time, and volume—critical for optimizing 
CRF in aging populations.

During the model prediction ability test, we observed minimal 
differences between the target output and the model-predicted 
exercise intensity, time and volume, with mean difference of 
0.003 ± 0.099, −1.127 ± 6.094, and 0.314 ± 1.750, respectively. These 
findings, as well as mean error ratios of these elements that were 
mostly below 20%, mean that our BPNN model accurately predicted 
the exercise prescription elements within an acceptable margin of 
error. Importantly, when combining these metrics with clinical 
guidelines, the error ratio for exercise intensity (7% ± 12%) remained 
within the ACSM-recommended target range for aerobic exercise of 
50–85% HRR (14). Similarly, the error ratio in exercise time 
(−5% ± 9%) was consistent with the guideline of “30–60 min of 
moderate-intensity activity per session,” and the error ratio for 
exercise volume (−7% ± 14%) was consistent with intervention 
periods that have been shown to be effective in improving CRF in 
older adults (e.g., 12 weeks) (109). These results suggest that even with 
prediction error, model-generated exercise prescriptions remain 
within the range of clinical safety and effectiveness.

Our BPNN model is accurate and precise in predicting various 
elements of exercise prescription for older adults, with error results for 
each element falling within the acceptable range. This provides an 
important reference and support for the development and experimental 
validation of exercise prescription tailored to older adults.

4.2 Validation of model in experimental 
validation

After the experimental validation intervention, the female group 
showed an 8.9% CRF improvement rate, and the male group showed 
a 10.0% CRF improvement rate, with both groups showing positive 
changes consistent with the model’s predictions. Interestingly, the 
wider improvement range in males (8.9–15.8% vs. 9.2–10% in females) 
may reflect higher baseline muscle mass and testosterone levels, which 
enhance CRF adaptation (110). However, females exhibited more 
consistent gains, possibly due to better adherence to low-intensity 
prescriptions—a pattern also observed in the FIT-Aging trail (111). 
This outcome lends support to the validity of our prediction model. 
The unique feature of our prediction model is its individualized 
consideration. We know that every individual’s health is distinct, as it 
is influenced by variables such as age, sex, BMI, and CRF level. These 
elements impact a person’s ability to exercise effectively and safely. 
Therefore, we personalize each subject’s exercise prescription based on 

TABLE 5 Model-generated exercise prescriptions for subjects.

Exercise 
Prescriptions

Female (n = 32) Male (n = 29)

Frequency (d/w) 2 2

Intensity (%HRR) 65.0 ± 2.6 (60-68) 64.1 ± 4.1 (56-76)

Time (min) 46.9 ± 3.3 (39-55) 48.7 ± 3.2 (42-56)

Volume (w) 12.2 ± 1.0 (10-15) 12.3 ± 0.4 (12-14)

FIGURE 9

Difference in pre-E-VO2peak, post-E-VO2peak and expected-E-
VO2peak.

FIGURE 8

Error ratio in exercise intensity, time and volume.
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this information. Meanwhile, combining our model with wearable 
devices (e.g., Polar H10) enables real-time intensity adjustment. For 
example, during a workout, if the heart rate deviates outside the 
margin of error, the system automatically suggests decreasing/ 
increasing elastic band resistance. This helps not only to ensure the 
safety of the subject, but also to improve the effectiveness of the 
exercise, which in turn improves the subject’s health.

We further validated the quantitative relationship between the 
expected-E-VO₂peak predicted by the model and the measured post-
E-VO₂peak by linear regression analysis. The regression results for 
the female group showed that the model predictions explained 89% 
of the variance in CRF improvement (R2 = 0.89, 95 CI: 0.84–0.93, 
p < 0.001), and the explanatory power was even higher in the male 
group at 91% (R2 = 0.91, 95% CI: 0.87–0.95, p < 0.001; Figures 10A,B). 
Despite the BPNN’s inherent ability to model nonlinearly, verification 
of the linear consistency of its outputs with actual values through 
linear regression doubly confirms the biological plausibility of the 
model. Compared with traditional multiple linear regression models 
(based on static parameters such as heart rate, weight and height, 
R2 = 0.702) (112), the prediction of dynamic indicators of CRF in this 
model is more challenging, but by incorporating the dynamic 

parameters of exercise prescription (intensity, time) and the 
multilayer nonlinear fitting capability of the BPNN still achieves a 
high degree of accuracy, which significantly enhances the explanatory 
power of prediction (ΔR2 ≈ 0.2) and is more relevant to the the actual 
needs of chronic disease management.

With respect to the “hit rate” of CRF improvement, 70% of the 
subjects (43/61) achieved improvement within one standard deviation, 
while 93% (57/61) saw improvement within 1.96 times the standard 
deviation, suggesting that the model is satisfactory for overall 
CRF improvement.

To rigorously validate the consistency of the predictions, we used 
a Brand-Altman analysis (Figures 11A,B). In general, it is considered 
that the points in the graph should be  located within the Lo A 
(mean ± 1.96 times standard deviation) range for 95% of all points, and 
it is also important to consider that the Lo A is not outside the range of 
professionally acceptable thresholds, and these requirements are 
generally considered to be  a better consistency between the two 
methods (101). The results showed that the mean difference between 
predicted and observed improvements in VO₂max was −0.128 mL/kg/
min (95% LoA: −1.2 to +1.5) and 0.002 mL/kg/min (95% LoA: −1.614 
to 1.618) for females and males, respectively, with 96.9 and 93.1% of 
data points within the range of agreement. This is consistent with a 93% 
hit rate in the 1.96-SD range, demonstrating that the model avoids 
systematic bias while capturing interindividual variability. In contrast, 
the noninvasive blood pressure prediction model reported a wider LoA 
(−6.349 to 6.361 mmHg) (113), reflecting the increased complexity of 
the CRF dynamic metrics relative to static weight metrics.

Compared with models predicting static metrics such as weight 
change (114), the performance of the models in this study was 
superior. For example, the weight prediction model had a wider range 

FIGURE 10

(A) Linear Regression of post-E-VO2peak and expected-E-VO2peak in female. (B) Linear Regression of post-E-VO2peak and expected-E-VO2peak in 
male.

TABLE 6 “Hit rate” of improvement at one standard deviation and 1.96 
times standard deviation range.

Statistical 
range

Female Male

Range Hit rate Range Hit rate

M ± sd 3–17% 66%(21/32) 5–19% 76%(22/29)

M ± 1.96sd −3–23% 91%(29/32) −2–28% 97%(28/29)
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of consistency bounds (−2.5 kg to 3.1 kg) and a Mean Absolute 
Percentage Error (MAPE) was 3.5%. Whereas CRF, as a dynamic 
physiological indicator in this study, has a higher prediction 
complexity, the present model demonstrated its robustness in the 
prediction of complex physiological adaptations through tighter error 
control (94% of data points were locate within the consistency 
boundaries) and higher explanatory power (R2 > 0.9).

4.3 Strengths and limitations

It is important to note that our BPNN model may be accurate and 
precise for predicting various elements of the exercise prescription for 
older adults with characteristics like those participants examined in 
this study. It is unclear if similar findings would be  observed for 
individuals who may have different characteristics such as the 
presence of additional chronic health conditions or those with 
mobility limitations.

This study boasts several advantages. First, it generated a 
personalized exercise prescription model using BPNN to enhance 
CRF in older adults. The model’s predictions suggest that the method 
is feasible. Furthermore, the validity of the method is supported by the 
anticipated improvement in CRF following intervention based on 
model-generated exercise prescriptions for older adults.

The long-term goal of this model is to improve the physical 
fitness of older adults, especially their CRF and endurance levels. 
Through sustained personalized exercise interventions, we aim to 
bolster the CRF of older adults, thereby improving the efficiency of 
their cardiorespiratory system, reducing the risk of cardiovascular 
diseases, and decelerating age-related decline in muscle mass and 
bone density. The study confirmed that CRF levels were significantly 
associated with VO2max < 15 mL/kg/min, those who achieved 15–22 
and > 22 mL/kg/min decreased their overall mortality risk ratio to 
0.66 and 0.45, respectively (115). Further analyses suggest that CRF 
improvement not only reduces health risks but also translates into 
significant economic benefits. Assuming every 3.5 mL/kg/min 
increase in VO2max levels, normal-weight individuals save 
approximately $3,272 in healthcare costs annually (116). If extended 
to China’s 267  million aging population, the potential socio-
economic impact would be  extremely far-reaching—not only 
reducing the burden on the public health system, but also indirectly 
releasing the pressure on family care by enhancing the ability of the 

aged to live independently, creating a multi-dimensional 
social benefit.

We acknowledge certain limitations in our study. A primary factor 
contributing to the inaccurate prediction of exercise intensity is that 
the included studies were all designed with different exercise 
intensities for older adults, such as HRR%, VO2max%, and HRmax%. 
Unavoidably, this introduces some random errors during the 
harmonization process. As a result, the accuracy of exercise intensity 
predictions cannot match the overall accuracy of forecasting for 
exercise duration and volume.

In actual exercise interventions for senior adults, exercise 
intensity is not fixed but varies within a range. Likewise, while coding 
the exercise intensity set, we utilized the median value of exercise 
intensities used across studies. Therefore, the expected exercise 
intensities should be regarded as indicative median values, and a 5 to 
10% hike or reduction can be used as anticipated exercise intensity 
range. In addition, the 6MWT can only estimate, rather than directly 
measure VO2max, and thus we could not accurately determine the 
subjects’ VO2max. Although we used the standard 6MWT to estimate 
VO2peak in our study, this method still has some error and 
uncertainty. Therefore, our results may be limited by this estimation 
method. When choosing the type of exercise, considering the safety 
and motivation of older adults, our experiment focused solely on 
elastic band training and excluded resistance exercise and high 
intensity interval training (HIIT), two exercise types that may 
improve CRF to some extent (117, 118). This specificity introduces 
two limitations: First, by not testing multiple modalities (e.g., cycling 
or swimming), our model’s generalizability is constrained. However, 
this reflects a deliberate trade-off given elastic bands’ advantage in 
accessibility, safety, and cost-effectiveness-critical for scalability in 
resource-limited communities. Second the absence of resistance 
exercise and HIIT prevents comprehensive assessment of different 
exercise types’ effects on CRF. Additionally, the lack of a comparison 
group using non-BPNN exercise prescriptions limits our ability to 
determine the model’s superiority over other methods. Future 
iterations could address these limitations by incorporating exercise 
type as an input variable.

Despite our model’ high level of simulation, we  cannot yet 
generate completely individualized prescriptions for each person. For 
instance, the model would produce an identical prescription of 
exercise if two senior citizens have the same parameters. Hence, actual 
enhancements need to be verified in practice.

FIGURE 11

(A) Bland–Altman analysis of female’s CRF. (B) Bland–Altman analysis of male’s CRF.
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Going forward, we plan to increase the model’s sample size and 
implement a two-stage enhancement: (i) integrating Kalman filtering 
layers (99) between network modules to enable dynamic noise 
adaptation during real-time inference; specifically tackling motion-
induced signal artifacts in heart rate monitoring during physical 
exercise; (ii) developing a hybrid preprocessing pipeline that combines 
the existing BPNN architecture with adaptive signal conditioning 
algorithms. These technical advancements will form the foundation 
for aged-targeted applications requiring robust handling of 
non-stationary physiological signals.

5 Conclusion

In this research, we suggest utilizing a model based on BPNN to 
develop individualized CRF exercise prescriptions for the older adults. 
This five-layer model, with a structure of 5–12–10-8-4, can generate 
tailored exercise prescription by processing the older adult’s basic 
information post-exercise evaluation and the targeted improvement 
degree of CRF. After augmenting the collected data, we develop an 
evaluation system to access cardiorespiratory health (VO2max) through 
machine learning and modeling, offering a convenient approach to 
health exercises for future older adult populations. Experimental 
results indicate a strong correlation between the predicted exercise 
prescriptions from our model and actual exercise prescriptions. To 
assess the model’s real-world improvement, we recruited subjects to 
participate in intervention based on the model-generated exercise 
prescriptions. The post-intervention VO2max closely matched the 
expected improved VO2max, confirming the high validity and 
reliability of our BPNN-based model for prescribing exercises to 
older adults.

This study provides initial evidence of the BPNN model in 
creating personalized exercise prescription for older adults, but 
more work is needed before this can be applied clinically broadly 
to older adults.
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