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Chronic non-communicable diseases (NCDs) pose a significant global health 
burden, exacerbated by aging populations and fragmented healthcare systems. 
This study employs a comprehensive literature review method to systematically 
evaluate the integration of medical and preventive services for chronic disease 
management in the context of big data, focusing on pre—hospital risk prediction, 
in—hospital clinical prevention, and post—hospital follow—up optimization. Through 
synthesizing existing research, we propose a novel framework that includes the 
development of machine learning models and interoperable health information 
platforms for real—time data sharing. The analysis reveals significant regional 
disparities in implementation efficacy, with developed eastern regions demonstrating 
advanced closed—loop management via unified platforms, while western rural 
areas struggle with manual workflows and data fragmentation. The integration 
of explainable AI (XAI) and blockchain—secured care pathways enhances clinical 
decision—making while ensuring GDPR—compliant data governance. The study 
advocates for phased implementation strategies prioritizing data standardization, 
federated learning architectures, and community—based health literacy programs 
to bridge existing disparities. Results show a 30–35% reduction in redundant 
diagnostics and a 15–20% risk mitigation for cardiometabolic disorders through 
precision interventions, providing a scalable roadmap for resilient public health 
systems aligned with the “Healthy China” initiative.
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1 Introduction

Chronic non-communicable (NCDs) diseases have become a major disease burden 
worldwide, imposing tremendous pressure on society and the economy. Meanwhile, the rapid 
development of information technology has provided new approaches and methods for 
chronic disease management. This paper reviews the research on the integration of information 
technology with chronic disease management.

1.1 Current status and challenges of chronic diseases

NCDs refer to a range of diseases including diabetes, cardiovascular diseases, chronic 
respiratory diseases, and malignant tumors. These diseases are the primary health threats to 
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the population, characterized by their insidious onset, complex causes, 
and prolonged conditions. They involve multiple systems such as the 
endocrine, cardiovascular, and respiratory systems, with hypertension, 
hyperglycemia, hyperlipidemia, and hypoglycemia being the most 
typical manifestations. According to the World Health Organization’s 
(WHO) “World Health Statistics 2023”report (1), NCDs have caused 
the highest disease burden globally. In 2000, 61% of deaths worldwide 
(31 million) were attributed to NCDs, and this proportion increased 
to 74% (41 million) by 2019. Additionally, the “Research on the 
Development Prospects of the Chronic Disease Management Industry 
in China” (2) by the China Industry Research Network points out that 
China has fully entered an aging society. It is estimated that by 2025, 
the older adult population in China will exceed 200 million, by 2035 
it will exceed 300 million, and by 2050 it will reach 380 million. In 
China, the proportion of deaths caused by chronic diseases is as high 
as 86%, with an increasingly severe disease burden. To improve 
chronic disease management in China, the General Office of the State 
Council issued the “Mid- and Long-Term Plan for the Prevention and 
Treatment of Chronic Diseases in China (2017–2025)” based on the 
“Healthy China” strategy, focusing on advancing chronic disease 
management. Therefore, the prevention and control of chronic 
diseases is a crucial development goal of the 21st century.

1.2 The introduction of “integration of 
medical treatment and prevention” has 
optimized the chronic disease 
management model

In 2018, the National Health Commission of China set new 
requirements for primary healthcare services, introducing “integration 
of medical treatment and prevention” as a new concept for chronic 
disease prevention and control. In 2019, the National Health 
Commission further emphasized in the “Notice on Basic Public 

Health Service Projects in 2019” that chronic disease management, 
such as hypertension and diabetes, should be used as an entry point 
to explore a grassroots service model characterized by “integration of 
medical treatment and prevention.” In 2023, the “Opinions on Further 
Deepening Reform and Promoting Healthy Development of Rural 
Healthcare Systems,” issued by the General Office of the CPC Central 
Committee and the General Office of the State Council, proposed 
innovative mechanisms for medical-prevention coordination and 
integration. It can be said that “integration of medical treatment and 
prevention” is a relatively new policy concept (3), frequently appearing 
in policy documents in recent years and garnering significant 
attention. “Medical” primarily refers to clinical diagnosis and 
treatment, while “prevention” mainly pertains to public health. 
Compared to the previous health guideline of prevention-first and 
combining prevention with treatment, this new approach emphasizes 
how medical treatment and prevention can be  integrated to 
simultaneously improve technical levels and form a unified 
management model. The integration of medical treatment and 
prevention may provide new pathways for reform and innovation in 
chronic disease management.

1.3 Big data-driven chronic disease 
management

1.3.1 Definition of healthcare big data
Big data refers to datasets characterized by massive volume, 

heterogeneous variety, rapid velocity, and significant variability, which 
exceed the processing capabilities of traditional database management 
tools. In the healthcare domain, medical big data similarly exhibits 
these attributes along with two additional critical dimensions: veracity 
(data quality) and value (actionable insights), collectively constituting 
the six defining characteristics of big data (Volume, Velocity, Variety, 
Variability, Veracity, and Value) (4), as illustrated in Figure 1.

FIGURE 1

6 V’s of big data.
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Healthcare big data (5) originates from diverse sources, including 
but not limited to:

 • Electronic Medical Records (EMRs).
 • Clinical diagnostic documentation.
 • Laboratory and imaging examination reports.
 • Pharmaceutical databases.
 • Medical device monitoring systems.
 • Patient-generated health data via wearable devices.
 • Public health surveillance platforms.

These multimodal datasets encompass comprehensive patient 
health information and clinical workflows, spanning structured 
formats (e.g., numerical values in EMRs), semi-structured metadata 
(e.g., DICOM headers in medical imaging), and unstructured content 
(e.g., physician narratives, diagnostic reports, and radiological 
images). The inherent heterogeneity and scale of these data types 
pose significant challenges in data processing and 
analytical methodologies.

Notably, while healthcare big data demonstrates immense 
potential for clinical insights, its intrinsic value is critically dependent 
on data quality (6). The accuracy and reliability of clinical decision-
making are fundamentally dependent on rigorous data preprocessing 
and advanced analytical frameworks. Consequently, systematic data 
curation and robust computational strategies constitute essential 
prerequisites for transforming raw healthcare data into clinically 
actionable knowledge.

1.3.2 Methodological framework for chronic 
disease modeling using big data

The rapid advancement of information communication 
technologies and artificial intelligence has enabled sophisticated 
methodologies for data processing and analytical modeling. As 
illustrated in Figure 2, the construction of chronic disease prediction 
models follows a systematic workflow comprising five critical 
phases (7):

1.3.2.1 Phase 1: multisource data acquisition
Heterogeneous medical datasets are aggregated from electronic 

health records, wearable sensors, genomic repositories, and population 
health databases. These multimodal inputs provide a comprehensive 
digital representation of patient health trajectories, encompassing 
demographic, biochemical, imaging, and behavioral dimensions.

1.3.2.2 Phase 2: preprocessing pipeline
Raw data undergoes rigorous preprocessing to ensure 

analytical validity:

 • Data Cleansing: Removal of outliers, imputation of missing 
values, and correction of erroneous entries.

 • Dimensionality Reduction: Application of principal component 
analysis (PCA) or t-distributed stochastic neighbor embedding 
(t-SNE) to mitigate the curse of dimensionality.

 • Normalization: Standardization/z-score transformation to 
enhance feature comparability across disparate scales.

1.3.2.3 Phase 3: feature engineering and selection
A dual-strategy approach optimizes predictive features:

 1 Statistical Filtering: Chi-square tests and mutual information 
metrics identify variables with significant associations to 
chronic disease endpoints.

 2 Algorithmic Selection: Recursive feature elimination (RFE) 
coupled with tree-based classifiers (e.g., XGBoost, LightGBM) 
quantifies feature importance.

 3 Feature augmentation: nonlinear transformations and 
interaction term generation enhance model expressivity

1.3.2.4 Phase 4: predictive model development
Ensemble learning architectures demonstrate superior 

performance in handling healthcare data complexity:

 • Baseline Models: Logistic regression with L1/L2 regularization 
establishes performance benchmarks.

 • Advanced Architectures: Deep neural networks with attention 
mechanisms capture temporal dependencies in longitudinal data.

 • Validation Protocol: Stratified k-fold cross-validation (k = 5/10) 
prevents overfitting while maintaining class distribution integrity.

 • Hyperparameter Optimization: Bayesian optimization 
frameworks efficiently navigate high-dimensional 
parameter spaces.

1.3.2.5 Phase 5: clinical implementation
Deployed models serve multiple translational functions:

 • Risk Stratification: Generation of individualized risk scores using 
SHAP (SHapley Additive exPlanations) values.

 • Precision Prevention: Dynamic recommendation systems for 
lifestyle modifications and therapeutic interventions.

 • Population Analytics: Geospatial clustering identifies high-risk 
cohorts for targeted public health initiatives.

1.3.2.6 Performance evaluation metrics
Model efficacy is quantified through:

 • Discrimination: AUC-ROC curves with 95% confidence intervals.
 • Calibration: Brier scores and calibration belt analysis.
 • Clinical utility: Decision curve analysis quantifying net benefit 

across risk thresholds.

This methodological framework emphasizes reproducibility 
through adherence to TRIPOD (Transparent Reporting of a 
multivariable prediction model for Individual Prognosis or Diagnosis) 
guidelines, ensuring clinical relevance while maintaining 
computational rigor (8). The integration of explainable AI (XAI) 
techniques facilitates clinician trust and regulatory compliance in real-
world deployment scenarios.

1.3.3 Potential biases and limitations in integrated 
clinical-public health data systems

The integration of clinical and public health data systems, while 
offering significant potential for comprehensive disease surveillance 
and management, is inherently constrained by systemic biases and 
methodological limitations. Key challenges arise from heterogeneous 
data quality across multi-source inputs, including inconsistencies in 
completeness (e.g., variable documentation practices), accuracy 
(e.g., divergent diagnostic coding standards), and temporal 
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resolution (e.g., mismatched data collection frequencies between 
real-time clinical monitoring and periodic public health reporting). 
These issues are compounded by technical interoperability barriers 
stemming from incompatible data standards (HL7 FHIR vs. 
OpenEHR), organizational fragmentation in data governance, and 
semantic discrepancies between preventive health terminologies and 
clinical ontologies (9). Furthermore, inherent selection biases may 
skew analyses, particularly through underrepresentation of 
marginalized populations in digital health records and confounding 
effects of differential healthcare-seeking behaviors. To address these 
challenges, a robust quality assurance framework spanning 
pre-analytical, analytical, and post-analytical phases is essential. This 
includes implementing constrained data entry interfaces with real-
time validation protocols during data acquisition, deploying 

machine learning-powered anomaly detection systems for 
continuous quality monitoring, and conducting root-cause analyses 
using Bayesian networks to identify systemic errors in data pipelines. 
Interoperability enhancement requires dual architectural and policy 
interventions, such as adopting federated learning systems for 
privacy-preserving distributed analytics, integrating SMART-on-
FHIR (10) APIs to bridge clinical and population health platforms, 
and incentivizing standardized common data models (OMOP CDM, 
PCORnet) (11). Crucially, these technical solutions must be coupled 
with rigorous validation metrics—including composite data utility 
indices assessing completeness (≥95%), accuracy (≥0.85), and 
timeliness (latency <24 h)—and compliance with international 
healthcare IT benchmarks (HIMSS EMRAM Stage 6+). The 
implementation of cryptographic security mechanisms, such as 

FIGURE 2

Big Data modeling roadmap.
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homomorphic encryption for cross-institutional data 
harmonization, ensures adherence to GDPR and HIPAA regulations 
while maintaining data utility. This multifaceted approach 
underscores the necessity of continuous quality improvement cycles 
and coordinated policy-technical strategies to transform fragmented 
data ecosystems into reliable, actionable intelligence for integrated 
care delivery.

In terms of data security, which is equally important, technologies 
such as blockchain can be  employed to ensure data security and 
compliance. For instance, in cross-border data circulation, federated 
learning (FL) can be  used to train models on decentralized data, 
ensuring that raw data does not cross borders and thus complying 
with China’s Cybersecurity Law. To adhere to the General Data 
Protection Regulation (GDPR), privacy protection techniques such as 
differential privacy can be adopted during the FL aggregation process, 
further enhancing data security.

Additionally, the application of auditable compliance blockchain 
can record data access and processing activities, ensuring the 
traceability of data usage. For example, the SMART-on-FHIR API (12) 
can trigger GDPR “right to be forgotten” requests through blockchain 
entries, safeguarding the legitimate rights and interests of data 
subjects. Furthermore, the establishment of regional data governance 
committees, such as the China-EU Health Data Working Group, can 
help unify data standards and promote data circulation and 
cooperation between different regions.

In data sovereignty zones, such as EU member states with strict 
data laws, edge computing nodes can be deployed to process data 
locally. Combined with homomorphic encryption technology for 
cross-regional analysis, this approach ensures data security while 
meeting the legal requirements of different regions. Finally, the 
development of AI-driven dynamic consent management portals can 
adjust data usage permissions according to regional laws, allowing 
patients to more flexibly control the use of their data. For example, 

Chinese patients can choose to participate in GDPR-compliant 
research projects through granular consent forms (see Figure 3).

1.4 Risk prediction models in chronic 
disease management (pre-hospital)

Chronic diseases, as complex conditions influenced by multiple 
factors, involve not only genetics, medical conditions, social 
conditions, and climate but are also closely related to individual 
lifestyle choices. According to the World Health Organization, 60% of 
the causes of chronic diseases are attributable to personal lifestyle (1), 
such as unhealthy diet, insufficient physical activity, tobacco use, and 
harmful use of alcohol. These behavioral factors largely determine the 
occurrence and progression of chronic diseases. Big data can gather 
chronic disease health risk-related data from these sources, achieving 
multi-dimensional and comprehensive data collection. Risk prediction 
models for chronic disease health based on big data typically analyze 
population health/disease spectra and extract risk factors closely 
related to health/disease. These models can obtain average health risk 
curves for different age and gender groups, compare an individual’s 
absolute risk with the average risk of the corresponding group, 
determine personal disease risk levels, and identify risk factors leading 
to increased risk. This enables the development of scientifically sound 
personalized intervention guidelines, achieving primary and 
secondary prevention in chronic disease management (13).

AI can identify new hypertension genes through machine learning 
algorithms and evaluate patients by integrating various parameters 
such as stages of hypertension, blood pressure control, and 
accompanying comorbidities, thereby achieving early diagnosis and 
prevention. For example, Ye et al. (14) used personal patient electronic 
health record (EHR) datasets from a statewide health information 
exchange network and employed the XGBoost machine learning 

FIGURE 3

Healthcare prevention fusion data prototype diagram.
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algorithm for feature selection and model construction. The risk 
model for developing hypertension within one year achieved an AUC 
(area under the curve) of 0.917 and 0.870  in retrospective and 
prospective cohorts, respectively. The prospective validation 
demonstrated an accurate one-year risk prediction model for 
predicting primary hypertension, providing insights for hypertension 
and related disease interventions, and improving hypertension care.

Subsequently, KANEGAE Hiroshi (15) used health check-up data 
from 18,258 individuals from 2005 to 2016 to develop a highly 
accurate prediction model for future hypertension in the general 
population using machine learning (ML) algorithms. ML-based 
analysis allowed all BP measurements to be  incorporated into the 
same model, resulting in superior performance in predicting 
new-onset hypertension compared to XGBoost and logistic regression 
models. They developed a highly accurate future hypertension 
prediction model in a generally normotensive population using 
machine learning methods, which can identify high-risk individuals 
and promote early non-pharmacological interventions. Similarly, 
Yan-Hui Li and colleagues analyzed gene expression in hypertensive 
patients, identifying 177 new hypertension genes through machine 
learning algorithm development. This represents a novel approach to 
achieving secondary prevention of chronic diseases.

In other chronic disease contexts, Kupersmith et al. (16) explored 
the impact of additional attributes using electronic health record data 
to identify a high comorbidity rate of mental disorders (24.5%) among 
diabetes patients, aiming to conduct risk prediction studies for 
diabetic patients. Similarly, McCoy et  al. (17), conducted a 
retrospective analysis using data from the Optum laboratory data 
warehouse, finding that intensified treatment nearly doubled the risk 
of severe hypoglycemia in complex patient cases. Jelinek et al. (18) 
applied data mining algorithms to large clinical datasets and 
discovered that including oxidative stress biomarkers increased the 
classification accuracy of type 2 diabetes mellitus (T2DM) from 78.71 
to 86.64% at an HbA1c level of 6.5%. Including interleukin-6 in the 
algorithm, but at a lower optimal HbA1c range of 5.73 to 6.22%, 
improved T2DM classification accuracy to 85.63%, significantly 
enhancing the risk prediction capability for diabetes patients. In 2019, 
based on clinical data from the Yinzhou District Health Information 
System, Wang et  al. (19) from Peking University developed a 
predialysis chronic kidney disease risk assessment model. Serbanati 
(20), using neural networks and logistic regression analysis techniques, 
established predictive models for chronic disease patients, providing 
effective prediction for conditions such as hypertension and diabetes.

1.5 Clinical prevention in chronic disease 
management (in-hospital)

With the advancement of technology, an increasing number of 
chronic disease management applications and related systems have 
emerged. This has led to the diversification and variety of patient 
health data sources. However, due to the heterogeneity of the data, the 
more data there is, the more difficult it becomes to analyze. By 
continuously improving methods in data mining, the efficiency of 
chronic disease management and the accuracy of diagnosis and 
treatment have significantly improved. Shunda et al. (21). Proposed a 
deep learning-based medical auxiliary diagnosis data processing 
method to address the lack of efficient and accurate analysis methods 

for massive medical diagnosis data. They utilized neural networks 
deploying multilayer perceptrons to analyze preprocessed data, 
thereby achieving diagnostic classification and providing intelligent 
auxiliary diagnosis for doctors. The proposed method’s loss value and 
average accuracy rate were 53 and 85%, respectively, both 
outperforming other comparative methods. Hu et al. (22) proposed a 
novel approach that combines network analysis and machine learning 
to predict the length of stay (LOS) for older adult patients with chronic 
diseases. They constructed two networks: a multimorbidity network 
(MN) and a patient similarity network (PSN), and developed 
innovative network features. Five machine learning models with 
different input feature sets (extreme gradient boosting, gradient 
boosting decision tree, random forest, linear support vector machine, 
and deep neural network) were developed to compare their 
performance. The inclusion of network features significantly improved 
the performance of the prediction models, demonstrating the 
practicality of MN and PSN for LOS prediction. This underscores the 
potential value of network-based machine learning in chronic 
disease management.

In the medical data analysis of chronic diseases, many researchers 
have applied association rule data mining techniques and achieved 
significant experimental results. Xiaobing et  al. (23). Utilized the 
numerical attribute characteristics of aggregation algorithms to 
discretize datasets and divide them into several optimized datasets, 
mining useful association rules from tumor diagnosis data. This 
provides important reference value for the clinical diagnosis of chronic 
tumors. Ningning et al. (24). Used classification algorithms to analyze 
data from patients with type I diabetes, discovering that the generated 
classification association rules were highly consistent with medical 
research findings. Classification association rule technology has a 
solid theoretical foundation in chronic diabetes research. Among 
these, the Apriori algorithm in association rules is the primary 
algorithm used in data mining for chronic disease treatment and 
prevention. Zheng (25). summarized the traditional Apriori algorithm, 
finding that its biggest drawback is the need to repeatedly scan the 
database to obtain frequent itemsets, which inevitably affects the 
efficiency of data mining and consumes a large amount of memory. In 
contrast, Liu et al. (26) proposed an association rule data mining 
algorithm that combines clustering matrix and pruning strategies. 
This algorithm compresses the stored transaction database using the 
clustering matrix method and introduces pre-pruning and post-
pruning strategies based on adding constraint conditions, improving 
the algorithm. Its execution time is significantly lower than that of the 
traditional Apriori algorithm, enhancing the efficiency of data analysis 
for chronic disease treatment and prevention.

1.6 Accurate chronic disease management 
(post-hospital)

By comprehensively utilizing risk prediction models and other 
tools for chronic disease management, a new integrated medical 
prevention service model that optimizes the pre-hospital, in-hospital, 
and post-hospital stages, and incorporates the four levels of 
prevention, can be achieved for precise chronic disease management. 
The refined management of chronic diseases aims to improve the 
management rate, control rate, and hospitalization rate of patients 
with chronic and special diseases, ultimately enhancing their quality 

https://doi.org/10.3389/fpubh.2025.1547392
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2025.1547392

Frontiers in Public Health 07 frontiersin.org

of life. For example, the Shanghai Center for Disease Control and 
Prevention has explored establishing an integrated and precise chronic 
disease health management service model (27), achieving integrated 
whole-process health management centered around individuals in the 
pre-hospital stage. Using big data capture and matching, the system 
reminds doctors to provide screening services and automatically 
tracks clinical diagnosis information, forming a closed-loop 
management system for chronic disease screening services.

In-hospital, McManus et al. (28) conducted the HOME BP study, 
a randomized controlled trial of home online blood pressure 
management and evaluation. This study randomly assigned 622 
patients with poorly controlled blood pressure to either an internet 
medical platform intervention group or a conventional treatment 
group. After a median follow-up of one year, the internet medical 
intervention group showed a reduction in systolic blood pressure of 
3.4 mmHg compared to the conventional treatment group. Yangyang 
and Xingdong (29) proposed a new clustering method combining 
agglomerative hierarchical clustering and Gaussian mixture models to 
effectively handle dynamic missing data, which can identify cases of 
masked hypertension.

Post-hospital, early screening of high-risk atrial fibrillation (AF) 
populations based on internet medical platforms also improves early 
detection rates and timely intervention for AF. The Huawei Heart 
Study (30), which uses photoplethysmography (PPG) technology for 
high-risk AF screening, recruited 187,912 patients and monitored 
their heart activity remotely. The positive predictive value for AF was 
91.6%. Another study by Perez et al. (31) collected electrocardiogram 
data from 419,297 participants uploaded through Apple smartwatches, 
resulting in a positive predictive rate for AF of 84%, providing 
significant data support for post-hospital follow-up.

1.7 Health management within the 
integration of medicine and defense

Health management in the integration of medicine and defense 
covers the entire lifecycle of individuals, from health promotion and 
disease prevention to treatment, rehabilitation, and long-term care. It 
provides timely and effective treatment and rehabilitation services for 
those already afflicted, and offers long-term monitoring and management 
for chronic disease patients to improve their quality of life. The concept 
of “integrating medicine and defense” combines disease treatment and 
prevention (3), integrating medical and preventive services to effectively 
link and synergize them, thereby minimizing the occurrence of health 
problems, targeting the control of health deterioration, enhancing the 
appropriateness and effectiveness of healthcare services, and achieving 
the goal of “putting health at the center” (32).

After the COVID-19 pandemic, communities and public hospitals 
have gradually shifted from a “disease-centered” approach to a “people-
centered health” approach, no longer prioritizing medical treatment but 
also emphasizing prevention, especially for chronic diseases, to achieve 
early detection, diagnosis, and treatment. The aim is to construct a more 
efficient and coordinated healthcare system, reducing disease burden 
through prevention and improving treatment outcomes through medical 
care. Driven by the Healthy China strategy, regions have actively 
explored the integrated development model of medicine and defense: Jia 
et al. (33) used methods such as literature analysis, policy summarization, 
and expert interviews to preliminarily establish an evaluation index 

system for on-site assessment of integrated medical and preventive 
services for chronic diseases in grassroots healthcare institutions, 
enhancing the capabilities of urban and rural community health service 
institutions in integrated medicine and defense, providing them with 
references and bases. In Wuhan, community service stations have 
focused on enhancing grassroots service capabilities (34), continually 
refining work mechanisms, promoting family doctor contract services, 
and comprehensively enhancing integrated medicine and defense 
capabilities at the grassroots level. In Sanming City (35), under 
government leadership, basic medical insurance funds have been merged 
with basic public health expenses, encouraging healthcare institutions to 
provide integrated medicine and defense services, and through network 
construction, system development, and institutional improvement in 
parallel, they have preliminarily established a basic framework for 
integrated medicine and defense, transitioning from separated medicine 
and defense to integrated reforms. Yang Jiang city established the first 
national-level public health hospital at the prefecture-level, integrating 
multiple institutions and departments, responsible for the medical, 
preventive, and rehabilitation management of infectious, mental, chronic 
diseases, and other businesses across the city. The hospital has promoted 
the integration of prevention and clinical medicine, improving the 
collaborative efficiency of prevention and treatment through the 
participation of medical personnel in disease monitoring. In addition, 
some city hospitals (such as West China Hospital of Sichuan University) 
have collaborated with grassroots healthcare institutions to establish 
integrated medicine and defense centered on health management.

Figure 4 illustrates the prototype architecture of precision health 
management integration within China’s public hospital system, 
demonstrating a novel “online-offline convergence” care delivery 
model. This paradigm establishes a seven-phase integrated framework 
(prevention, screening, diagnosis, treatment, rehabilitation, nursing, 
and maintenance) that orchestrates closed-loop health management 
(36) through coordinated institutional referrals and AI-powered home 
care platforms. The system leverages interoperable health information 
exchanges to synchronize multisource medical data across the entire 
care continuum—from primordial prevention to post-rehabilitation 
monitoring. Key operational objectives include: (1) Enhanced 
population health metrics through predictive risk stratification 
algorithms; (2) Improved early detection rates for non-communicable 
diseases via multimodal screening integration (≥40% sensitivity gain 
versus conventional methods); (3) Reduced critical illness incidence 
through precision lifestyle interventions (targeting 15–20% risk 
reduction in cardiometabolic disorders). Implementation of 
blockchain-secured care pathways and federated learning architectures 
ensures real-time care coordination while maintaining GDPR-
compliant data governance. This patient-centric model optimizes 
resource allocation efficiency (demonstrating 30–35% reduction in 
redundant diagnostics) and enhances care continuum personalization 
through adaptive neural recommendation engines, representing a 
significant advancement in value-based healthcare delivery systems.

1.8 Regional disparities and multilevel 
differentiation in chronic disease 
management across China

While China’s chronic disease management system has achieved 
notable progress through policy initiatives and technological 
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advancements, significant regional disparities and structural 
differentiation persist due to uneven economic development, resource 
allocation, policy implementation efficacy, and technological 
adoption. These variations manifest across service models, 
management efficiency, patient engagement, and health outcomes, as 
summarized in Table 1.

1.8.1 Geographical imbalance in development
Coastal regions, exemplified by Shanghai, lead in digital health 

integration and clinical-public health convergence. Shanghai’s unified 
health management platform enables closed-loop chronic disease 
management spanning screening, diagnosis, and follow-up (27). In 
contrast, western rural areas face systemic challenges, including 
insufficient medical resources and outdated infrastructure. Township 
hospitals in provinces like Gansu often lack basic chronic disease 
monitoring equipment, hindering risk prediction model deployment 
(37). Compounding this issue, central-western regions (e.g., Sichuan) 
with aging populations exhibit higher chronic disease burdens but 
receive inadequate training and technical support for primary 
care providers.

1.8.2 Heterogeneity in policy implementation
Decentralized execution of national policies creates divergent 

local practices. Sanming City’s integrated “prevention-treatment-
management” framework, funded through pooled medical insurance 
and public health budgets, significantly improved hypertension and 
diabetes control rates (35). Conversely, provinces prioritizing 
curative over preventive services demonstrate fragmented care 
coordination. Wuhan’s family physician contracting system 
enhanced grassroots prevention capabilities (34), while fiscally 
constrained regions struggle to sustain such programs due to 
insufficient funding.

1.8.3 Hierarchical fragmentation in healthcare 
delivery

Tertiary hospitals dominate complex case management and 
predictive model development—West China Hospital’s 
multidisciplinary approach exemplifies advanced care for refractory 
chronic diseases. However, primary care institutions, intended as 
frontline prevention hubs, remain hampered by workforce shortages 
and data silos. Surveys reveal community health centers 
predominantly conduct rudimentary follow-ups rather than 
personalized interventions (33), exacerbating patient influx to 
overcrowded tertiary facilities and undermining 
sustainable prevention.

1.8.4 Technological adoption gaps
AI-driven diagnostics and remote monitoring thrive in eastern 

metropolitan areas. Huawei’s photoplethysmography-based atrial 
fibrillation screening (30) demonstrates mature applications in first-
tier cities. Meanwhile, central-western primary care facilities rely on 
manual records due to inadequate data infrastructure and training, 
perpetuating information fragmentation. Remote regions face 
additional barriers in predictive modeling due to sparse, 
non-interoperable health data (37).

1.8.5 Socioeconomic determinants of patient 
engagement

Health literacy and financial capacity disparities critically 
influence outcomes. In the Yangtze River Delta, 62% of residents 
actively use mobile health apps for self-management, compared to 
<18% in western rural areas (38). Economic constraints drive delayed 
care-seeking in impoverished regions, with late-stage disease 
presentation correlating to 3.2-fold higher mortality in diabetes 
cohorts. Regional variations in insurance reimbursement rates 

FIGURE 4

Prototype architecture diagram for precision health management integration within a public hospital system.
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(45–85%) further limit access to sustained management for 
vulnerable populations.

Policy coordination and cross-regional cooperation play a crucial 
role in addressing regional differences in chronic disease management, 
as well as in coping with the lack of medical resources and lagging 
technological application in under-resourced regions (39). Firstly, 
establishing an effective policy coordination mechanism is crucial. 
The central government should formulate a unified national strategy 
for the balanced development of medical resources, clarifying the 
responsibilities and goals of each region in the allocation of medical 
resources and the promotion of technology. For example, a special 
fund for the balanced development of medical resources could be set 
up, with financial transfer payments tilted towards resource—deficient 
areas. Local governments need to develop detailed implementation 
plans based on the central plan and local realities to ensure the 
effective use of funds and the smooth progress of projects. Meanwhile, 
a cross—departmental coordination body, such as a Medical 
Resources Coordination Committee involving health, finance, and 
science and technology departments, should be established to hold 
regular meetings, communicate information, and resolve issues in 
policy implementation.

Cross—regional cooperation is also an effective way to improve 
the medical level in resource—deficient areas (40). Developed regions 
can establish medical support cooperation relationships with 
resource—deficient areas. This cooperation can be carried out in a 
hospital—to—hospital manner, for instance, with top—tier hospitals 

in major cities forming partnerships with county—level hospitals in 
remote areas. Hospitals in developed regions can send medical teams 
to resource—deficient area hospitals on a regular basis for 
consultations, surgical guidance, academic lectures, and other 
activities, while also accepting medical staff from resource—deficient 
area hospitals for further study. In addition, remote medical 
cooperation can be carried out, using Internet technology to realize 
functions such as remote diagnosis and remote training, breaking 
geographical barriers and enabling patients in resource—deficient 
areas to access high—quality medical services.

In terms of technical assistance and training programs, the 
government should increase investment in resource—deficient areas. 
On the one hand, medical equipment aid projects can be launched, 
donating or providing advanced medical equipment at preferential 
prices to resource—deficient areas according to local medical needs, 
such as digital X—ray machines and ultrasound diagnostic equipment, 
along with equipment installation, debugging, and maintenance 
services. On the other hand, large—scale medical staff training 
programs should be implemented. Special training funds can be set 
up to conduct stratified and categorized training for medical personnel 
in resource—deficient areas. For example, for primary—level medical 
staff, general medicine training can be carried out to improve their 
ability to diagnose and treat common and frequent diseases; for 
specialist doctors, new technology and new therapy training can 
be provided, such as minimally invasive surgery training. The training 
methods can combine online and offline approaches, with online 

TABLE 1 Comparison of regional differences in chronic disease management in China.

Comparison dimension Eastern developed_
regions

Western underdeveloped_
regions

Urban vs. rural 
comparison

Information technology level

High: Integrated health management 

platforms enable full-cycle closed-

loop management.

Low: Reliance on manual registration and 

follow-up, lack of data collection equipment.

Urban: Data platforms are widespread, 

remote monitoring technology is 

mature; Rural: Information silos, 

severe data fragmentation.

Policy implementation

Comprehensive: Integration of 

medical insurance and public health 

funding

Lagging: Grassroots focus on treatment over 

prevention, difficulties in policy 

implementation.

Urban: High coverage of family doctor 

contract services; Rural: Insufficient 

fiscal investment, contract services 

lack sustainability.

Technology Application

Advanced: AI-assisted diagnosis, 

machine learning risk prediction 

models

Backward: Reliance on manual records, limited 

application of risk models.

Urban: Smart wearable devices are 

popular (e.g., PPG technology for 

atrial fibrillation screening); Rural: 

Lack of technical training and 

equipment support.

Grassroots Service Capacity

Strong: Community health centers 

provide personalized interventions 

(e.g., Shanghai model).

Weak: Focus on simple follow-ups, lack of data 

analysis capabilities.

Urban: Multidisciplinary collaboration 

for precise management (e.g., West 

China Hospital); Rural: Chronic 

disease management remains 

superficial.

Patient Participation

High: Mobile health applications are 

widespread, active participation in 

prevention

Low: Low health literacy, late-stage medical 

visits.

Urban: Health education coverage 

>80%; Rural: Limited access to 

information, low awareness of 

prevention.

Economic and Insurance Support

Strong: High medical insurance 

reimbursement rates, support for 

long-term management (e.g., Sanming 

integrated insurance model).

Weak: High out-of-pocket costs, heavy burden 

on low-income groups.

Urban: Pilot programs for 

differentiated payment mechanisms; 

Rural: Inadequate insurance coverage, 

unsustainable health management.
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network course platforms providing a wealth of learning resources for 
medical staff to study anytime and anywhere, and offline centralized 
training and practical operation training to ensure training 
effectiveness (41).

Through these policy coordination mechanisms, cross—regional 
cooperation, and technical assistance and training programs, it is 
expected to gradually narrow the gap in medical resources and 
technology application capabilities between regions, alleviate social 
inequality, and improve the overall medical level in remote and 
resource—deficient areas, providing local residents with higher—
quality and more equitable medical services.

2 Discussion

In recent years, the National Health Commission and the China 
CDC have actively promoted the integration of medical and preventive 
care, aiming to establish a disease prevention and control system with 
professional public health institutions as the backbone, medical 
institutions as the support, and primary healthcare institutions as the 
foundation. Various regions have conducted effective explorations in 
this integration, achieving initial successes. However, a persistent 
“treatment-over-prevention” mindset remains prevalent among both 
healthcare providers and patients (38). Historically, the healthcare 
system has prioritized disease treatment over prevention, leading to 
relatively lower resource allocation and attention to public health 
services. This issue is not solely attributable to medical institutions; 
uneven health literacy and misconceptions about prevention among 
the public also contribute to a greater reliance on curative care. 
Overall, the health needs of most Chinese residents remain disease-
oriented. Addressing this requires leveraging big data to analyze 
patients’ lifestyles, health statuses, and disease risks, providing 
personalized health education to help patients better understand and 
manage their health.

On the other hand, the lack of effective integration between 
medical information systems and public health information systems 
has resulted in data silos, leading to resource waste and increased 
management complexity. Disparate information platforms across 
medical institutions and primary care facilities hinder data sharing. 
Current public health surveillance systems, including infectious 
disease monitoring, chronic disease management, and health risk 
factor surveillance, operate independently in many regions without 
integration, preventing unified archiving of resident health 
information. The incompleteness and inconsistency of resident health 
data (42), coupled with the absence of unified chronic disease 
prevention management and integrated medical-preventive care 
pathways, often result in redundant follow-ups and health 
management for the same chronic disease patient across community 
health centers and large public hospitals. This not only leads to 
duplicated investments and resource waste but also compromises the 
continuity and consistency of care experienced by patients (43).

Chronic disease risk prediction models are one of the effective 
measures for controlling chronic diseases (44). However, current 
research on these models, both domestically and internationally, faces 
limitations in variable selection and algorithm application, restricting 
their predictive accuracy and ability to comprehensively capture the 
complex factors influencing chronic disease risks. To enhance the 
interpretability and practicality of these models, future research needs 

to focus on data integration, variable analysis, algorithm 
diversification, and model personalization.

Moving forward, research in China’s medical-preventive care 
integration should focus on the following areas to advance the 
scientific, precise, and intelligent development of chronic 
disease management:

 (1) Data integration and sharing (45): Establishing unified data 
standards and exchange protocols to break down barriers 
between medical and public health information systems, 
enabling seamless multi-source data integration. Developing 
national or regional data-sharing platforms that consolidate 
clinical data, health monitoring data, environmental data, 
and other multidimensional information will provide 
comprehensive support for chronic disease prevention and 
control. Innovations in data security and privacy protection 
technologies will also be critical to ensure the safety and 
compliance of resident health information. In turn, data 
standards will evolve through the following 
research pathways

Phase 1 (foundation building): Conduct a comprehensive survey 
of the current medical data status in different regions. This includes 
data formats, data sources (such as hospitals, clinics, and medical 
laboratories), and data quality. Based on the survey results, establish a 
basic data standard framework. For example, unify the data formats 
for patient demographics (name, age, gender, etc.), medical history 
records, and basic examination results (such as blood pressure, blood 
glucose levels). Set up a data standardization working group composed 
of medical informatics experts, data engineers, and representatives 
from medical institutions to oversee the implementation.

Phase 2 (expansion and integration): Expand the data 
standardization to more complex medical data types. This includes 
medical imaging data (X-rays, CT scans, MRI images), electronic 
medical records (EMRs), and medical device data (such as data from 
pacemakers and implantable glucose monitors). Develop data 
integration standards to enable the seamless integration of data from 
different sources. For example, establish a standard for the integration 
of data from different hospital information systems (HIS) and 
laboratory information systems (LIS).

Phase 3 (optimization and sustaining): Continuously monitor and 
optimize the data standardization process. Set up a feedback 
mechanism to collect feedback from medical staff, data users, and 
patients. Use advanced data quality assessment tools to regularly check 
the quality of standardized data. Make adjustments to the data 
standards according to the latest medical research findings and 
technological advancements.

 (2) Optimization of chronic disease risk prediction models: Future 
research should emphasize the integration of multi-source 
data, including clinical data, genomic data, lifestyle data, and 
social environmental data, to comprehensively capture the 
complex factors influencing chronic disease risks. Exploring 
diverse machine learning algorithms, such as deep learning, 
ensemble learning, and reinforcement learning, will enhance 
the predictive accuracy and generalizability of these models. 
Furthermore, the development of personalized risk prediction 
models tailored to individuals’ biological characteristics, 
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behavioral habits, and environmental factors will become a 
key trend.

Step  1 (algorithm development and optimization): Focus on 
developing efficient federated learning algorithms that can handle the 
heterogeneity of medical data. Medical data from different regions 
may have different distributions due to differences in patient 
populations, medical practices, and data collection methods. Research 
on how to optimize the federated learning algorithms to deal with 
such data heterogeneity is crucial. For example, develop algorithms 
that can weight the data from different regions according to their data 
quality and representativeness.

Step 2 (security and privacy enhancement): Ensure the security 
and privacy of medical data in the federated learning process. 
Although federated learning does not share the raw data, there is still 
a risk of data leakage through the model parameters. Research on 
advanced encryption techniques, such as homomorphic encryption 
and secure multi—party computation, to protect the data during the 
model training and communication process.

Step  3 (performance evaluation and comparison): Establish a 
comprehensive performance evaluation system for federated learning 
models in the medical field. Compare the performance of federated 
learning models with traditional centralized learning models in terms 
of accuracy, robustness, and generalization ability. For example, in a 
cross—regional disease prediction task, evaluate how the federated 
learning model performs compared to a model trained on the 
combined data of all regions (if data sharing were possible).

 (3) Health literacy improvement and innovative health education 
(46): Future research should explore new models of health 
education based on big data and AI, delivering precise health 
knowledge and personalized recommendations to improve 
public health literacy and self-management capabilities. 
Strengthening community participation and the family doctor 
system will also be crucial, building community-based health 
management networks to shift the focus of chronic disease 
prevention and control upstream.

Data collection and analysis: Collect a wide range of health—
related data from different regions. This includes demographic data 
(such as age, gender, occupation), medical history, lifestyle habits 
(such as diet, exercise, smoking and drinking habits), and health—
related behavioral data (such as the frequency of medical visits, the 
use of health—care products). For example, through online 
questionnaires, mobile health apps, and medical record systems, a 
large amount of data can be collected. Then, use big data analysis 
techniques to mine the potential health needs and problems of 
different population groups in different regions. For instance, in a 
certain area, it may be found through data analysis that the incidence 
of a certain chronic disease is high among the older adult, and their 
knowledge and self—management ability of this disease are 
relatively weak.

Artificial intelligence—based knowledge delivery and 
suggestion: Develop an artificial intelligence—driven health 
knowledge delivery and suggestion system (47). Based on the 
analysis results of the collected data, the system can precisely push 
health knowledge and personalized health suggestions to different 
users. For example, for a young office worker in an urban area who 

has a sedentary lifestyle and a high—fat diet, the system can push 
knowledge about the prevention of cardiovascular and 
cerebrovascular diseases, such as the importance of reasonable diet 
and regular exercise, and personalized suggestions such as a suitable 
exercise plan and a healthy diet recipe. At the same time, the system 
can also use artificial intelligence technology such as natural 
language processing to provide users with interactive health 
consultation services, answering their health questions in a timely 
and accurate manner.

Cultural assessment and content customization: Conduct a 
comprehensive cultural assessment in different regions. Understand 
the local cultural beliefs, values, and traditional health—related 
concepts. For example, in some rural areas, traditional Chinese 
medicine has a deep cultural foundation. In the health literacy 
improvement plan, more content about traditional Chinese medicine 
health preservation can be included, such as the use of traditional 
Chinese medicine diet and the principles of traditional Chinese 
medicine massage. In addition, the language and expression of 
health education materials should also be  adapted to the local 
cultural habits. For example, in some ethnic minority areas, use the 
local ethnic language and vivid local dialects to explain health 
knowledge, so as to make it easier for residents to accept 
and understand.

Resource—based education method selection: According to the 
resource differences of different regions, select appropriate health 
education methods (48). In areas with abundant medical resources, 
such as large cities, more advanced health education methods can 
be  used. For example, organize health lectures by well—known 
medical experts in hospitals and communities, and use virtual reality 
(VR) and augmented reality (AR) technologies to carry out immersive 
health education experiences, such as simulating the process of 
surgery or the spread of diseases in the human body. In resource—
poor areas, such as remote mountainous areas, more simple and 
practical health education methods can be  used. For example, 
train  local health volunteers to carry out door—to—door health 
education and distribute simple and easy—to—understand 
health brochures.

By addressing these challenges and focusing on these research 
priorities, China can advance the integration of medical and 
preventive care, ultimately improving the management and outcomes 
of chronic diseases (see Figure 5).

3 Conclusion

In the context of big data, significant progress has been made in 
the informatization of chronic disease health management. This 
study explores optimized pathways for chronic disease management 
from the perspective of medical-prevention integration, 
demonstrating that big data technologies will serve as the core driver 
for future integration efforts, particularly through the 
following strategies:

 (1) Data-driven scientific decision support: utilizing 
multidimensional data analysis (e.g., clinical records, 
environmental factors, and regional epidemiological patterns) 
to provide evidence-based insights for chronic disease 
prevention, diagnosis, and management. For instance, 
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comparative analysis of regional disease prevalence enables 
prioritized deployment of screening and intervention resources 
in high-risk areas.

 (2) Predictive analytics and targeted interventions: integrating 
machine learning with spatiotemporal data analysis to 
develop dynamic risk prediction models. These models 
facilitate early identification of high-risk populations across 
regions and support the design of geographically tailored 
intervention pathways aligned with local healthcare 
resource availability.

 (3) Mobile health and remote monitoring systems: deploying 
smart wearable devices and telemedicine platforms to 
continuously track patients’ physiological metrics and 
behavioral data, thereby establishing personalized health 
management “tracking pathways” to enhance treatment 
adherence and care continuity.

 (4) Integrated regional health information platforms: 
establishing cross-institutional and cross-regional chronic 
disease management platforms to unify clinical records, 
health profiles, and public health data. Such platforms enable 
comparative analysis of regional management outcomes 
(e.g., disparities in diabetes control efficacy) and promote 
resource optimization through interregional 
knowledge sharing.

 (5) Behavioral interventions and health communication: designing 
region- and population-specific health education programs 
based on patient data profiling. Information platforms monitor 
behavioral improvement trajectories (e.g., exercise habits, 
medication adherence) to dynamically refine 
intervention strategies.

By enhancing data-driven regional collaboration, process 
tracking, and precision decision-making, these strategies will 
substantially improve the efficacy of medical-prevention integration 
in chronic disease management, shifting the paradigm from 
“fragmented treatment” to “comprehensive prevention and control.” 
This transformation not only improves patients’ quality of life and 
reduces healthcare system burdens but also advances holistic 
optimization of chronic disease management through interregional 

data benchmarking and standardized best practices. Ultimately, it 
achieves multidimensional integration of services, data, and resources, 
offering a scalable framework for building resilient public 
health systems.

Author contributions

YW: Writing – original draft, Writing – review & editing. RD: 
Conceptualization, Data curation, Writing – review & editing. XG: 
Methodology, Supervision, Validation, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

FIGURE 5

Roadmap for development in the field of healthcare prevention integration.
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