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Background: Hospital-acquired infections (HAIs) represent a persistent

challenge in healthcare, contributing to substantial morbidity, mortality, and

economic burden. Artificial intelligence (AI) o�ers promising potential for

improving HAIs prevention through advanced predictive capabilities.

Objective: To evaluate the e�ectiveness, usability, and challenges of AI models

in preventing, detecting, and managing HAIs.

Methods: This integrative review synthesized findings from 42 studies, guided by

the SPIDER framework for inclusion criteria. We assessed the quality of included

studies by applying the TRIPOD checklist to individual predictive studies and the

AMSTAR 2 tool for reviews.

Results: AI models demonstrated high predictive accuracy for the detection,

surveillance, and prevention of multiple HAIs, with models for surgical site

infections and urinary tract infections frequently achieving area-under-the-curve

(AUC) scores exceeding 0.80, indicating strong reliability. Comparative data

suggest that while both machine learning and deep learning approaches

perform well, some deep learning models may o�er slight advantages in

complex data environments. Advanced algorithms, including neural networks,

decision trees, and random forests, significantly improved detection rates

when integrated with EHRs, enabling real-time surveillance and timely

interventions. In resource-constrained settings, non-real-time AI models

utilizing historical EHR data showed considerable scalability, facilitating

broader implementation in infection surveillance and control. AI-supported

surveillance systems outperformed traditional methods in accurately identifying

infection rates and enhancing compliance with hand hygiene protocols.

Furthermore, Explainable AI (XAI) frameworks and interpretability tools such

as Shapley additive explanations (SHAP) values increased clinician trust and

facilitated actionable insights. AI also played a pivotal role in antimicrobial

stewardship by predicting the emergence of multidrug-resistant organisms and

guiding optimal antibiotic usage, thereby reducing reliance on second-line

treatments. However, challenges including the need for comprehensive

clinician training, high integration costs, and ensuring compatibility with

existing workflows were identified as barriers to widespread adoption.
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Discussion: The integration of AI in HAI prevention and management represents

a potentially transformative shift in enhancing predictive capabilities and

supporting e�ective infection control measures. Successful implementation

necessitates standardized validation protocols, transparent data reporting, and

the development of user-friendly interfaces to ensure seamless adoption by

healthcare professionals. Variability in data sources and model validations

across studies underscores the necessity for multicenter collaborations and

external validations to ensure consistent performance across diverse healthcare

environments. Innovations in non-real-time AI frameworks o�er viable solutions

for scaling AI applications in low- and middle-income countries (LMICs),

addressing the higher prevalence of HAIs in these regions.

Conclusions: Artificial Intelligence stands as a transformative tool in the fight

against hospital-acquired infections, o�ering advanced solutions for prevention,

surveillance, and management. To fully realize its potential, the healthcare

sector must prioritize rigorous validation standards, comprehensive data quality

reporting, and the incorporation of interpretability tools to build clinician

confidence. By adopting scalable AI models and fostering interdisciplinary

collaborations, healthcare systems can overcome existing barriers, integrating

AI seamlessly into infection control policies and ultimately enhancing patient

safety and care quality. Further research is needed to evaluate cost-e�ectiveness,

real-world applications, and strategies (e.g., clinician training and the integration

of explainable AI) to improve trust and broaden clinical adoption.

KEYWORDS

hospital-acquired infections, artificial intelligence, infection prevention, infection

control, predictive analytics, infection surveillance, explainable AI

1 Introduction

The Centers for Disease Control and Prevention (CDC)
define healthcare-associated infections as infections acquired
during the provision of healthcare, highlighting the need for
effective prevention and control measures (1). Hospital associated
infections (HAIs) impose substantial financial burdens on
healthcare systems, attributed to extended hospital stays, escalated
resource utilization, and additional patient care requirements
(2) and represents a substantial and ongoing public health
challenge, contributing significantly to morbidity, and mortality
(3–5). Despite progress in infection control protocols, HAIs
continue to pose a serious threat. The COVID-19 pandemic
has further highlighted vulnerabilities in infection control
practices, particularly by exacerbating the limitations of traditional
surveillance methods, thereby emphasizing the need for innovative
solutions. AI, with its ability to analyze vast EHR datasets and
integrate unstructured clinical notes, offers a promising avenue for
early detection and intervention (6). While primarily a respiratory
illness, the pandemic has indirectly influenced the prevalence and
management of HAIs. Increased utilization of invasive devices,
prolonged hospital stays, and resource constraints have contributed
to a rise in HAIs, particularly in intensive care units (ICUs) (7–9).

The estimatedHAIs universal prevalence rate is 14%, increasing
by approximately 0.06% annually. Regional variations are notable,
with the African region experiencing the highest rates at 27%,
while the Americas and Western Pacific regions report lower rates

around 9% (10). Hospital setting also significantly influences HAIs
prevalence, with transplant wards exhibiting the highest rates at
77%, followed closely by neonatal (69%) and ICU (68%) wards (10).

The clinical impact of HAIs is profound, with common
infections including surgical site infections (SSIs), ventilator-
associated pneumonia (VAP), central line-associated bloodstream
infections (CLABSIs), and catheter-associated urinary tract
infections (CAUTIs). Infections caused by multidrug-resistant
organisms (MDROs) and Clostridioides difficile (CDI) also
pose significant risks, contributing substantially to patient
morbidity (11).

Each of these infection types carries a high risk of complications
and extended recovery times, resulting in increased patient
morbidity. SSIs, for example, are among the most frequently
reported HAIs and can lead to severe complications such as wound
dehiscence and sepsis, particularly in immunocompromised
patients (12). Pneumonia, especially VAP, is another significant
contributor to HAIs morbidity and mortality and is associated
with prolonged ventilator use and higher intensive care unit
(ICU) admission rates (13). Bloodstream infections, which are
often linked to central line use, can escalate into sepsis, a life-
threatening systemic response that greatly increases the risk
of mortality (14, 15). Similarly, CAUTIs are frequent among
patients with prolonged catheterization (16, 17). Active surveillance
strategies are foundational to infection prevention and control
efforts aimed at mitigating the burden of HAIs (18). However,
these strategies are frequently hindered by the complexity inherent
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in infection-related datasets and the challenges of monitoring
compliance with control measures (19). Traditional surveillance
methods, while standard, are often limited by their labor-intensive
nature and the need for specialized personnel (19). Traditional
surveillance typically involves manual data collection and periodic
analysis by healthcare professionals, which can be time-consuming
and prone to human error. These limitations underscore the
necessity for innovative approaches that enable timely, accurate,
and automated infection monitoring. Given the increasing threat
posed by HAIs and the rising incidence of antimicrobial resistance
(20), there is an urgent need for innovative, scalable approaches.
AI offers a transformative solution by enabling real-time, high-
precision analyses of vast datasets, identifying infection patterns,
and predicting risk factors that are otherwise challenging to
detect. Advanced modeling capabilities hold particular promise
in addressing antimicrobial resistance through early detection
of resistant pathogens and targeted interventions, thus helping
healthcare systems manage HAIs more effectively and alleviate the
growing burden on public health (21). Within the hospital context,
AI applications are vast, ranging from pathogen surveillance
and diagnostics to antimicrobial resistance analysis and clinical
decision support (21, 22). Effective deployment of AI in infection
control depends on both its predictive accuracy and practical
usability in clinical settings. Predictive accuracy metrics, such
as sensitivity, specificity, area under the curve (AUC), positive
predictive values (PRV) and negative predictive values (NPC) (23),
are essential for evaluating an AI model’s diagnostic performance
and reliability in identifying infection risks. However, for AI
to be genuinely impactful, usability factors—such as workflow
integration, interpretability, and healthcare provider trust—are
equally critical (24). These elements ensure that AI tools not
only perform well technically but are also effectively adopted
and trusted in real-world healthcare environments. Lessons from
the COVID-19 pandemic have demonstrated the potential of
integrating advanced technologies into infection control practices.
The pandemic provided valuable insights into the transmission
dynamics of healthcare-associated infections, particularly through
the application of machine learning and network analysis to predict
hospital-onset COVID-19 infection. As shown in recent study,
incorporating dynamic patient contact networks into predictive
frameworks significantly improves infection risk stratification and
early intervention capabilities (25). These innovations highlight the
need for AI-driven approaches to enhance outbreak preparedness
and infection prevention beyond respiratory illnesses. The capacity
for real-time surveillance supports early intervention strategies
and may significantly enhance patient outcomes. This review,
distinguish two main applications of AI in HAIs—AI used for
early detection of existing infections, which enables prompt
treatment and halts further spread. AI used for predicting which
patients are likely to develop infections, allowing for targeted
preventive interventions.

2 Aim and objectives

The overarching aim of this review was to assess the role
of artificial intelligence in enhancing hospital-acquired infection
prevention and management by evaluating both its predictive

accuracy and its usability in clinical settings. To achieve this aim,
the following objectives were defined:

To evaluate the predictive accuracy and diagnostic performance
of AI models for HAIs,

To assess implementation challenges—including system
integration and clinician trust. Although the review summarizes
findings narratively, key metrics such as sensitivity, specificity, and
AUC are critically discussed to illuminate model performance.

3 Methods

This study was conducted as an integrative review (26),
designed to synthesize evidence from existing individual studies,
systematic and scoping reviews on the role of AI in HAIs. An
integrative review was selected to consolidate high-level evidence
across numerous studies, facilitating a comprehensive overview of
AI applications inHAIs while identifying gaps in the literature. This
approach enables a synthesis of findings across various settings,
populations, and methodologies, providing valuable insights into
AI’s predictive accuracy and usability in clinical contexts.

This integrative review was conducted following PRISMA 2020
guidelines (27) to ensure a rigorous and transparent approach. The
review process adhered to a structured methodology encompassing
eligibility criteria, search strategy, screening and selection, data
extraction, synthesis, and bias assessment. The thematic synthesis
approach was chosen to structure and interpret the findings (28).
Thematic synthesis encompassing a wide range of studies was
chosen, as it allows for the identification and organization of
recurring patterns and themes across diverse datasets. Given the
varied focus and methodologies within the included systematic
reviews, scoping reviews, and individual studies on AI applications
in HAIs, thematic synthesis provides a systematic way to distill
complex information into coherent, interpretable themes that
reflect both depth and breadth (28).

4 SPIDER framework for inclusion
criteria

To structure the scope and inclusion criteria for this integrative
review, a SPIDER framework was applied (29), capturing the range
of study designs and the diversity of outcomes related to AI’s role in
HAIs management (Table 1).

4.1 Eligibility criteria

Inclusion and exclusion criteria were rigorously defined to
ensure a precise and targeted synthesis of evidence in alignment
with the review’s aim and objectives (Table 2). These criteria were
carefully crafted to select studies that provide empirical insights
into AI’s predictive accuracy and clinical usability in infection
control settings, directly supporting the review’s central objectives
and maintaining high methodological standards.
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TABLE 1 SPIDER framework used to develop the inclusion criteria for the

integrative review.

SPIDER
element

Description

S (Sample) Hospitalized patients susceptible to Hospital Acquired
infections and healthcare professionals involved in
prevention and management within hospital settings.

PI (Phenomenon
of Interest)

Application of AI-based technologies specifically
targeting Hospital Acquired infections prevention,
detection, prediction, or management.

D (Design) Systematic reviews, scoping reviews, and original
studies, including randomized controlled trials, cohort
studies, observational studies, case-control studies, and
qualitative research.

E (Evaluation) Primary evaluation metrics included predictive
accuracy (e.g., sensitivity, specificity, area under the
curve) and usability factors (e.g., workflow integration,
interpretability, clinician trust).

R (Research type) Quantitative, qualitative, and mixed-methods studies
were considered to ensure a comprehensive synthesis of
both technical and practical aspects of AI applications.

4.2 Search strategy

A detailed search strategy was employed across multiple
databases (MEDLINE/PubMed, Embase, IEEE Xplore, CINAHL,
and SCOPUS), using specific keywords and filters such as
“artificial intelligence,” “machine learning,” “deep learning,”
“hospital-acquired infections,” “nosocomial infections,” “infection
prevention,” and “surveillance”—for literature published from July
2014 to July 2024, with a follow-up search in February 2025 to
identify any new relevant studies. The search strategy, developed
with a research librarian, targeted both AI’s predictive accuracy
and usability within clinical workflows for HAIs prevention and
management. Search terms were structured to encompass artificial
intelligence, machine learning concepts, HAIs, predictive accuracy,
and usability factors (Table 3). Boolean operators and synonyms
were utilized to ensure thorough retrieval of relevant studies across
databases (27).

4.3 Selection process

The records identified through database searches were
imported into Rayyan, a systematic review screening tool (30),
where duplicates were removed. Two independent reviewers (RA
and FA) screened all resulting titles and abstracts based on eligibility
criteria. Full-text articles were subsequently evaluated for final
inclusion. Any discrepancies in study selection were resolved
through discussion, with a third reviewer (JS) involved to reach
consensus where necessary.

4.4 Data extraction and synthesis

Data extraction was conducted independently by two reviewers,
focusing on study characteristics, AI model type, predictive
accuracy metrics (e.g., sensitivity, specificity, AUC), usability
factors (e.g., workflow integration, interpretability, and clinician

TABLE 2 Inclusion and exclusion criteria for articles included in the

integrative review.

Inclusion criteria Exclusion criteria

Original research including
quantitative and qualitative studies.
Systematic reviews, scoping reviews,
randomized controlled trials, cohort
studies, observational studies,
case-control studies, qualitative
research, and case studies.

Theses, editorials, opinion pieces.

Studies involving hospitalized patients
or healthcare professionals engaged in
HAIs prevention and management
within hospital settings.

Studies focused primarily on
community-acquired infections or
conducted only in non-hospital
settings (e.g., outpatient clinics,
community care environments).

Studies using AI technologies
specifically for HAIs prevention,
detection, prediction, management, or
surveillance, with a focus on
predictive accuracy and practical
usability within clinical workflows.

AI applications not directly related
to infection control, predictive
accuracy, or usability in infection
prevention or management
settings.

Studies reporting on predictive
accuracy metrics [e.g., sensitivity,
specificity, area under the curve and
usability outcomes (e.g., workflow
integration, interpretability, provider
trust, clinical decision support)].

Studies lacking relevant outcomes,
such as predictive accuracy,
diagnostic performance, or
usability factors crucial to the
practical application of AI in
infection control.

Studies published between July 2014
and July 2024, with an updated search
in November 2024 to capture recent
publications.

Studies published before July 2014.

trust). Discrepancies were resolved through consensus. Data were
synthesized thematically, capturing recurring themes relevant to
objectives (31).

4.5 Quality assessment of included studies

The included studies were assessed for methodological quality
using standardized tools appropriate to their design. Predictive
modeling studies were evaluated using the TRIPOD checklist (32)
to assess reporting transparency and methodological rigor. Quality
was primarily assessed using the AMSTAR 2 tool for review articles,
while additional criteria were applied to non-systematic reviews of
predictive modeling studies (33).

5 Results

The search strategy yielded a total of 588 studies across all
databases, which was subsequently refined to a total of 42 studies
eligible for inclusion in the final dataset (Figure 1).

5.1 Characteristics of study

This review synthesizes 37 individual studies (Appendix A1)
from Brazil (34, 35), Cambodia (36), Norway (37), Canada (38–
40), China (41–45), Denmark (46–49), Italy (50–52), Japan (53),
Pakistan (54), South Korea (55, 56), Spain (57), Taiwan (58),
and the United States (59–70). Additionally, three systematic
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TABLE 3 Search terms utilized during the literature search phase of the

integrative review.

Concept Keywords

Artificial
intelligence (AI)
and machine
learning concepts

“artificial intelligence” OR “AI” OR “machine
learning” OR “deep learning” OR “predictive
modelling” OR “algorithm” OR “data mining” OR
“natural language processing”

Hospital-acquired
infections (HAIs)

“hospital-acquired infection” OR “nosocomial
infection” OR “healthcare-associated infection”
OR “HAI” OR “infection prevention” OR
“infection control” OR “pathogen detection” OR
“surveillance”

Predictive accuracy
and diagnostic
performance

“predictive accuracy” OR “diagnostic
performance” OR “sensitivity” OR “specificity”
OR “area under curve” OR “AUC” OR “precision”
OR “recall” OR “ROC curve” OR “classification”
OR “prediction”

Usability and
practical
application

“usability” OR “practical application” OR
“implementation” OR “integration” OR “clinical
usability” OR “workflow integration” OR “clinical
decision support” OR “trust in AI” OR
“interpretability” OR “adoption” OR “acceptance”

reviews (22, 71, 72) and two scoping reviews (73, 74) were
included (Appendix A2). Many individual studies that relied on
data from specific hospitals used data from single institutions or
departments (34, 36, 38, 39, 41–45, 50, 53–56, 58, 61, 62, 64, 65).
Additionally, the primary studies were systematically classified into
Model Development or Implementation and Evaluation studies
(Appendix A3).

5.2 Quality assessment

This integrative review included 42 studies: two scoping
reviews, three systematic reviews, and 37 individual studies.
Each included study was meticulously evaluated using TRIPOD
(Transparent Reporting of a Prediction Model for Individual
Diagnosis) for predictive studies and AMSTAR 2 (A Measurement
Tool to Assess Systematic Reviews) for the reviews. The TRIPOD
framework is essential to ensure consistency, transparency, and
reproducibility across predictive modeling studies, particularly in
high-stakes healthcare applications like infection prevention and
control. The quality assessment here reflects the adherence of all
37 individual studies to TRIPOD standards across key domains:
study objectives, data sourcing, participant criteria, predictor
transparency, outcome definition, model development and
validation, and performance interpretation (32) (Appendix A4).

All included studies clearly articulated their objectives, with
each aiming to enhance infection prediction, or intervention
strategies through predictive modeling. Studies exemplified
this clarity, contributing clear goals relevant to infection risk
assessment or management in clinical setting. All the 37 studies
presented adequate descriptions of their data sources, often
drawing from robust electronic health records (EHRs) or large
surveillance databases, essential for ensuring data quality and
representativeness. Participant selection varied across studies,

with some studies providing extensive inclusion and exclusion
criteria, while others offered more limited demographic or clinical
specifics. Studies clearly detailed inclusion and exclusion criteria,
contributing to a thorough understanding of the populations
targeted (39, 41, 44, 50, 66). In contrast, other studies would
benefit from enhanced reporting on participant demographics,
comorbidities, or other selection details (49, 59). This level of
transparency is essential for assessing generalizability and ensuring
that predictive models are applicable across diverse patient groups.

Most studies demonstrated solid adherence to TRIPOD
guidelines by detailing the predictors used, often encompassing
a mix of clinical, demographic, and procedural variables. In
several cases (55, 70), specific feature selection techniques, such
as recursive feature elimination (RFE) and feature importance
rankings (i.e., metrics that quantify the contribution of each
predictor to the model’s predictions), were used to enhance
model interpretability. However, studies like Hopkins et al. and
Lind et al. (60, 62) could further improve by providing explicit
lists of all predictors used, which would strengthen transparency
and facilitate application in diverse clinical settings. Consistent
outcome definitions, aligned with clinical guidelines, were reported
in all studies, ensuring clear identification and reproducibility
of endpoints.

Model development and validation processes were generally
robust across the included studies, with most employing cross-
validation or external validation techniques to test model reliability.
For example, studies by Jakobsen et al., Zachariah et al.,
Hopkins et al., Mamlook et al., and Scardoni et al. (47, 59,
60, 67, 70) provided in-depth details on their model validation
processes, including data split ratios, cross-validation methods,
and hyperparameter tuning. Studies like those by Cho et al.
and Caglayan et al. (53, 64) could further improve by including
additional specifics regarding validation techniques, particularly
in complex clinical models. Performance metrics such as AUC,
sensitivity, specificity, and accuracy were consistently reported
across the studies, enabling an effective assessment of model
predictive power. Additionally, several studies incorporated feature
importance rankings or interpretation aids, such as SHAP
values, as seen by Møller et al., and Scardoni et al. (48, 70),
which enhance clinical interpretability by identifying the most
influential predictors.

The AMSTAR 2 tool, a widely recognized instrument for
assessing systematic was applied to evaluate the methodological
rigor of the included reviews (33) (Appendix A5–A9). clarity, We
applied the full AMSTAR 2 tool to the three systematic reviews,
while for the two scoping reviews we used an adapted version
of the AMSTAR 2 tool, tailored to the objectives of scoping
reviews. This assessment revealed both strengths and limitations,
particularly in terms of study selection, bias management, and
transparency, which are crucial for advancing AI applications
in HAIs. In evaluating the methodological rigor of included
scoping reviews (73, 74), an adapted version of the AMSTAR
2 tool was employed to ensure a comprehensive and high-
quality assessment. Recognizing the unique purpose of scoping
reviews, which aim to map evidence and identify gaps rather
than synthesize outcomes (75), we selectively applied AMSTAR 2
criteria that align with these objectives. This approach focused on
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FIGURE 1

PRISMA flow diagram.

aspects of methodological transparency and comprehensiveness.
The overall quality rating of the five reviews included in this
analysis reflects a solid, though varied, adherence tomethodological
rigor. Four of the reviews (22, 72–74) demonstrated moderate
quality, meeting essential criteria for transparent objectives, and
clear data extraction processes. The systematic review by Scardoni
et al. (71) was rated as moderate to high quality due to its
rigorous adherence to PRISMA guidelines, comprehensive search
strategy, and independent data extraction. Its methodological
strength, particularly in addressing heterogeneity and transparently
reporting finding.

5.3 Results

Our thematic synthesis revealed two major domains: predictive
performance and clinical usability. Although many models
demonstrated AUCs above 0.80, these results often derive from
single-center, retrospective studies with inherent limitations.
Comparative analyses reveal that deep learning models sometimes
outperform traditional machine learning algorithms in handling
high-dimensional and complex datasets, though both approaches
show strong potential.

5.4 Predictive accuracy of AI models for
HAI detection and classification

One of the most critical indicators of AI model effectiveness
in HAIs management is predictive accuracy. Predictive accuracy
refers to the ability of an AI model to correctly identify or
forecast the presence or risk of an infection, as measured by
metrics such as sensitivity, specificity, and the area under the
receiver operating characteristic curve (AUC). Various studies
employing machine learning (ML) and natural language processing
(NLP) techniques. Across these studies, models targeting specific
infections, such as SSIs, urinary tract infections (UTIs), consistently
demonstrated high accuracy metrics, notably AUC scores and
predictive sensitivity.

1. Surgical Site Infections (SSIs): This subtheme presents how AI
is used to predict and detect SSIs, which are common and critical
post-surgical complications. Different AI models are applied to
improve prediction accuracy for SSIs.

A subset of Sohn et al., Hopkins et al., Petrosyan et al. (38,
59, 61) focused on detecting SSIs following surgical procedures.
For example, Zachariah et al. (59) employed a Bayesian network
model enriched by NLP for SSIs detection post-colorectal
surgery, achieving an AUC of 0.892 and indicating enhanced
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accuracy when surgeon-defined criteria were applied. Hopkins
et al. (61) applied a deep neural network model to predict SSIs
in patients undergoing spinal fusion surgeries, yielding an AUC
of 0.775 and high PPV and NPV, suggesting effective clinical
applicability for SSIs prevention. Additionally, Petrosyan et al.
(38) achieved an AUC of 0.91 for SSIs prediction within 30
days post-surgery, demonstrating the model’s strong calibration
and suggesting its potential utility in high-risk surgical settings.
The review by Radaelli et al. (72) confirm that models for
SSIs, like Random Forest and Bayesian networks, achieve
high area under the receiver operating characteristic (AUROC)
scores, reinforcing AI’s precision in detecting infections in
postoperative care.

2. Urinary Tract Infections (UTIs): This subtheme addresses the
application of AI in predicting UTIs, with a focus on hospital
admission data and patient histories.

Studies like Zachariah et al., Møller et al., and Jakobsen
et al. (48, 49, 60) illustrated AI’s capacity to predict UTIs with
robust performance across different methodologies. Zachariah
et al. (60) applied decision tree and neural network models to
identify UTI risk at hospital admission, reporting a sensitivity
of 78.2% and specificity of 64.2% for the decision tree model
and contrasting specificity and sensitivity profiles for the
neural network model. Møller et al. (49) and Jakobsen et al.
(48) demonstrated the utility of clinical data and historical
health information in decision tree and neural network
models, achieving AUC of 0.81 and 0.758, respectively, further
reinforcing AI’s utility in UTIs prevention.

3. Broader HAIs Detection and Surveillance: This subtheme
highlights the use of AI models designed to predict and monitor
a wide range of HAIs, such as VAP, and CLABSI. These models
are like multi-purpose tools that can address multiple types of
infections within a single system, making them valuable for
general infection surveillance in high-risk settings like ICUs.

Several studies assessed AI models for general HAIs
detection. Dos Santos et al. (34) developed a neural network
model trained on EHRs data over 18 months, reporting a
ROC AUC of 0.903, with 88.57% sensitivity and 90.27%
specificity, underscoring the model’s ability to effectively classify
HAIs in high-risk patients. Barchitta et al. (51) focused on
ICU and integrated AI with the Simplified Acute Physiology
Score (SAPS II), achieving an AUC of 0.90, suggesting AI’s
capability in amplifying traditional scoring methods to enhance
infection risk stratification. The review by Baddal et al. (22)
highlights the application of AI models, including random
forests, logistic regression, and deep learning techniques, for
predicting infections such as VAP and CLABSIs. In some
studies, high-performing models achieved AUC scores between
0.76 and 0.85 for early VAP prediction, demonstrating the
potential of ML in infection risk stratification and management.
Similarly, Scardoni et al. (71) observed that AI-based models,
especially those using ML, often outperformed traditional
statistical methods, achieving high specificity, sensitivity, and
AUC scores across various HAIs. For instance, a random
forest model for CLABSIs prediction achieved an AUC of 0.87,
underscoring AI’s effectiveness in infection risk stratification.
Zhang et al. (73) focused on AI models for VAP, noting an

average AUC of 0.86 across different ML algorithms, with
random forest models showing particularly strong predictive
performance. This reinforces the effectiveness of AI in early
HAIs detection, especially for high-risk ICU patients.

4. Other Infection-Specific Models: This subtheme focuses on
AI applications specifically developed for managing single
infections, such as VAP, or MDRO colonization. These models
are like specialized tools, designed to address the unique clinical
needs of individual infections. By providing highly tailored
predictions, they support more precise decision-making in
critical situations

The review included studies focusing on sepsis (63)
ventilator-associated infections (69), and MDRO colonization
(65). For instance, Lind et al. (63) employed two automated ML
systems trained on EHR data for predicting sepsis risk, achieving
sensitivities of 80% and 65.7% and specificities of 72.8% and
66.9%. In the context of bloodstream infections (BSIs), the
study by Bopche et al. (37) highlights the feasibility of non-
real-time AI models, which leverage historical EHR data. This
approach not only demonstrates high predictive accuracy but
also offers scalability for broader implementation in hospitals
with limited access to real-time monitoring systems. Caglayan
et al. (65) developed a model for predicting MDRO colonization
upon ICU admission, attaining an AUC of 0.83, reflecting AI’s
precision in early identification of MDRO cases to prevent the
spread of resistant pathogens. The review by Bomrah et al.
(74) demonstrates that machine learning models, particularly
Random Forest and XGBoost, consistently achieved high
AUROC values for sepsis prediction, outperforming traditional
scoring systems. These findings highlight the potential of
machine learning for timely and accurate sepsis detection in
ICU and emergency settings. Additionally, literature reviews by
Baddal et al. (22) and Scardoni et al. (71) report that AI models
show promise in reducing hospital stays and mortality rates,
underscoring their predictive and preventive value in clinical
applications. Zhang et al. (73) further emphasizes the frequent
use of machine learning algorithms, including random forests
and neural networks, in AI models for VAP, pointing to high
accuracy and AI’s critical role in stratifying patient risk.

5. Predictive Value Across Diverse AI Algorithms: This
subtheme, focuses on the comparative predictive value of
different ML algorithms for detecting infections like VAP,
emphasizing the overall performance of algorithms (especially
ensemble models and deep learning).

Different ML algorithms were evaluated across studies,
including logistic regression, neural networks, decision trees,
Bayesian networks, and ensemble models. Studies indicated
that deep learning models and ensemble approaches often
achieved superior predictive accuracy, particularly in complex
datasets with high-dimensional data. Notably, Flores-Balado
et al. (57) reported an AUC of 0.989 for detecting SSIs
post-hip replacement using an NLP-based gradient boosting
model, and Zhu et al. (44) found that ensemble learning
models outperformed single algorithmic approaches for UTIs
prediction in immobile stroke patients. According to the review
by Bomrah et al. (74), robust feature engineering, including
methods like filter, wrapper, and embedded approaches,
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significantly enhances ML model accuracy. The review
highlights that Random Forest and XGBoost models, optimized
with critical features such as vital signs and lab values,
achieved sensitivity improvements essential for early infection
risk assessment.

5.5 Usability and practical integration of AI
tools in clinical settings

In addition to predictive accuracy, practical considerations
surrounding the usability and integration of AI tools in clinical
environments emerged as crucial for AI adoption. Several studies
addressed factors such as interpretability, clinician trust, and
workflow compatibility, which influence the operational value of
AI in infection control.

1. Interpretability and transparency: interpretability is essential
for gaining clinician trust and ensuring AI predictions are
actionable. various studies leveraged explainable AI techniques,
such as SHapley additive explanations (SHAP) values, to
elucidate model predictions. for instance, lee et al. (56)
utilized SHAP values to demonstrate feature importance in
predicting antibiotic resistance patterns, allowing clinicians
to understand which variables—such as prior antibiotic use
and demographic factors—influence infection risk. Jakobsen
et al. (47) similarly adopted Bayesian networks incorporating
clinical expert knowledge, which provided interpretable and
clinically intuitive predictions, enhancing the model’s suitability
for infection risk stratification in HA-UTI management.

2. Integration with Existing EHR Systems: Studies consistently
highlighted the importance of seamless integration with EHRs to
ensure timely access to data and facilitate real-time prediction.
Bonde et al. (46) demonstrated successful NLP-based model
integrations with EHRs chart notes, improving the detection of
superficial SSIs and postoperative infections. These integrations
were shown to reduce the need for manual reviews significantly
(40, 46, 55, 57), as Cho et al. (55) reported a potential reduction
in chart reviews by 83.9% using an AI model combined with
a rule-based algorithm, highlighting the operational efficiency
gains possible with AI. The review by Baddal et al. (22)
underscores the critical role of data integration from EHRs in
ensuring the accuracy and functionality of AI-based infection
surveillance systems. Access to real-time EHR data significantly
enhances the predictive power of AI models, facilitating timely
infection detection and response within clinical workflows.
Reviews by Radaelli et al., and Scardoni et al. (71, 72) similarly
highlight EHRs as the primary data source, reinforcing the
importance of comprehensive data integration for optimizing
AI performance in HAIs detection. In contrast, Zhang et al.
(73) points out that most VAP prediction models draw data
from public databases like MIMIC-III, which primarily include
structured clinical and laboratory data. This review also notes
the absence of imaging data, suggesting that addressing this gap
could further improve model accuracy.

3. Scalability and Adaptability Across Settings: AI tools’
generalizability across various clinical settings and infection
types is vital for widespread adoption. While models trained

in single-center studies showed strong internal validation,
multicenter studies such as Zhu et al. (44) indicated that AI
models could be generalizable across different hospitals,
enhancing their potential for broader clinical utility.
Additionally, studies like Huang et al. (45) underscored
AI’s adaptability by implementing an AI-based training and
monitoring system (AITMS) across multiple departments,
which improved compliance with personal protective
equipment (PPE) protocols and decreased infection rates,
demonstrating the potential for cross-functional applications of
AI in infection prevention.

4. Challenges in Model Deployment and Clinical

Implementation: Despite promising results, several studies
identified practical barriers to the implementation of AI tools.
Challenges included model interpretability, data quality, and
the need for clinician training on AI-driven decision support
systems. For example, Rennert-May et al. (39) and Walker
et al. (64) reported difficulties in translating model predictions
into clinical actions due to the complexity of algorithmic
outputs and the need for user-friendly interfaces that align with
clinical workflows. As highlighted in recent reviews (22, 71, 72),
challenges—including model variability, data quality, risk of
bias, the need for standardized protocols, high costs, healthcare
worker resistance, and limited evidence on real-world impact—
continue to hinder broader implementation efforts. While
reviews of VAP prediction models, such as Zhang et al. (73),
note promising performance, they also underscore that studies
have largely focused on internal validation without real-world
application. Further challenges, including the lack of external
validation, integration with clinical workflows, and exclusion
of nurse-related data, remain barriers to adoption. Likewise,
Bomrah et al. (74) emphasize in their review of sepsis prediction
models the need for standardized feature engineering and
external validation to ensure reliability and clinical integration.

6 Discussion

The findings of our integrative review suggest that AI has
substantial potential to enhance HAI prevention through early
detection and optimized infection control strategies. While many
models report high predictive accuracy, these results are often
tempered by methodological shortcomings such as reliance on
retrospective data and internal validation. Traditional approaches
to infection control often rely on manual surveillance and
retrospective analyses, whereas AI introduces a paradigm shift
toward proactive, real-time risk assessment and decision-making
(24, 76). Our findings contribute to this growing body of literature
by demonstrating that AI’s predictive capabilities, when integrated
into healthcare workflows, could address longstanding challenges
in HAIs management.

6.1 Enhanced surveillance and early
detection in HAIs control

Surveillance strategies play a critical role in preventing,
diagnosing, and managing HAIs, with substantial literature
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advocating for the integration of emerging technologies to advance
these efforts (35). AI developments now offer a transformative
potential for HAI surveillance, enabling more precise decision-
making (19). Broad evaluations in the field affirm AI’s value in
enhancing HAIs control, supporting findings from this integrative
review. A systematic review highlighted AI-driven approaches
that show promise in HAI monitoring and surveillance (71).
These advancements indicate a potential paradigm shift in HAIs
surveillance, carrying significant implications for future research
and strategic integration within infection control frameworks.

Our review emphasizes the integration of unstructured data,
such as clinical notes, with structured EHR data to improve HAIs
surveillance. Studies, such as that by Shi et al. (77), demonstrate
that using NLP to extract infection-related information from
clinical notes combined with structured data enhances machine
learning models’ specificity and predictive accuracy for surgical site
infections. Their approach, utilizing a random forest model with
high specificity and positive predictive value, suggests that NLP-
augmented AI models may overcome limitations in traditional
manual chart reviews, which are resource-intensive and prone
to underreporting. Nonetheless, challenges remain in interpreting
negations and contextual nuances within clinical notes, indicating
a need for more sophisticated temporal and context-aware features
to optimize AI’s role in infection control.

AI’s role in infection surveillance, particularly through
ML and NLP, is critical for early HAIs detection. These
technologies enable healthcare systems to identify infections
before they become clinically evident. Our review findings
demonstrate that AI-driven models are particularly effective
in continuously analyzing patient data streams, providing
real-time risk assessments and reducing reliance on labor-
intensive manual reviews. This aligns with broader findings
showing that AI can process both structured and unstructured
data—including EHRs entries, clinical notes, and diagnostic
images—to achieve high sensitivity and specificity in infection
detection (78).

6.2 Integration challenges and the
necessity of clinician trust

AI-driven surveillance systems promise to alleviate the
significant clinical burden associated with traditional HAIs
monitoring, thereby allowing clinicians to focus on critical
infection control interventions. This shift has profound
implications for healthcare resource allocation, as automated
systems reduce the need for manual chart reviews, freeing clinical
staff for more direct patient care. As noted by Wolfensberger
et al. (79), fully automated systems can achieve time and
cost savings while maintaining or even enhancing infection
detection accuracy. This review reaffirms that AI-driven infection
monitoring can streamline clinical workflows, which is crucial
for high-demand environments such as ICU, where HAIs
are prevalent.

Despite AI’s promising contributions to infection control,
several significant barriers to implementation remain, including
model interpretability, data standardization, and the need for

clinician trust. The lack of standardized data formats limits
AI model generalizability across institutions and hinders
EHRs integration. To maximize AI’s utility, healthcare systems
need interoperability solutions that facilitate seamless data
exchange, thereby enhancing model accuracy and reliability. The
findings of this review highlight that consistent data standards
and EHRs compatibility are foundational to AI’s broader
clinical applicability.

Clinician trust is paramount for AI adoption, as clinicians must
rely on AI insights to make critical care decisions. Explainable
AI (XAI) methods, such as SHapley Additive exPlanations
(SHAP), show promise in making model predictions more
transparent by identifying key predictive variables, thus improving
clinician understanding and confidence in AI-generated insights
(56). While XAI methods aim to enhance interpretability, it
is crucial to go beyond these frameworks to ensure AI-driven
insights align with traditional diagnostic practices and clinical
expertise. However, current literature lacks robust evidence on
clinicians’ trust in existing AI models, underscoring the need
for qualitative research to explore their experiences, perceptions,
and concerns. Such research can provide critical insights into
barriers and facilitators of trust, offering a foundation for
designing AI tools that align with clinical workflows. Additionally,
user-friendly interfaces and tailored training programs remain
important components in fostering trust and encouraging
adoption, but their design should be informed by the findings of
qualitative studies.

7 Methodological discussion

A pivotal methodological observation in this integrative
review is the inconsistency in validation techniques across studies
evaluating AI models for HAIs prediction. Validation practices
play a central role in ensuring that performance metrics—
such as AUC, sensitivity, and specificity—accurately represent a
model’s generalizability beyond its training data. Variability in
these practices, however, risks distorting true model performance,
hindering reliable comparisons and potentially overstating or
understating the models’ predictive power.

For instance, studies relying on internal validation methods,
such as cross-validation, may present more favorable metrics
due to potential overlaps between training and test data,
potentially leading to an optimistic assessment of model accuracy.
Conversely, studies employing external validation, which uses
datasets from different populations or healthcare environments,
often yield slightly lower metrics, yet provide a more realistic
perspective on a model’s robustness and generalizability in diverse
clinical settings.

This inconsistency underscores the need for a more
standardized approach to validation and reporting in future
studies. Establishing methodological transparency and consistent
performance metrics is essential to accurately evaluate and
compare AI models. Such rigor will enable the field to identify
models that reliably translate to real-world clinical settings,
ultimately supporting AI’s role in advancing infection control
and prevention.
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8 Strengths and limitations

This integrative review provides a comprehensive synthesis
of AI applications in HAIs, drawing from a wide range of high-
quality sources, including systematic reviews, scoping reviews,
and individual studies. The use of validated tools, such as the
TRIPOD and AMSTAR 2, enhances the methodological rigor
of this review by ensuring consistent reporting quality and
minimizing biases. This study is strengthened by the thematic
synthesis approach, which captures the depth and breadth of
AI’s predictive capabilities and usability within clinical contexts.
By including diverse AI model types and infection types, this
review provides a holistic perspective that highlights AI’s potential
for reducing HAIs and addresses key factors influencing its
clinical applicability.

However, some limitations must be acknowledged. First, while
the review spans multiple AI applications, the heterogeneity of the
included studies—covering various infection types, AI algorithms,
and clinical settings—introduces variability that may limit the
generalizability of certain findings. Furthermore, the majority of
studies rely on retrospective data, which could lead to selection
biases and impact the predictive accuracy of AI models in real-
time clinical settings. The reliance on EHRs data, which varies
in quality and completeness across institutions, also poses a
limitation. Additionally, this review’s focus on predictive accuracy
and usability may overlook other important factors, such as cost-
effectiveness and long-term impacts on patient outcomes, which
would be valuable to explore in future research.

How AI tools work (lay summary).

AI models analyze
large datasets (e.g.,
electronic health
records) to identify
patterns associated
with infections.

They use complex
algorithms to detect
subtle signals in
patient data that may
indicate the onset of an
infection.

This process enables
earlier detection,
timely intervention,
and improved patient
outcomes by guiding
clinical decisions.

9 Recommendations and implications

To support AI integration in HAIs management, healthcare
administrators must prioritize investments in data infrastructure,
interoperability, and clinician training. Policies should encourage
the adoption of EHRs that can seamlessly integrate AI-driven
tools, allowing real-time data utilization and enhancing infection
control capabilities.

Establish clear guidelines ensuring patient data privacy
and ethical AI use. Policymakers can develop frameworks
that regulate data sharing across healthcare systems while
maintaining patient confidentiality, fostering a trusted AI
implementation environment.

Clinicians should advocate for AI models that provide
interpretable outputs to enhance their practical application in
infection control. Models using SHAP or similar interpretative
methods allow clinicians to understand risk factors more
transparently and support decision-making processes.

Infection control teams can benefit by incorporating AI
predictions into daily surveillance protocols. AI models can serve

as an adjunct to traditional infection surveillance, enabling earlier
detection and intervention, particularly for high-risk units such as
ICUs and surgical wards.

IT departments should focus on ensuring data quality
and consistency in healthcare records, which are critical for
accurate AI predictions. Standardizing data collection methods and
implementing regular data audits can enhance the reliability of
AI-driven models.

Developing scalable and flexible AI systems that work across
different hospital settings will support multicenter collaborations.
Such initiatives can also aid in the external validation of AI
tools, increasing their generalizability and reliability across diverse
clinical environments.

AI developers must emphasize external validation to ensure
the adaptability of AI models in different clinical contexts.
Including usability testing with end-users, such as infection control
professionals, will help tailor AI tools to fit specific workflows and
improve adoption rates.

AI researchers should develop ethical frameworks that
address potential biases in AI models, especially when using
diverse demographic data. Techniques such as fairness-aware
machine learning can mitigate bias, ensuring equitable AI-driven
healthcare solutions.

Future research should focus on large-scale, longitudinal
studies across multiple hospital systems to validate AI models
and improve their reliability in varied clinical settings.
Multicenter studies will also enhance the model’s ability to
handle heterogeneous data, which is common in healthcare.

Advanced AI techniques, including ensemble learning and
deep learning, should be further explored to tackle complex
HAIs, such as multidrug-resistant infections. Developing models
tailored to specific HAIs and patient populations can lead to more
precise interventions.

Comprehensive assessments of AI’s cost-effectiveness in
reducing HAIs and its impact on clinical outcomes are essential.
These studies can provide data to justify the financial investment in
AI-driven infection control, making the case for broader adoption
across healthcare systems.

To improve usability, AI research should prioritize the
development of interfaces designed around the workflows of
infection control teams and clinicians. User-centered design in AI
tools can enhance clinical acceptance and reduce the learning curve
associated with adopting new technologies.

10 Conclusion

This integrative review highlights the potential of AI to
transform HAIs prevention by enhancing early detection and
supporting infection control efforts. AI models, particularly those
integrated with electronic health records, have demonstrated
high accuracy in identifying infections such as surgical site
infections and urinary tract infections. These predictive tools
can guide timely interventions, reducing the burden of HAIs on
healthcare systems. However, broader adoption requires further
validation of these models across diverse healthcare settings,
simplified integration into clinical workflows, and clinician-
friendly interpretability features. By addressing these challenges,
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clinicians and administrators can leverage AI to strengthen patient
safety and infection control.
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